Delineation

• Dynamic Programming
• Deformable Models
• Hough Transform
• Graph Based Approaches
From Gradients to Outlines
From Deep-Nets to Outlines

(a) original image (b) ground truth (c) HED: output

—> Still work to do!
Mapping and Overlays

Connectivity matters!
Connectomics

—> Topology needed

 Courtesy of C. Petersen
Analogy

• Uses Deep Nets to find the most promising locations to focus on.
• Performs tree-based search when possible.
• Relies on reinforcement learning and other ML techniques to train.
Techniques

Semi-Automated Techniques:
• Dynamic Programming
• Deformable Models

Fully Automated Techniques:
• Hough Transform
• Graph Based Approaches
Reminder: Canny Limitations

There is no ideal value of σ!
Interactive Delineation

- The user provides the start and end points (red x).
- The algorithm does the rest (yellow line).
1D Dynamic Programming

\[h(x_1, x_2, \ldots, x_n) = - \sum_{k=1}^{n} g(x_k) + \sum_{k=1}^{n-1} r(x_k, x_{k+1}) \]

\[r(x_k, x_{k+1}) = \text{diff}(\phi(x_k), \phi(x_{k+1})) \]

where \(\phi \) denotes the gradient orientation.
1D Dynamic Programming

- N Locations
- Q Quantized values

→ Global optimum $O(NQ^2)$
1D Dynamic Programming

To find
\[
\min_{x_i} h(x_1, x_2, \ldots, x_n)
\]
where
\[
h(x_1, x_2, \ldots, x_n) = r(s, x_1) + \sum_{i=1}^{n-1} r(x_i, x_{i+1}) + r(x_n, g)
\]
define
\[
f_1(x_2) = \min_{x_1} (r(s, x_1) + r(x_1, x_2))
\]
\[
f_2(x_3) = \min_{x_2} (r(x_2, x_3) + f_1(x_2))
\]
\[
\vdots \quad \vdots \quad \vdots
\]
\[
f_{n-1}(x_n) = \min_{x_{n-1}} (r(x_{n-1}, x_n) + f_{n-2}(x_{n-1}))
\]
\[
\Rightarrow \min h(x_1, x_2, \ldots, x_n) = \min_{x_n} (r(x_n, g) + f_{n-1}(x_n))
\]
2D Dynamic Programming

Notations:

s Start point
L List of active nodes
\(c(u,v) \) Local costs for link \(u \rightarrow v \)
\(d(v) \) Total cost from \(s \) to \(v \)
Open nodes represent "unvisited" nodes. Filled nodes are visited ones, with color representing the distance: The greener, the shorter the path. Nodes in all the different directions are explored uniformly, appearing more-or-less as a circular wavefront.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
Dijkstra’s Algorithm

Initialization:
\[d(s) \leftarrow 0 \] and \[d(u) \leftarrow \infty \text{ for } u \neq s \]
\[T = \emptyset \]
\[v = s \]

Loop until goal is reached:
\[T \leftarrow T \cup \{v\} \]
for all \(v \rightarrow u \) edges such that \(u \notin T \)
\[\text{if } d(v) + c(v,u) < d(u) \]
\[d(u) \leftarrow d(v) + c(v,u) \]
end
end
\[v = \arg\min_{w \in T} d(w) \]

Maintain a sorted list of paths
Live Wire

- Sorting is the expensive operation. Normally $n \log(n)$, but can be reduced to $\log(n)$ if all costs are integer costs.

- Local costs computed using gradient:
 \[c(u,v) = 255 - \frac{1}{2}(g(u) + g(v)) \]

- Diagonal penalized by multiplying cost of non-diagonal edges by:
 \[\frac{1}{\sqrt{2}} = \frac{5}{7} \]

- Add a constant cost for each edge.
Integrating the LiveWire into a powerful interface that allows a user to correct mistakes yields a useful tool.
In the biomedical world, images are 3D cubes of data.

The approach extends naturally to tracking of 3D structures such as dendritic trees in the brain, blood vessels, etc …
Limitations

• The “optimal” path is not always the “best” one.
• Difficult to impose global constraints.
• The cost grows exponentially with the dimension of the space in which we work.

