Support Vector Machines

Pascal Fua
IC-CVLab
Non-Linearly Separable Data

Adaboost can handle this using linear classifiers.

\[\rightarrow \text{Map the data to a higher dimension.} \]
Mapping to a Higher Dimension: Three Examples

1D classification. 2D classification. Polynomial approximation.
How can we handle this 1D/2-class data?

We can map it to 2D:

\[x \rightarrow \phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix} \]

\[\rightarrow \text{We can now use a linear classifier.}\]
2D Classification Example

How about this 2D/2-class data?
We can map the 2D data to 3D:

\[
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \phi(x) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 + x_2^2 \end{bmatrix}
\]

\[\rightarrow \text{We can now use a linear classifier.} \]
Lifting from 2D to 3D

SVM with a polynomial Kernel visualization

Created by: Udi Aharoni
Polynomial Approximation

\[(x_n, t_n)\]

For \(1 \leq n \leq N:\)
\[t_n = f(x_n) + \epsilon\]

- The \((x_i, t_i)\) are given.
- \(f\) is unknown.

- Find \(w = [w_0, w_1, \ldots, w_M]\) such that:

 \[\forall x, f(x) \approx \sum_{i=0}^{M} w_i x^i\]

- Least squares solution: \(w^* = \arg\min_w \sum_n (t_n - \sum_{i=0}^{M} w_i x_n^i)^2\)

- For \(M=1\), reduces to linear regression.
For a given M, we plot in green:

\[f_M(x) = \sum_{i=0}^{M} w_i x^i \]
Polynomial Feature Expansion

\[x \rightarrow \phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \]

The polynomial can be rewritten as:

\[\sum_{i=0}^{M} w_i x^i = w \cdot \phi(x) = w^T \phi(x) \text{ with } w = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_M \end{bmatrix} \]

The least squares solution becomes:

\[w^* = \underset{w}{\text{argmin}} \sum_n (t_n - w^T \phi(x_n))^2 \]
Least-Squares Formulation

\[w^* = \arg \min_w \sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2 \]

\[= \arg \min_w \|\Phi w - t\|^2 \]

with

\[
\Phi = \begin{bmatrix}
\phi(x_1)^T \\
\phi(x_2)^T \\
\vdots \\
\phi(x_N)^T \\
\end{bmatrix} = \begin{bmatrix}
1 & x_1 & x_1^2 & \ldots & x_1^M \\
1 & x_2 & x_2^2 & \ldots & x_2^M \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_N & x_N^2 & \ldots & x_N^M \\
\end{bmatrix}, \quad w = \begin{bmatrix}
w_0 \\
w_1 \\
\vdots \\
w_M \\
\end{bmatrix}, \quad \text{and} \quad t = \begin{bmatrix}
t_0 \\
t_1 \\
\vdots \\
t_N \\
\end{bmatrix}.
\]

Intuitively: \[\Rightarrow \Phi w^* \approx t \]

Formally: \[\Rightarrow (\Phi^T \Phi) w^* = \Phi^T t \]
Optional: Proof Sketch

We want to minimize:

\[R = \frac{1}{2} \| \Phi w - t \|^2 \]

\[= \frac{1}{2} (\Phi w - t)^T (\Phi w - t) \]

The gradient of \(R \) w.r.t \(w \) is:

\[\nabla R = \Phi^T (\Phi w - t) \]

At the minimum:

\[0 = \nabla R = \Phi^T (\Phi w - t) \]

\[\Rightarrow \Phi^T \Phi w = \Phi^T t \]
Adding Noise
Regularization

\[
\mathbf{w}^* = \arg \min_{\mathbf{w}} \| \Phi \mathbf{w} - \mathbf{t} \|^2 + \frac{\lambda}{2} \| \mathbf{w} \|^2
\]

⇒ Solve: \((\Phi^T \Phi + \lambda \mathbf{I}) \mathbf{w} = \Phi^T \mathbf{t}\)

• This is known as weight decay because in iterative algorithms it encourages the weight values to decay to zero, unless supported by the data.
• It discourages large weights and therefore quick variations.
Use cross-validation data to select the value of λ.
Linear and Non-Linear Regression

For both kind of regressions, the trick is to find the best compromise between simplicity and goodness of fit.
Application: Rainfall in Switzerland

The circles represent actual measurements

--> Extends to Higher Dimensions.
Application: Stock Price Prediction

\[x_t = [x_{t-T+1}, \ldots, x_{t-1}, x_t] \]

\[y(x_t; w) = x_{t+\Delta t} \]

\[\rightarrow \text{Regression problem} \]
But Be Careful!

