- Horseshoe crabs Applied Biostatistics
- Statistical modeling overview
- Exponential family
- Generalized linear models (GLM)
- Analysis of horseshoe crab data using logistic regression
- Odds, odds ratio interpretation of logistic regression
- Horseshoe crab logistic regression model : 1 variable
- Inference for logistic regression
- $\mathrm{Cl} /$ test for coefficients
- CI for probabilities
- Multiple logistic regression
- Logistic regression with indicators
- Assessing model fit
- Comparing models
- Count data and Poisson regression

Horseshoe crabs

■ Very old (~ 450 million years), so sometimes called 'living fossils'

- 4 species

■ Not actually 'crabs', they are arachnids (like spiders)

- Females $\sim 30 \%$ bigger than males
- Few survive into adulthood

■ Important in biomedical research - their blood has good anti-bacterial properties and is used in developing vaccines and endotoxin testing

Mating affected by male's condition

■ Males are either attached or unattached : satellites or more distant

- Attached males are :
- lighter in color
- more slime
- less fouling
- carapace, eyes and spine in better condition
- younger
than unattached males

Sexual biology of horseshoe crabs

■ Migrate for spawning in shallow water

- Nesting is synchronized and seasonal

■ Tend to nest in (small number of) protected areas

- Reproductive competition in male Limulus polyphemus horseshoe crabs
- Operational sex ratio is usually male-biased : competitive males per female $\sim 1-6$

Scientific aim

- Suppose now that we are interested in investigating whether a female horseshoe crab has a satellite or not
- This is a binary response
- Activity : think about how you might do this and what information (variables) you could collect to study this
\qquad
\qquad
\qquad
\qquad

Data for the study

Data on $n=173$ female horseshoe crabs.

- $\mathrm{C}=$ color ($1,2,3,4=$ light medium, medium, dark medium, dark).
- $S=$ spine condition (1,2,3=both good, one worn or broken, both worn or broken).
- $\mathrm{W}=$ carapace width (cm).
- $\mathrm{Wt}=$ weight (kg).
- Sa $=$ number of satellites (additional male crabs besides her nest-mate husband) nearby.

■ BUT : what are we going to do with this information??
$■ \Rightarrow$ need a (statistical) model

Exploring the data : carapace width

- Let's first focus on the simplest case where there is only a single variable : carapace width

Statistical modeling

■ Goal : to capture important characteristics of the relationship between one (or several) explanatory
■ Many models are of the form :

$$
g(Y)=f(\mathbf{x})+\text { error }
$$

- Differences between models : the forms of g, f and distributional assumptions about the error term
- Examples of models :
- Linear: $Y=\beta_{0}+\beta_{1} x+\epsilon$
- Linear $Y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\epsilon$
- (Intrinsically) nonlinear: $Y=\alpha x_{1}^{\beta} x_{2}^{\gamma} x_{3}^{\delta}+\epsilon$
- Generalized linear model (e.g. Binomial) : $\log \frac{p}{1-p}=\beta_{0}+\beta_{1} x+\beta_{2} x_{2}$
- Cox proportional hazards model (used in survival analysis) : $h(t)=h_{0}(t) \exp (\beta x)$

Linear models

- A simple model : $E(Y)=\beta_{0}+\beta_{1} x$

■ Gaussian measurement model : $Y=\beta_{0}+\beta_{1} x+\epsilon, \epsilon N\left(0, \sigma^{2}\right)$
■ More generally : $Y=X \beta+\epsilon$, where Y is $n \times 1, X$ is $n \times p, \beta$ is $p \times 1, \epsilon$ is $n \times 1$, often supposed $N\left(0, \sigma^{2} I_{n \times n}\right)$
■ Important application : analysis of designed experiments :

- a design matrix X such that for the response variable $Y: E(Y)=X \beta$, where β is a vector of parameters (ou contrastes)
- There are several ways to specify the matrix X for a specific design (this corresponds to the parameterization of the model)
$-\Rightarrow$ ANOVA

Linear regression model (again)

- For all the linear models that we have seen this semester, the reponse variable has been modeled as a Normal RV:

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

- Equally :

$$
Y \sim N\left(\mu, \sigma^{2}\right), \quad \mu=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