--> Must often look for local, as opposed to global, optimum using gradient descent techniques.
Techniques

Semi-Automated Techniques:

• Dynamic programming
• Deformable Models

Fully Automated Techniques:

• Hough transform
• Graph Based Approaches
Snakes
2—D Snake

Deformable contours that
• Maximize the gradient along the curve;
• Minimize their deformation energy.

--> Interactive tools for contour detection that can be generalized to handle sophisticated models
Energy Landscape

$E = \frac{1}{L} \int_{s=0}^{1} (-\lambda G(x(s), y(s)) + \gamma^2(s)) ds$

$= \frac{1}{L} \int_{s=0}^{1} (-\lambda G(x(s), y(s)) + \frac{\delta^2 x^2}{\delta s^2} + \frac{\delta^2 y^2}{\delta s^2}) ds$

$= \frac{1}{L} \left(-\lambda \sum_{i=0}^{N} G(x_i, y_i) + \sum_{i=1}^{N-1} \left((2x_i - x_{i-1} - x_{i+1})^2 + (2y_i - y_{i-1} - y_{i+1})^2 \right) \right)$
Matrix Notation

\[
E = E_G + \frac{1}{2}X^t K X + \frac{1}{2}Y^t K Y
\]

\[
X = [x_1, \ldots, x_N]^t
\]

\[
Y = [y_1, \ldots, y_N]^t
\]

\[
K = \begin{bmatrix}
\ldots & \ldots \\
\ldots & 1 & -4 & 6 & -4 & 1 & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & 1 & -4 & 6 & -4 & 1 & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & 1 & -4 & 6 & -4 & 1 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & 1 & -4 & 6 & -4 & 1 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & 1 & -4 & 6 & -4 & 1 \\
\ldots & \ldots \\
\ldots & \ldots
\end{bmatrix}
\]
Local Optimum

\[
\frac{\delta E}{\delta X} = \frac{\delta E_G}{\delta X} + KX = 0
\]

\[
\frac{\delta E}{\delta Y} = \frac{\delta E_G}{\delta Y} + KY = 0
\]

But K is not invertible!
Embed curve in a viscous medium and solve at each step:

\[0 = \frac{\partial E}{\partial X} + \alpha \frac{dX}{dt} = \frac{\partial E_G}{\partial X} + KX + \alpha \frac{dX}{dt}\]

\[0 = \frac{\partial E}{\partial Y} + \alpha \frac{dY}{dt} = \frac{\partial E_G}{\partial Y} + KY + \alpha \frac{dY}{dt}\]
Iterating

At every step:

\[0 = \frac{\delta E_G}{\delta X} + K X_t + \alpha (X_t - X_{t-1}) \quad \Rightarrow \quad (K + \alpha I) X_t = \alpha X_{t-1} - \frac{\delta E_G}{\delta X} \]

\[0 = \frac{\delta E_G}{\delta Y} + K Y_t + \alpha (Y_t - Y_{t-1}) \quad \Rightarrow \quad (K + \alpha I) Y_t = \alpha Y_{t-1} - \frac{\delta E_G}{\delta Y} \]

⇒ Solve two linear equations at each iteration.
Derivatives of the Image Gradient

\[E_G = -\frac{1}{N} \sum_{i=1}^{N} G(x_i, y_i) \]

\[
\frac{\partial E_G}{\partial X} = \begin{bmatrix} \frac{\partial E_G}{\partial x_1} & \cdots & \frac{\partial E_G}{\partial x_N} \end{bmatrix}, \quad \frac{\partial E_G}{\partial Y} = \begin{bmatrix} \frac{\partial E_G}{\partial y_1} & \cdots & \frac{\partial E_G}{\partial y_N} \end{bmatrix}
\]

\[
\frac{\partial E_G}{\partial x_i} = -\frac{1}{N} \frac{\partial G}{\partial x_i}(x_i, y_i), \quad \frac{\partial E_G}{\partial y_i} = -\frac{1}{N} \frac{\partial G}{\partial y_i}(x_i, y_i)
\]
Bilinear Interpolation

\[G(x, y, y + 1) \]

\[G(x + 1, y + 1) \]

\[y_i \]

\[G(x, y) \]

\[x_i \]

\[G(x + 1, y) \]

\[p = x_i - x \]

\[q = y_i - y \]

\[G(x_i, y_i) = (1 - p)(1 - q)G(x, y) + (1 - p)qG(x, y + 1) + p(1 - q)G(x + 1, y) + pqG(x + 1, y + 1) \]

\[\frac{\partial G}{\partial x_i} = (1 - q)(G(x + 1, y) - G(x, y)) + q(G(x + 1, y + 1) - G(x, y + 1)) \]

\[\frac{\partial G}{\partial y_i} = (1 - p)(G(x, y + 1) - G(x, y)) + p(G(x + 1, y + 1) - G(x + 1, y)) \]
Open and Closed Snakes
Cysts Tumors in Ultrasound Images