Never trust a statistic you have not faked yourself!

https://xkcd.com/2048/
But Be VERY Careful!

Dow Jones Industrial Average
INDEXDJX: .DJI

19'173.98 -913.21 (4.55%) ↓
20 Mar, 18:31 GMT-4 · Disclaimer

1 day 5 days 1 month 6 months YTD 1 year 5 years Max

25'962.51 21 Mar 2019

Open High Low
20'253.15 20'531.26 19'094.27

March 2019 to March 2020
Recap:
Mapping to a Higher Dimension

• We have seen three examples in which mapping to a higher dimension makes the problem linear.
• This idea also applies to classification.
Classification in Feature Space

- Map from \mathbb{R}^d to \mathbb{R}^D
- Learn a linear classifier in \mathbb{R}^D

$$y(x) = \sigma(w^T \phi(x) + w_0)$$

$$\phi : \mathbb{R}^d \rightarrow \mathbb{R}^D$$
Polynomial Feature Expansion

1-Dimensional Input

$$x \rightarrow \phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix}$$

d-Dimensional Input

$$\phi(x) = \begin{bmatrix} 1 \\ x_1 \\ x_1^2 \\ \vdots \\ x_1^M \\ \vdots \\ x_d \\ x_d^2 \\ \vdots \\ x_d^M \\ \vdots \\ x_1 x_2 \\ \vdots \\ x_1 x_d \\ \vdots \\ x_{d-1} x_d \\ x_1^2 x_2 \\ \vdots \end{bmatrix}$$

- The dimension of $\phi(x)$ grows quickly with the degree M of the polynomial.
- $\phi(x)$ can be used in any algorithm that we have seen so far.
Reminder: Linear SVM

\[w^* = \arg\min_{(w, \{\xi_n\})} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n, \]

subject to \(\forall n, \quad t_n \cdot (\tilde{w} \cdot x_n) \geq 1 - \xi_n \) and \(\xi_n \geq 0. \)

- C is constant that controls how costly constraint violations are.
- The problem is still convex.
Polynomial SVM

\[
w^* = \arg \min_{(w, \{\xi_n\})} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n,
\]

subject to \(\forall n, \ t_n \cdot (\tilde{w} \cdot \phi(x_n)) \geq 1 - \xi_n \) and \(\xi_n \geq 0 \).

- C is constant that controls how costly constraint violations are.
- The problem is still convex.
Interpretation

The linear decision boundary in a high dimensional space becomes a curvy one in the original low dimensional space.
Rosenbrock:

\[
\begin{align*}
 r(x, y) &= 100 \cdot (y - x^2)^2 + (1 - x)^2 \\
 f(x, y) &= \begin{cases}
 -1 & \text{if } r(x, y) < T \\
 1 & \text{otherwise}
\end{cases}
\end{align*}
\]
5% noise

10% noise

$\left[x, y, x^2, \ldots, xy^7, y^8 \right]$.

5% noise

10% noise
Polynomial SVM

- A higher-degree polynomial expansion yields a more flexible boundary.
- It also increases the dimensionality of the problem.
- The computational complexity of training SVMs grows like the cube of the dimension.

→ Inherent limitation of polynomial SVMs.
Another Way to Map to a Higher Dimension

People Detection in Images

https://github.com/richaagrawa/
Training Data

- Positive data – 1208 positive window examples

- Negative data – 1218 negative window examples (initially)
Histogram of Oriented Gradients

- tile window into 8 x 8 pixel cells
- each cell represented by HOG

Feature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024
Training and Testing

Training:
• Represent each example window by a HOG classifier.

\[
\begin{align*}
\text{Training:} & \\
& \bullet \text{Represent each example window by a HOG classifier.} \\
\text{Testing:} & \\
& \bullet \text{Train a linear classifier.}
\end{align*}
\]

\[
y(x; w, w_0) = \sigma(w^T x + w_0)
\]
Sliding Window
Non Maxima Suppression
Cover’s Theorem

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Geometrical and Statistical properties of systems of linear inequalities with applications, 1965

\[N : \text{Dimension of space} \]
\[p : \text{Number of samples} \]
\[\frac{C(p, N)}{2^p} : \text{Percentage of separable partitions} \]
Optional: Recursive Computation

<table>
<thead>
<tr>
<th>p \ n</th>
<th>N=1</th>
<th>N=2</th>
<th>N=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>p=2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p=3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>p=4</td>
<td>5</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

\(\forall n \), \(C(1, n) = 2 \)

\(\forall p \), \(C(p, 1) = p + 1 \)

\(C(p, N) = C(p - 1, N) + C(p - 1, N - 1) \)

High Dimension is Good

When N is large, almost all partitions are separable if the number p of samples is less than $2N$.

$$C(p, N)/2^p$$

$N = 300$
$N = 30$
$N = 3$
Problem Solved?