- Suitable for a continuous response

■ NOT for a binary response

- Generalized linear models (GLMs) : generalization of linear models for modeling non-normal response variables
- We will study logistic regression for a binary response variable

Modification of the response

■ Instead of modeling the response directly, could instead model the probability of obtaining the value ' 1 ' ('success') (that is, the expected value of the reponse)

- Problems:
- could lead to fitted values outside of outside of $[0,1]$
- normality assumption on errors is false

■ Instead of modeling the expected response directly as a linear function of the predictors, model a suitable transformation

- For binary data, this is generally taken to be the logit (or logistic) transformation

Generalized linear model: theory

■ GLMs allow unified treatment of statistical methods for several important classes of models
■ The distribution of the response Y is supposed to belong to an exponential family : $f(x \mid \eta)=h(x) \exp \left[\eta^{T} T(x)-A((\eta)]\right.$.
■ (Many distributions can be respresented in this form, including the binomial, Normal, Poisson, exponential)

- GLMs are formed from three components :
- random component : the reponse variable Y, a random component whose distribution belongs to the exponential family
- deterministic component : the linear predictor $\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$
- link function: describes the functional relation between the linear predictor and the mathematical expectation of the response variable Y

Linear models: a new view

■ For a linear model :

$$
Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon, \text { where } \epsilon \sim N\left(0, \sigma^{2}\right)
$$

■ The expected reponse is $E[Y \mid x]=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}$
■ Let η be the linear predictor $\eta=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}$
■ For the (ordinary) linear model : $E[Y \mid x]=\eta$

- For a generalized linear model, there is a link function g that relates η with the expected response : $g(E[Y \mid x])=\eta$
- For the (ordinary) linear model, $g(y)=y$ (link = identity)
- We consider logistic regression for a binary response
- We can consider Poisson regression for a count response

Link function

- Generally more clear when we consider the inverse of the link function :

$$
E[Y \mid x]=g^{-1}(\eta)
$$

■ For a binary response (values 0 or 1), then

$$
E[Y \mid x]=P(Y=1 \mid x)
$$

- In this case, a practical function is

$$
E[Y \mid x]=P(Y=1 \mid x)=\frac{e^{\eta}}{1+e^{\eta}}
$$

- The corresponding link functions (that is, the inverse of this function) is called the logit
$■ \operatorname{logit}(x)=\log \left(\frac{x}{1-x}\right)$
- The logistic regression models the logit as a function of the predictor variables

Logit transformation

- $\operatorname{logit}(\pi(x))=\log \operatorname{odds}(\pi(x)))=\log \frac{\pi(x)}{1-\pi(x)}=$

$$
\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

■ Then, $\pi\left(x_{1}, \ldots x_{k}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}\right)}$

- Parameter estimation by maximum likelihood

■ Interpretation : the parameter β_{k} is such that $\exp \left(\beta_{k}\right)$ is the $O R$ (odds ratio) that the response takes value 1 when x_{k} goes up by 1 , when the remaining variables are constant
$\Rightarrow \beta=\log O R$

- For example, for binary X, we have

$$
O R=\frac{\left(\frac{\exp \left(\beta_{0}+\beta_{1}\right)}{1+\exp \left(\beta_{0}+\beta_{1}\right)}\right) /\left(1-\frac{\exp \left(\beta_{0}+\beta_{1}\right)}{1+\exp \left(\beta_{0}+\beta_{1}\right)}\right)}{\left(\frac{\exp \beta_{0}}{1+\exp \beta_{0}}\right) /\left(1-\frac{\exp \beta_{0}}{1+\exp \beta_{0}}\right)}=
$$

Logistic regression

■ Logistic regression is a natural choice for a binary reponse
■ Denote one of the 2 possibilities 'success', or $Y=1$

- We look for a model for estimating the probability of success as a function of the explanatory variables
■ When using the logit transformation, la probabilité of 'success' is of the form :
$E[Y \mid x]=P(Y=1 \mid x)=\frac{e^{\eta}}{1+e^{\eta}}$

Logistic modeling of horseshoe crab data : results 1

Figure 4.3. Observed and fitted proportions of satellites, by width of female crab.