Drawn by the physician.
Refined by the Computer.
Network Snakes

--> Updated field boundaries.
Ribbon Snakes

\[E = E_G + \frac{1}{2} X^t K X + \frac{1}{2} Y^t K Y + \frac{1}{2} W^t K_W W \]

\[W = [w_1, \ldots, w_N]^t \]

\[K_W = \begin{bmatrix}
 \ldots & \ldots & \ldots & \ldots & -1 & 2 & -1 & \ldots & \ldots & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots & \ldots & \ldots & -1 & 2 & -1 & \ldots & \ldots & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots \\
 \ldots & \ldots \\
\end{bmatrix} \]
DYNAMICS EQUATIONS

\[
\begin{align*}
(K + \alpha I)X_t &= \alpha X_{t-1} - \frac{\delta E_G}{\delta X} \\
(K + \alpha I)Y_t &= \alpha Y_{t-1} - \frac{\delta E_G}{\delta Y} \\
(K + \alpha I)W_t &= \alpha W_{t-1} - \frac{\delta E_G}{\delta W}
\end{align*}
\]

→ Solve three linear equations at each iteration.
Delineating Roads
Delineating Roads
It takes far fewer clicks to trace the roads using semi-automated tools than doing entirely by hand.
Building
3—D Snakes

Smooth 3—D snake

Rectilinear 3—D snake
Dynamics Equations

\[(K + \alpha I) X_t = \alpha X_{t-1} - \frac{\delta E_G}{\delta X} \]

\[(K + \alpha I) Y_t = \alpha Y_{t-1} - \frac{\delta E_G}{\delta Y} \]

\[(K + \alpha I) Z_t = \alpha Z_{t-1} - \frac{\delta E_G}{\delta Z} \]

→ Solve three linear equations at each iteration.
Constrained Optimization

- Minimize $F(S)$ subject to $C(S) = 0$
Site Modeling (1996)
Site Modeling (2019)
Real-Time 3D Shape

Ostlund et al., ECCV’12.
Sails

→ Real-time performance evaluation.
Level Sets
Curve Evolution

Generic formulation:
\[
\frac{\partial C}{\partial t} = \alpha(s, t)\vec{T} + \beta(s, t)\vec{N}
\]

Reparameterization:
\[
\frac{\partial C}{\partial t} = \beta(s, t)\vec{N}
\]

Special cases:
- Prairie fire \(\beta = \pm 1 \)
- Diffusion \(\beta = \beta_0 - \beta_1 \kappa \)

Problems:
1. Involves curve sampling and resampling.
2. Curvature estimates are numerically unstable.
Consider the curve as the zero level set of the surface.

\[z = \Phi(x, y, t) \]

Corresponding evolution equation.

\[0 = \Phi_t + \beta(\kappa) |\nabla \Phi| \]

where \(\kappa = \frac{\Phi_{xx} \Phi_y^2 - 2\Phi_{xy} \Phi_x \Phi_y + \Phi_{yy} \Phi_x^2}{\Phi_x^2 + \Phi_y^2} \)

→ Much better numerical stability.
Topology Change

\[z = \Phi(x, y, t_1) \]

\[z = \Phi(x, y, t_2) \]
Level Set Smoothing

Smoothing occurs when \(\beta(\kappa) = -\kappa \)

Desirable properties:

- Converges towards circles.
- Total curvature decreases.
- Number of curvature extrema and zeros of curvature decreases.