- Facebook or Google deal with BILLIONS of images.
- p and therefore N should be of that magnitude.
- Dealing with matrices of dimension $N \times N$ is impractical.
Neither Solved nor Hopeless

Bad news:

• The ratio of the number of points to the dimension must be less than 2.

• The dimension must be huge for large databases.

• As the dimension increases, the boundaries become increasingly irregular and sensitive to noise.

Good news:

• The world is structured and the points we want to classify are NOT randomly distributed.

• We can compute feature vectors that are “close” for objects that belong to the same class.
• The MNIST images are 28x28 arrays.
• They are **not** uniformly distributed in \mathbb{R}^{784}.
• In fact they exist on a low dimensional manifold.
• The same can be said about face images.
• And of many other things.
—> Non linear classification is a practical proposition.
Increasing the Dimension Further

Can we increase the dimension massively:
• in a principled way,
• while keeping the computational burden down?

—> Non-linear support vector machines that use the so-called kernel trick.
Reminder: Polynomial SVM

\[w^* = \min_{(w, \{\xi_n\})} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n, \]

subject to \(\forall n, \quad t_n \cdot (\tilde{w} \cdot \phi(x)_n) \geq 1 - \xi_n \) and \(\xi_n \geq 0 \).

• C is constant that controls how costly constraint violations are.
Polynomial SVM w/o Slack Variables

• For simplicity

\[\mathbf{w}^* = \min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2, \]

subject to \(\forall n, \quad t_n \cdot (\tilde{\mathbf{w}} \cdot \phi(\mathbf{x})_n) \geq 1. \)

• We will re-introduce the slack variables later.

\(\rightarrow \) Constrained optimization.
Constrained Optimization

Minimize \(f(x, y) \) subject to \(g(x, y) \leq c \).

At the constrained minimum
\[\exists \lambda \in \mathbb{R}, \nabla f = \lambda \nabla g \]

\(\lambda \) is known as a Lagrange multiplier.

• Blue dotted lines are “level” lines.
• In this example, \(d_1 < d_2 < d_3 \).
• The blue arrows represent \(\nabla f \).
• The red arrows represent \(\nabla g \).
Lagrangian Formulation

Lagrangian:

\[L(w, \Lambda) = \frac{1}{2}\|w\|^2 - \sum_{n=1}^{N} \lambda_n(t_n \tilde{w} \cdot \phi(x_n) - 1) \]

\[\Lambda = [\lambda_1, ..., \lambda_n] \]

Theorem:

A solution of the constrained minimization problem must be such that \(L \) is minimized with respect to the components of \(w \) and maximized with respect to the Lagrange multipliers, which must remain greater or equal to zero.

Will be discussed again in the next lecture.

Revised Bishop, Chapter 7.1
Optional: Minimizing the Lagrangian

\[L(w, \Lambda) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \lambda_n (t_n \tilde{w} \cdot \phi(x_n) - 1) \]

Setting the derivatives of \(L(w, \Lambda) \) to zero with respects to the elements of \(w \) and \(b \) yieds

\[w = \sum_n \lambda_n t_n \phi(x_n) \]

\[0 = \sum_{n=1}^{N} \lambda_n t_n \]
Optional: Dual Problem

Therefore, we minimize

\[
\tilde{L}(\Lambda) = L(w, \Lambda) = \sum_{n=1}^{N} \lambda_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m t_n t_m k(x_n, x_m)
\]

subject to

\[
\lambda_n \geq 0 \quad \forall n ,
\]

\[
\sum_{n=1}^{N} \lambda_n t_n = 0
\]

and with

\[
k(x, x') = \phi(x)^T \phi(x') .
\]

\(\rightarrow\) Quadratic programming problem with \(N\) variables.

\(\rightarrow\) Complexity in \(O(N^3)\) instead of \(O(D^3)\).
Support Vectors

- Only for a subset of the data points is λ_n is non zero.
- The are denoted by green circles.
- The corresponding x_n are the support vectors and satisfy $t_n y(x_n) = 1$.
- They are the only ones that need to be considered as test time.