Logistic modeling of horseshoe crab data : results 2

Table 4.2. Computer Output for Logistic Regression Model with Horseshoe Crab Data

$$
\text { Log Likelihood } \quad-97.2263
$$

		Standard Likelihood Ratio		Wald		
Parameter Estimate	Error	95\% Conf. Limits	Chi-Sq	Pr $>$ ChiSq		
Intercept -12.3508	2.6287	-17.8097	-7.4573	22.07	$<.0001$	
width	0.4972	0.1017	0.3084	0.7090	23.89	$<.0001$

■ Now let's estimate $\pi(x)=$ probability (depending on x) of a female crab having a satellite

■ Based on the output and the inverse logit function, we have :

$$
\hat{\pi}(x)=\frac{\exp (-12.351+0.497 \times x)}{1+\exp (-12.351+0.497 \times x)}
$$

- For the minimum sample value $(21.0 \mathrm{~cm}), \hat{\pi}(x)=$

■ For the maximum sample value $(33.5 \mathrm{~cm}), \hat{\pi}(x)=$

Odds and the OR

■ For a probability p, the odds is defined as:

$$
\operatorname{odds}(p)=\frac{p}{1-p}
$$

■ For just one binary variable X, the odds ratio (OR) is the ratio of the odds :

$$
O R=\frac{P(Y=1 \mid X=1) /(1-P(Y=1 \mid X=1))}{P(Y=1 \mid X=0) /(1-P(Y=1 \mid X=0))}
$$

- 3 cases :
- $O R=1: Y$ is independent of X
- $O R>1$: the condition represented by Y is more frequent for individuals with $X=1$
- $O R<1$: the condition represented by Y is more frequent for individuals with $X=0$

Analogous to linear regression

■ The logit function g possesses many of the same good properties of the linear regression model
■ Mathematically convenient and flexible - can include covariates in the model

- Can meaningfully interpret parameters
- Linear in the parameters
- A difference : Error distribution is binomial (not Normal)

Model fitting

■ For linear regression, typicall fitting is done by the method of least squares

- But when the reponse est binary, the 'good' statistical properties of the resulting estimators no longer hold
- The general method that leads us to least squares (for normally distributed errors) is our friend (!!) maximum likelihood

Revision : binomial distribution

■ Logistic regression is related to the binomial distribution

- If there are multiple observations with the same value(s) of the explanatory variable(s), then the individual responses can be added and this sum has a binomial distribution
- Binomial mass function : $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$
- For a binomial RV with parameters n and p, then the expected value is $\mu=n p$ and the variance is $\sigma^{2}=n p(1-p)$
■ Logistic regression belongs to the 'binomial family' of GLMs

Maximum likelihood estimation

■ Likelihood: $f\left(x_{i}\right) \propto \pi\left(x_{i}\right)^{y_{i}}\left[1-\pi\left(x_{i}\right)\right]^{1-y_{i}}$
■ For independent observations, the likelihood is :

$$
L(\beta)=\prod_{i=1}^{n} f\left(x_{i}\right)
$$

- log likelihood :

$$
I(\beta)=\log [L(\beta)]=\sum_{i=1}^{n}\left(\log \left(\pi\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\pi\left(x_{i}\right)\right)\right)
$$

■ Find the β_{i} that maximize the log likelihood by differentiating with respect to each β_{i} and setting all derivatives $=0$
■ For linear regression, these equations are simple to solve

- On the other hand, for logistic regression the equations are nonlinear and do not have an analytic solution
- They are solved using a numerical algorithm (notably Newton-Raphson)

Confidence intervals

- From the estimated parameters $\hat{\beta}_{i}^{M L E}$, we obtain the MLE of the linear predictor :

$$
\hat{\eta}_{M L E}=\hat{\beta}_{0}^{M L E}+\sum_{i=1}^{p} \hat{\beta}_{i}^{M L E} X_{i}
$$

- In addition, due to the invariance of the MLE, we obtain the MLE of the probability of 'success' :

$$
\widehat{\pi(x)}=\frac{e^{\hat{\eta}}}{1+e^{\hat{\eta}}}
$$

■ We use the asymptotic normality of the MLE in order to make a Cl at $100(1-\alpha) \%$ for $\eta: \hat{\eta} \pm z_{1-\alpha / 2} \times S E(\hat{\eta})=(J, S)$

- The $100(1-\alpha) \% \mathrm{Cl}$ for $\pi(x)$ is thus : $\left(\frac{e^{J}}{1+e^{J}}, \frac{e^{S}}{1+e^{S}}\right)$