Relationship with Gaussian smoothing:

- Analogous to Gaussian smoothing of boundary over the short run, but does not cause self-intersections or overemphasize elongated parts.
- Can be implemented by Gaussian smoothing the characteristic function of a region.
Shape Recovery

Evolution equation: \[0 = \Phi_t + \beta(\kappa) |\nabla \Phi| \]

where: \[\beta(\kappa) = k_I (1 - \epsilon \kappa) \]
\[k_I = \frac{1}{1 + \nabla I} \]

\(\rightarrow\) Expansion stops at the boundaries.
Level Sets
Level Sets
Techniques

Semi-Automated Techniques:

• Dynamic programming
• Deformable Models

Fully Automated Techniques:

• Hough transform
• Graph Based Approaches
Finding Lines

Input:
• Canny edge points.
• Gradient magnitude and orientation.

Output:
• All straight lines in image.
Hough Transform

Given a parametric model of a curve:

- Map each contour point onto the set of parameter values for which the curves passes through it.
- Find the intersection for all parameter sets thus mapped.
$x \cos(\theta) + y \sin(\theta) = r, \quad 0 \leq \theta \leq \pi$
Once the contour points are associated to individual lines, you can perform least squares fitting.
Real Lines
Road Lines
Generic Algorithm

- Quantize parameter space with 1 dimension per parameter.
- Form an accumulator array.
- For each point in the gradient image such that the gradient strength exceeds a threshold, increment appropriate element of the accumulator.
- Find local maxima in the accumulator.
Iris Detection
Occlusions

In theory:

In practice:

Circle Detection

Circle of equation:

\[x = x_0 + r \cos(\theta) \]
\[y = y_0 + r \sin(\theta) \]

Therefore:

\[x_0 = x - r \cos(\theta) \]
\[y_0 = y - r \sin(\theta) \]
Gradient Orientation

Can vote either along the entire circle or only at two points per value of the radius.
Voting scheme:

Result:
Eye Image

Image and accumulator:

Best four candidates:
Ellipses
Ellipse Detection

Ellipse of equation:

\[
x = x_0 + a \cos(\theta)
\]

\[
y = y_0 + b \sin(\theta)
\]

Therefore:

\[
x_0 = x - a \cos(\theta)
\]

\[
y_0 = y - b \sin(\theta)
\]
For each ellipse point:

\[
\begin{align*}
\frac{dx}{d\theta} &= -a \sin(\theta) \\
\frac{dy}{d\theta} &= b \cos(\theta)
\end{align*}
\]

\[
\phi = \arctan\left(\frac{\frac{dx}{d\theta}}{\frac{dy}{d\theta}}\right) = \arctan\left(\frac{a \sin(\theta)}{b \cos(\theta)}\right) = \arctan\left(\frac{a}{b} \tan(\theta)\right)
\]

\[\tan(\phi) = \frac{a}{b} \tan(\theta)\]

\[
\Rightarrow \theta = \arctan\left(\frac{b}{a} \tan(\phi)\right)
\]

The accumulator need only be incremented for this \(\theta\).
Generalized Hough

Finding a becher ...

... or a lake.
Generalized Hough

- We want to find a shape defined by its boundary points in terms of the location of a reference point $[x_c, y_c]$.
- For every boundary point p, we can compute the displacement vector $r = [x_c, y_c] - p$ as a function of local gradient orientation ϕ.

Ballard. , PR’81
R-Table

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$R(\phi_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td>$(r_1^1, \alpha_1^1), (r_2^1, \alpha_2^1), \ldots, (r_{n_1}^1, \alpha_{n_1}^1)$</td>
</tr>
<tr>
<td>ϕ_2</td>
<td>$(r_1^2, \alpha_1^2), (r_2^2, \alpha_2^2), \ldots, (r_{n_2}^2, \alpha_{n_2}^2)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>ϕ_m</td>
<td>$(r_1^m, \alpha_1^m), (r_2^m, \alpha_2^m), \ldots, (r_i^m, \alpha_i^m), \ldots, (r_{n_m}^m, \alpha_{n_m}^m)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>ϕ_M</td>
<td>$(r_1^M, \alpha_1^M), (r_2^M, \alpha_2^M), \ldots, (r_{n_M}^M, \alpha_{n_M}^M)$</td>
</tr>
</tbody>
</table>

Set of potential displacement vectors r, α given the boundary orientation ϕ.