\rightarrow That is what makes SVMs practical!
At Inference Time

- Only for a subset of the data points is λ_n non-zero.
- The feature vector $f(x)$ does not appear explicitly anymore.
- The kernel function $k(.,.)$ can be understood as a similarity measure.

\[y(x) = \sum_{n=1}^{N} \lambda_n t_n k(x, x_n) + b \]

\[= \sum_{n \in S} \lambda_n t_n k(x, x_n) + b \]
The Kernel Trick

\[y(x) = \sum_{n \in \mathcal{S}} \lambda_n t_n k(x, x_n) + b \]

\[k(x, x') = \phi(x)^T \phi(x') \]

- \(\phi \) is implicit: In practice, we never compute it.
- We only need to compute \(k \).
- This is known as the kernel trick and is used in many different algorithms besides SVMs.
Role of the Kernel

Polynomial kernels: From small to high dimension.
Gaussian kernels: From small to infinite dimension.
Influence of the Kernel

\[y(x) = \sum_{n=1}^{N} \lambda_n t_n k(x, x_n) + b, \]

\[k(x, x') = 1 + (x^T x')^d \quad \text{(Polynomial terms up to degree } d). \]

\[k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{\sigma^2} \right) \quad \text{(Gaussian, feature space of infinite dimension).} \]
Back to Cover’s Theorem

\[C(p, N) / 2^p \]

\[p/N \]

\[N = 300 \]
\[N = 30 \]
\[N = 3 \]

- Good news: Working with a Gaussian kernel virtually makes the dimension as large as the number of samples.

- Bad news: It is still not ideal for very large values of the number of points \(N \) due to the \(O(N^3) \) computational complexity.

References

Overlapping Class Distributions

- Some training examples must be allowed to be misclassified.
- Cannot satisfy all the hard constraints.
- For linear SVMs, we used slack variables to achieve this.
- For kernel SVMs, we can do so by bounding the Lagrange multipliers.

Some blues among the reds and some reds among the blues.
Optional: Dual Problem with Slack Variables

We now minimize

$$\tilde{L}(\Lambda) = L(w, \Lambda) = \sum_{n=1}^{N} \lambda_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \lambda_n \lambda_m t_n t_m k(x_n, x_m)$$

subject to

$$\forall n, \quad 0 \leq \lambda_n \leq C,$$

$$\sum_{n=1}^{N} \lambda_n t_n = 0,$$

and with

$$k(x, x') = \phi(x)^T \phi(x').$$

$$\lambda_n$$ cannot become infinite and therefore some of the constraints can be violated.

Bishop, Chapter 7.2
Finally a Simple Usable Formula

The green circles denote the support vectors.

\[y(x) = \sum_{n \in S} \lambda_n t_n k(x, x_n) + b \]

where \(S \) is the set of support vectors.

- \(\lambda_n < C \): \(x_n \) lies on the margin.
- \(\lambda_n = C \): \(x_n \) lies inside the margin.
Non-Separable Distributions

The slack variables allow some training points to be misclassified.

- A large \(\sigma \) tends to smooth the decision boundary.
- A large \(C \) tends to minimize the number of misclassified training points.

\[\Rightarrow \] Validation data is required to choose them properly.
Recognizing Hand-Written Digits

Test sample

0
2
4
9

Nearest neighbors

00000000
22288887
44444444
99999999
97777777
k-Nearest Neighbors vs SVM on MNIST

- Better accuracy.
- But the kernel and its parameters must be well chosen.

Knn: 96.8%
Rbf-SVM: 98.6%
SVMs in Short

• The data can be separable in a high-dimensional feature space without being separable in the input space.

• Classifiers can be learned in the feature space without having to actually perform the mapping.

• However the $O(D^3)$ or $O(N^3)$ complexity at training time makes it hard to exploit large training sets.
Reminder: SLIC Superpixels

- Superpixel segmentations with centers on a 64x64, 256x256, and 1024x1024 grid.
- Can be used to describe the image in terms of a set of small regions.
Optional: Electron Microscopy

Let us SVMs to model structures of interest!
Optional: Mitochondria Segmentation
Optional: Assigning Probabilities

- Compute image features for each superpixel.
- Train an SVM classifier to assign a probability to be within a mitochondria.
- Can be used to produce segmentations using graph-based techniques.
Optional: 3D Mitochondria

Lucchi et al. TMI’11
Here we use three classes instead of two:

- **Inside**
- **Membrane**
- **Everything else**

—>Because the inside is fully enclosed by the membranes, we can still find a global optimum.
Optional: Speeding up the Analysis

$3.21 \mu m \times 3.21 \mu m \times 1.08 \mu m$: 53 mitochondria

- By hand: 6 hours.
- Semi-automatically: 1.5 hours

\rightarrow Substantial time saving for the neuroscientists.