Model fitting and checking

- For the standard (fixed effects) linear model, estimation is usually by least squares
- Can be more complicated with random effects or when x-variables are subject to measurement error as well
- Checking model : examination of residuals
- Normality
- Time effects
- Nonconstant variance
- Curvature

■ Detection of influential observations

Link function: examples

	Family Name			
Link	binomial	Gamma gaussian	inverse.gaussian poisson	
logit	D			
probit	\bullet			
cloglog	\bullet			\bullet
identity		\bullet	D	
inverse		D		D
log	\bullet		D	\bullet
$1 / \mathrm{mu}^{\wedge} 2$				\bullet
sqrt				

Analogous to linear regression

- The logit function g has many of the desirable properties of a linear regression model :
- Mathematically convenient and flexible
- Can meaningfully interpret parameters
- Linear in the parameters

■ A difference : Error distribution is binomial (not normal)

Inference : tests for coefficients

- Wald test statistics are simple; for 'sufficiently large' samples:

$$
z=\frac{\hat{\beta}}{S E(\hat{\beta})} \sim N(0,1)
$$

■ Although the Wald test is adequate for large samples, the likelihood ratio test (LRT) is more powerful and more reliable for sample sizes often used in practice

- The LRT test statistic compares the maximum L_{H} of the likelihood function when $\beta=0$ to the maximum L_{A} of the likelihood function for unrestricted β :

$$
\lambda=-2 \log \frac{L\left(\hat{\theta}_{M L E}^{H}\right)}{L\left(\hat{\theta}_{M L E}^{A}\right)}
$$

- Under certain regularity conditions, when H is true $\lambda \sim \chi_{p}^{2}$, where $p=$ number of constraints imposed by H ($=$ difference in the number of parameters estimated under the 2 models)

Inference: Cl for probabilities

■ For simple logistic regression, the estimated (predicted) probability at a fixed x value is given by :

$$
P(Y=1 \mid x)=\hat{\pi}(x)=\frac{e^{\hat{\beta}_{0}+\hat{\beta}_{1} x}}{1+e^{\hat{\beta}_{0}+\hat{\beta}_{1} x}}
$$

■ Activity : Estimate the probability of a satellite for female crabs of width $x=26.5 \mathrm{~cm} \ldots$

- From software, a $95 \% \mathrm{Cl}$ for the true probability $\pi(26.5)$ is (0.61, 0.77)

Why use a model to estimate probabilities?

■ Instead of finding $\hat{\pi}(x)$ using the model fit, as we just did at $x=26.5$, why not simply use the sample proportion to estimate the probability ? ?
■ For width $=26.5,4 / 6$ had satellites, so the sample proportion estimate at $x=26.5$ is $p=4 / 6=0.67$ (similar to the model-based estimate)

- A small sample exact (binomial) $95 \% \mathrm{Cl}$ is $(0.22,0.96)$: much larger than the model-based Cl
- When the logistic regression model holds, the model-based estimator of $\hat{\pi}(x)$ is much better than that of the sample proportion because it uses all the data rather than only the data at the fixed x value, giving a more precise estimate
■ For example, at $x=26.5$, software reports a $\mathrm{SE}=0.04$ for the model-based estimate 0.695
- By contrast, the SE for the sample proportion of 0.67 with only six observations is : \qquad

Indicator (dummy) predictors

■ Let's go back to analyzing our Horseshoe crab data, but instead of only using carapace width as a predictor, let's also include color.

- Color is a categorical (factor) variable with five categories: light, medium light, medium, medium dark, dark
- Color is a surrogate for age, since older crabs tending to have darker shells
- The sample contained no light crabs, so we use only the other four categories
■ In order to include categorical / factor explanatory variables in a LM or GLM, we need to use indicator (sometimes called dummy) variables
- The number of dummy variables to include is the number of categories minus 1

Multiple logistic regression

- To incorporate color into the model, we need to introduce 3 indicator variables for the 4 categories
- The model is now

$$
\operatorname{logit}[P(Y=1)]=\beta_{0}+\beta_{1} c_{1}+\beta_{2} c_{2}+\beta_{3} c_{3}+\beta_{4} x
$$

where x denotes width and
$c_{1}=1$ for color $=$ medium light, 0 otherwise
$c_{2}=1$ for color $=$ medium, 0 otherwise
$c_{3}=1$ for color $=$ medium dark, 0 otherwise