--> Generalized template matching.
Algorithm

1. Make an R-table for the shape to be located.

2. Form an accumulator array of possible reference points initialized to zero.

3. For each edge point,
 - Compute the possible centers, that is, for each table entry, compute
 \[
 x = x_e + r_\phi \cos(\theta(\phi)) \\
 y = y_e + r_\phi \sin(\theta(\phi))
 \]
 - Increment the accumulator array
Real-Time Hough
Accumulator
Instead of indexing displacements by gradient orientation, index by “visual codeword”.

From Delineation To Detection
Instead of indexing displacements by gradient orientation, index by "visual codeword".
Training

1. Build codebook of patches around extracted interest points using clustering.
2. Map the patch around each interest point to closest codebook entry.
3. For each codebook entry, store all positions it was found, relative to object center.

--> Build an R table.
1. Given test image, extract patches, match to codebook entry.
2. Cast votes for possible positions of object center.
3. Search for maxima in voting space.
4. Extract weighted segmentation mask based on stored masks for the codebook occurrences.
Pedestrian Detection

Gall & al., PAMI’11
Occlusion Handling
Limitations

Computational cost grows exponentially with the number of model parameters:

→ Only works for objects whose shape can be defined by a small number of parameters.

→ Approach is robust but lacks flexibility.
Techniques

Semi-Automated Techniques:

- Dynamic programming
- Deformable Models

Fully Automated Techniques:

- Hough transform
- Graph Based Approaches
Magnitude and Orientation

\[
\begin{bmatrix}
\frac{\delta I}{\delta x} & \frac{\delta I}{\delta y} \\
\end{bmatrix}
\]

Contrast: \(G = \sqrt{\frac{\delta I^2}{\delta x} + \frac{\delta I^2}{\delta y}} \)

Orientation: \(\Theta = \arctan\left(\frac{\delta I}{\delta y}, \frac{\delta I}{\delta x}\right) \)
Minimum Spanning Tree

Image modeled as a graph:

-> Generate minimal distance graph $O(N \log(N))$ algorithm
Delineation 1998

- Detect road centerlines
- Find generic paths
- Apply semantic filter
- Find road widths

From Image To Roads

1. Detect Road Points and Construct Binary Image Overlay
2. Extract Generic Paths
3. Semantic Filter (Roads)
4. UNCONNECTED ROAD-SEGS
5. Compute Road Seg Visibility in High Res Images
6. Smooth Segments & Convert to 3D (3D ROAD-NETWORKS)
7. Network Linker (2D ROAD-NETWORKS)
8. ROAD ATTRIBUTES (WIDTH, MATERIAL, ...)
9. Fit 3D - Ribbon Model
10. IU Assisted Interactive Edit
11. Convert Model to Output Format
Road Editing
Dendrites And Axons

Fluorescent neurons in the adult mouse brain imaged in vivo through a cranial window using a 2-photon microscope.
Delineation 2012: Neurites …

Filtered Image

Graph

Maximum Likelihood Subtree
".. and Roads"

Image Filtered image Graph Weighted graph Subtree

—> Machine plays a crucial role to ensure that the same algorithm works in different situations.
Histogram of Gradient Deviations

\[\Psi(x) = \begin{cases}
\text{angle}(\nabla I(x), N(x)), & \text{if } \|x - C(s_x)\| > \varepsilon \\
\text{angle}(\nabla I(x), \Pi(x)), & \text{otherwise,}
\end{cases} \]

\[\rightarrow \text{One histogram per radius interval plus four geometric features (curvature, tortuosity,).} \]
Optional: Embedding

\rightarrow Same length feature vectors whatever the actual length of the path.
Optional: Path Classification

Training
- Training Images
- Ground-truth
- Tubular Graphs

Sample Positives
Sample Negatives
Extract Features
GBDT
Learned Path Model

Detection
- Tubular Graph
- Edge Pairs
- Extract Features
- Trained GBDT
- Weighed Graph
Optional: Finding the Best Tree

\[t^* = \operatorname{argmax}_{t \in \mathcal{T}(G)} P(T = t | I), \]

\[= \operatorname{argmax}_{t \in \mathcal{T}(G)} P(I | T = t)P(T = t), \]

\[= \operatorname{argmin}_{t \in \mathcal{T}(G)} \sum_{e_{ij} \in G} c^d_{ij} t_{ij} \]
Optional: QMIP Formulation