- Crab color is dark when $c_{1}=c_{2}=c_{3}=0$

Multiple logistic modeling with width and color : results 1

Table 4.6. Computer Output for Model for Horseshoe Crabs with Width and Color Predictors

Parameter	Estimate	Std. Error	Like. Ratio Confidence	$\begin{gathered} 95 \% \\ \text { Limits } \end{gathered}$	Chi Square	$\mathrm{Pr}>\mathrm{ChiSq}$
intercept	-12.7151	2.7618	-18.4564	-7.5788	21.20	$<.0001$
c1	1.3299	0.8525	-0.2738	3.1354	2.43	0.1188
c2	1.4023	0.5484	0.3527	2.5260	6.54	0.0106
c3	1.1061	0.5921	-0.0279	2.3138	3.49	0.0617
width	0.4680	0.1055	0.2713	0.6870	19.66	$<.0001$
LR Statistics						
	Source	DF	Chi-Square	$\mathrm{Pr}>$	ChiSq	
	width	1	24.60		0001	
	color	3	7.00	0.	0720	

Multiple logistic modeling with width and color: results 2

Some interpretation

- The model assumes no interaction between color and width \Rightarrow width has the same effect (coefficient 0.468) for all colors
- This implies that the shapes of the four curves relating width to $P(Y=1)$ (for the four colors) are identical
■ For each color, a 1 cm increase in width has a multiplicative effect of $e^{0.468}=1.60$ on the odds that $Y=1$
- Each curve is the same as any other curve, only shifted to the left or right
- The parallelism of curves in the horizontal dimension implies that two curves never cross
■ At all width values, for example, color 4 (dark) has a lower estimated probability of a satellite than the other colors

Let's have some fun!!

■ What is the estimated probability for a medium-light crab of average width $(26.3 \mathrm{~cm})$? ? for a dark crab ? ?

- What are the estimated odds for a medium-light crab ? ? for a dark crab ? ?
- The exponentiated difference between two color parameter estimates is an odds ratio comparing those colors. What is the estimated odds ratio comparing medium-light and dark crabs ? ? Interpret.

Evaluation of the fitted model

■ In linear regression, ANOVA consists in the decomposition of the total sum of squares of the observations around their mean (SST) :

- SSE, error sum of squares (residuals = observed predicted)
- SSR, regression sum of squares (of the model)

■ Large values of $S S R$ suggest the importance of the explanatory variable(s)
■ We use the principle for logistic regression : comparison of the observed response to the predicted response by the models with / without the explanatory variable(s)

- This comparison is made based on the log likelihood

Deviance

■ For (ordinary) linear models, parameter estimation by least squares (minimize the sum of squared residuals)

- (Equivalent to ML for the Normal model)
- For GLMs, estimation is by ML
- The deviance is (proportional to) $2 \times \ell$
- (Analogous to SSE)
- Obtaining an 'absolute' measure of the quality of model fit (goodness-of-fit) depends on certain assumptions, often not satisfied in practice
- Thus typically focus rather on the comparison of competing models
- If the models are nested (that is, one model is a sub-model of the other), we can carry out a LRT

Test of goodness-of-fit ('global' test)

- Or rather test of NONgoodness-of-fit (!!)
- Test based on the deviance D of the model
- We reject H : the data conform to the model, for large values of D (residuals)
- Under A, there is a parameter for each observation (saturated model)
■ It is often said - BUT NOT TRUE!!!! - that under H, D (residuals) $\sim \chi^{2}$ with $\mathrm{df}=\mathrm{df}$ error
- (The problem : the asymptotic result for χ^{2} does not hold if the number of parameters is not finite, and since the saturated model has one parameter for each of the n observations, then if $n \rightarrow \infty$ the number of parameters is not finite)
- For samples of moderate size, it is not the worst thing in the world to assume this asymptotic distribution

Model comparison

■ Linear regression : a coefficient is (statistially) significant if its standardized value $\hat{\beta} / S E(\hat{\beta})$ is 'large'
■ We can use this same reasoning for logistic regression (z-test $=$ Wald test), but this approach is problematic (lacks power)
■ Preferred approach: likelihood ratio test (LRT)