\[
\begin{align*}
\min & \quad \sum_{e_{i,j} \in E, e_{j,k} \in E} c_{i,j,k} \ t_{i,j} \ t_{j,k} \\
\text{s.t.} & \quad \sum_{v_j \in V \setminus \{v_r\}} y^l_{r,j} \leq 1, \quad \forall v_i \in V \setminus \{v_r\}, \\
& \quad \sum_{v_j \in V \setminus \{v_k\}} y^l_{j,k} \leq 1, \quad \forall v_i \in V \setminus \{v_r\}, \\
& \quad \sum_{v_j \in V \setminus \{v_i, v_r\}} y^l_{i,j} - \sum_{v_j \in V \setminus \{v_i, v_l\}} y^l_{j,i} = 1, \quad \forall v_k \in V \setminus \{v_r\}, \forall v_i \in V \setminus \{v_r, v_k\}, \\
& \quad y^l_{i,j} \leq t_{i,j}, \quad \forall e_{i,j} \in E, \forall v_l \in V \setminus \{v_r, v_i, v_j\}, \\
& \quad y^l_{i,l} = t_{i,l}, \quad \forall e_{i,l} \in E, \\
& \quad y^l_{i,j} \geq 0, \quad \forall e_{i,j} \in E, \forall v_l \in V \setminus \{v_r, v_i\}, \\
& \quad t_{i,j} \in \{0, 1\}, \quad \forall e_{i,j} \in E.
\end{align*}
\]

given the root note \(v_r\).
Roads
Brainbow Images
Blood Vessels
Deep Tsunami

The New York Times

Turing Award Won by Three Pioneers in Artificial Intelligence

From left, Yann LeCun, Geoffrey Hinton and Yoshua Bengio. The researchers worked on key developments for neural networks, which are reshaping how computer systems are built.
Reminder: AlexNet (2012)

Task: Image classification
Training images: Large Scale Visual Recognition Challenge 2010
Training time: 2 weeks on 2 GPUs

Major Breakthrough: Training large networks has now been shown to be practical!!
These two steps are closely related!
Reminder: U-Net

—> Train a U-Net to output a tubularity map.
Training U-Net

Train Encoder-decoder U-Net architecture using binary cross-entropy

Minimize

\[L_{bce}(\mathbf{x}, \mathbf{y}; \mathbf{w}) = -\frac{1}{i} \sum_{i=1}^{P} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] \]

where

- \(\hat{y} = f_w(\mathbf{x}) \),
- \(\mathbf{x} \) in an input image,
- \(\mathbf{y} \) the corresponding ground truth.

Mosinska et al, CVPR’18.
Network Output

Image BCE Loss Ground truth
Accounting For Topology

Minimize

\[
L(x, y; w) = L_{bce}(x, y; w) + L_{top}(x, y; w),
\]

\[
L_{top}(x, y; w) \propto \sum_{n=1}^{N} \sum_{m=1}^{M_n} \|l_n^m(y) - l_n^m(f(x, w))\|^2_2,
\]

\(L_{top}\): Sum of square differences between feature maps in a pretrained VGG.
Accounting for Topology

Image BCE Loss BCE and Topo Loss Ground truth
Iterative Refinement

Use the same network to progressively refine the results keeping the number of parameters constant.
Delineation Steps

1. Compute a probability map.
2. Sample and connect the samples.
3. Assign a weight to the paths.
4. Retain the best paths.
These two steps are performed by the same network.
Dual Use U-Net

Image and Binary Mask

Tubularity Map

Path score

[0.991]
Streets Of Toronto

— False negatives
— False positives
Dendrites And Axons
The new job is good, we do of course a lot of Deep Learning, but also some good old-school computer vision e.g. registration 😏 So the material from Computer Vision class is definitely helpful and I wouldn't change it to another all-Deep Learning class (even in the light of today's Turing Award).

Best,

Agata
It is difficult to make predictions, especially about the future. Sometimes attributed to Niels Bohr.
In Short

• Edge and image information is noisy.

• Models are required to make sense of it.

→ An appropriate combination of graph-based techniques, machine learning, and semi-automated tools is required.
Alpha Go Analogy

- Uses Deep Nets to find the most promising locations to focus on.
- Performs Tree based search when possible.
- Relies on reinforcement learning and other ML techniques to train.

--> Beat the world champion in 2017.