- Deviance $D=-2\left(\sum_{i=1}^{n} y_{i} \log \left(\frac{\hat{p}_{i}}{y_{i}}\right)+\left(1-y_{i}\right) \log \left(\frac{1-\hat{p}_{i}}{1-y_{i}}\right)\right)$
- Comparison of models: calculate the statistic

$$
G^{2}=D(\text { sub-model })-D(\text { bigger model })
$$

■ Under H (the sub-model is sufficient), $G^{2} \sim \chi^{2}$ with degrees of freedom (df) $=$ difference in the number of estimated parameters

Summary: Tests for coefficients

■ One coefficient :

1 parameter $=\beta_{i}$, the coefficient of variable x_{i} in the logistic regression model in the population
$2 H: \beta_{i}=0 ; \quad A: \beta_{i} \neq 0$
3 TS : \bullet Wald : $z_{o b s}=\frac{\hat{\beta}_{i}}{E S\left(\hat{\beta}_{i}\right)} \quad \bullet$ LRT: $G^{2}=-2 \log \frac{L_{H}}{L_{A}}$
$4 p_{o b s}$: \bullet Wald : $2 P\left(Z>\left|z_{1-\alpha / 2}\right|\right) \bullet$ LRT : $P\left(X^{2}>\chi_{1}^{2}\right)$
$■$ Several coefficients :
1 parameters $=\beta_{j}, \ldots, \beta_{k}$ ($=q$ coefficients), of variables x_{j}, \ldots, β_{k} in the logistic regression model in the population
$2 H: \beta_{j}=\ldots=\beta_{k}=0 ; \quad A$: at least one $\beta_{i} \neq 0, q \leq i \leq k$
3 TS : •LRT : $G^{2}=-2 \log \frac{L_{H}}{L_{A}}$
$4 p_{o b s}$: - LRT : $P\left(X^{2}>\chi_{q}^{2}\right)$
■ (Here, we consider the RV $X^{2} \sim \chi^{2}$)

Variance inflaction factors

■ The meaning of a variance inflation factor is essentially equivalent for linear models and GLMs
■ We can use the VIF to look for multicollinearity

- R function vif from the car package

■ Also look at correlation matrix for the data matrix X

Summary

■ Residuals are certainly less informative for GLMs than for linear regression

■ Issues of outliers and influential observations just as relevant for GLMs as for linear regression : look at Cook's distance plot
■ Usually a good idea to start with simple models and gradually add in complexity

DNA sequencing (optional)

- (Automated) Sanger sequencing
- 'first-generation' technology
- F. Sanger, 1977
- Process :
- bacterial cloning or PCR
- template purification
- labelling of DNA fragments using the chain termination method with energy transfer, dye-labelled dideoxynucleotides and a DNA polymerase
- capillary electrophoresis
- fluorescence detection
- Data : four-colour plots that reveal the DNA sequence

Next-generation sequencing

- Several newer sequencing technologies
- 'Next-generation sequencing' (NGS data)
- 'Ultra high-throughput sequencing' (UHTS data)
- These newer technologies use various strategies that rely on a combination of template preparation, sequencing and imaging, and genome alignment and assembly methods
- Data : four-colour plots that reveal the DNA sequence

■ Major advance : ability to produce a large amount of data relatively cheaply
■ Expands experimental possibilities beyond just determining the order of bases

Applications of NGS

■ Sequence assembly (original application)
■ Resequencing : The sequencing of part of an individual's genome in order to detect sequence differences between the individual and the standard genome of the species
■ Gene expression : RNA-Seq

- SNP discovery and genotyping
- Variant discovery and quantification
- Transcription factor binding sites: ChIP-Seq
- Measuring DNA methylation

NGS data generation

■ Sequencing technologies incorporate methods that we can class as

- template preparation
- sequencing and imaging
- data analysis

■ Combination of specific protocols distinguishes different technologies

- Major technologies :
- Illumina HiSeq (older: Solexa)
- 454 (Roche)
- Applied Biosciences SOLiD
- Pacific Biosciences SMRT (single molecule real-time)

Data analysis pipeline

- Data are counts of short sequences (called 'reads')
- Quality control of data
- Match to reference sequence, read mapping
- Count/summarize number of reads per feature

■ Statistical analysis (depends on the specific application)

Sequence data

- Sequence data are counts

■ DNA sample \Longrightarrow population of cDNA fragments
■ Each genomic feature \Longrightarrow species for which the population size is to be estimated

■ Sequencing a DNA sample \Longrightarrow random sampling of each of these species

- Aim : to estimate the relative abundance of each species in the population

Poisson model

■ If we assume :

- each cDNA fragment has the same chance of being selected for sequencing
- the fragments are selected independently
- Then : the number of read counts for a given genomic feature should follow a Poisson variation law across repeated sequence runs of the same cDNA sample
- The Poisson model implies that the mean equals the variance

■ (This relationship has been validated in an early RNA-Seq study using the same initial source of RNA distributed across multiple lanes of an Illumina GA sequencer)

Single gene model

■ DNA sample \Longrightarrow 'library'
■ Contains genes $1, \ldots, g, \ldots$
■ For a given gene g in library $i, Y_{g i}=$ number of reads for gene g in library i

- $Y_{g i} \sim \operatorname{Bin}\left(M, p_{g i}\right)$, where $p_{g i}$ is the proportion of the total number of sequences M in library i that are gene g
■ M large, $p_{g i}$ small $\Longrightarrow Y_{g i} \sim \operatorname{Pois}\left(\mu_{g i}=M p_{g i}\right)$ (approximately)

Technical vs. biological replicates

- For the Poisson model, the variance is equal to the mean
- With technical replicates, this relation holds fairly well

■ With biological replicates, the variance is typically larger than expected using the Poisson model

- There are a few different approaches for accounting for this additional variability (overdispersion)

Link function for count data

■ We can model the count data $Y_{i} \sim \operatorname{Pois}\left(\mu_{i}\right), i=1, \ldots, n$
■ Want to relate the mean μ_{i} to one or more covariates (for example, treatment/control status)

- A convenient link function in this case is the log :

$$
\log \mu_{i}=\eta=x_{i}^{\top} \beta
$$

■ Using a log link ensures that the fitted values of μ_{i} will remain in the parameter space $[0, \infty)$

- A Poisson model with a log link is sometimes called a log-linear model

Variance function for the Poisson model

- The Poisson distributions are a discrete family with probability function indexed by the rate parameter $\mu>0$:

$$
p(y)=\frac{e^{-\mu} \mu^{y}}{y!}, \quad y=0,1,2, \ldots
$$

■ Under the Poisson model : $E\left[Y_{i}\right]=\operatorname{Var}\left(Y_{i}\right)=\mu_{i}$

- General form of the relationship between the variance of the response variable and its mean is: $\operatorname{Var}($ response $)=\phi V(\mu)$, with ϕ a constant scale factor
- Normal : $V(\mu)=1, \quad \phi=\sigma^{2}$ (the variance does not depend on the mean)
- Binomial : $V(\mu)=\mu(1-\mu) \quad \phi=1$
- Poisson : $V(\mu)=\mu \quad \phi=1$
- Real data are often overdispersed, exhibiting more variation than allowed by the Poisson model

Detecting and handling overdispersion

- When fitting a GLM with binomial or Poisson errors, can often detect overdispersion by comparing the residual deviance to its degrees of freedom
■ For a well-fitting model, these should be approximately equal
■ Overdispersion usually handled with an alternative model :
- Quasi-Poisson Model : Assume $\operatorname{Var}\left(Y_{i}\right)=\phi \mu_{i}$ and estimating the scale parameter ϕ
- Zero-Inflated Poisson Model : for modeling the case when there are too many '0' values
- Negative Binomial Model : Can arise from a two-stage model :

$$
Y_{i} \sim \operatorname{Pois}\left(\mu_{i}^{*}\right) \quad \mu_{i} * \sim \Gamma\left(\mu_{i} / \omega, \omega\right)
$$

Then $Y_{i} \sim$ NegBin, with $E\left[Y_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left(Y_{i}\right)=\mu_{i}+\mu_{i}^{2} / \omega$

Differential gene expression for NGS data

- Several BioConductor (R) packages for identifying differential expression from NGS data
- These mostly use the negative binomial model, since the counts are typically over-dispersed compared to the Poisson model

■ The edgeR package uses an overdispersed Poisson model to account for both biological and technical variability, and uses empirical Bayes methods to moderate the degree of overdispersion across transcripts

