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The Ring of Gyges is a mythical magical artifact
mentioned by the philosopher Plato in Book 2 of
his Republic. It granted its owner the power to
become invisible at will.
–Wikipedia, “Ring of Gyges”

“[On wearing the ring,] no man would keep his
hands off what was not his own when he could
safely take what he liked out of the market, or go
into houses and lie with anyone at his pleasure, or
kill or release from prison whom he would, and
in all respects be like a God among men.”
–Plato, The Republic, Book 2 (2.360b) (trans. Ben-
jamin Jowett)

Abstract—Thanks to their anonymity (pseudonymity) and lack
of trusted intermediaries, cryptocurrencies such as Bitcoin
have created or stimulated growth in many businesses and
communities. Unfortunately, some are criminal, e.g., money
laundering, marketplaces for illicit goods, and ransomware.

Next-generation cryptocurrencies such as Ethereum will
include rich scripting languages in support of smart contracts,
programs that autonomously intermediate transactions. We
illuminate the extent to which these new cryptocurrencies,
by enabling criminal activities to be conducted anonymously
and with minimal trust assumptions, may fuel new criminal
ecosystems. Specifically, we show how what we call criminal
smart contracts (CSCs) can facilitate leakage of confidential
information, theft of cryptographic keys, and various real-
world crimes (murder, arson, terrorism).

We show significantly that CSCs for leakage of secrets
are efficiently realizable in existing scripting languages such
as that in Ethereum. We show that CSCs for key theft can
be achieved using cryptographic primitives, such as Succinct
Non-interactive ARguments of Knowledge (SNARKs), that
are already expressible in these languages and for which
efficient supporting language extensions are anticipated. We
demonstrate similarly that authenticated data feeds, another
anticipated feature of smart contract systems, can facilitate
CSCs for real-world crimes.

Our results illuminate the scope of possible abuses in next-
generation cryptocurrencies. They highlight the urgency of
creating policy and technical safeguards and thereby realizing
the great promise of smart contracts for beneficial goals.

1. Introduction

Cryptocurrencies such as Bitcoin remove the need for
trusted third parties from basic monetary transactions and
offer anonymous (more accurately, pseudonymous) transac-
tions between individuals. While attractive to some, these
features have a dark side. Bitcoin has stimulated the growth
of ransomware [7], money laundering [39], and illicit com-
merce, as exemplified by the notorious Silk Road [31].

New cryptocurrencies such as Ethereum (as well as sys-
tems such as Counterparty [45] and SmartContract [1]) will
offer even richer functionality than Bitcoin. They support
smart contracts, a generic term denoting programs written
in Turing-complete cryptocurrency scripting languages. In
a fully distributed system such as Ethereum, smart con-
tracts enable general fair exchange (atomic swaps) without
a trusted third party, and thus can effectively guarantee
payment for committed crimes. It is thus to be expected
that such smart contract systems will stimulate new forms
of crime.

We refer to smart contracts that facilitate crimes in
distributed smart contract systems as criminal smart con-
tracts (CSCs). An example of a CSC is a smart contract
for (private-)key theft. Such a CSC might pay a reward for
delivery of a target key sk, such as a certificate authority’s
private digital signature key. (For confidentiality, sk might
be encrypted under the public key of the contract creator.)

The key questions we explore in this paper are: Could
CSCs enable a wider range of significant new crimes than
earlier cryptocurrencies (Bitcoin)?; How practical will such
new crimes be?; and What key advantages do CSCs provide
to criminals compared with other means? Exploring these
questions is essential to identifying threats and exploring
countermeasures.

CSC Challenges. Would-be criminals face two basic chal-
lenges in the construction of CSCs. First, it is not immedi-
ately obvious whether a CSC is at all feasible for a given
crime, such as key theft. This is because it is challenging
to ensure that a CSC is what we call commission-fair,
meaning that its execution guarantees both commission of
a crime and commensurate payment for the perpetrator of
the crime or neither. Fair exchange alone is not sufficient to
ensure commission-fairness: We show how CSC construc-
tions leveraging fair exchange in a natural way still allow a



party to a CSC to cheat.
Second, even if a CSC can in principle be constructed,

given the restricted languages in existing smart contract
systems (such as Ethereum), it is not immediately clear
that the CSC can be made practical. By this we mean
that the CSC can be executed without unduly burdensome
computational effort, which in some smart contract systems
(e.g., Ethereum) would also mean unacceptably high fees
levied against the CSC.

This paper. We show in this paper that it is indeed pos-
sible in envisioned decentralized smart contract systems to
construct commission-fair CSCs for three types of crime:
leakage / sale of secret documents, theft of private keys,
and a very broad class of physical-world crimes (murder,
arson, etc.) that we refer to as “calling-card” crimes. (That
this last type of CSC is possible is somewhat surprising,
and relies, as we explain, on the anticipated deployment of
authorities attesting to real-world facts.) We formally prove
the correctness of our CSC constructions. We also show
experimentally in Ethereum that the CSCs we explore are
practical—or will be with planned language extensions.

By highlighting what CSCs are practical, as well as their
fragility, our work illuminates the need for and potentially
methods for constructing defenses, which we briefly discuss.
Criminal activity committed under the guise of anonymity
has posed a major impediment to adoption for Bitcoin.
Yet there has been little discussion of criminal contracts
in public forums on cryptocurrency [15] and the launch
of Ethereum took place in July 2015. By recognizing and
protecting against CSCs early in their lifecycle, we hope to
see the great promise of distributed smart contract systems
fully realized.

1.1. Smart contracts: the good and bad

Decentralized smart contracts have many beneficial uses,
including the realization of a rich variety of new financial
instruments. Informally, a smart contract in a decentralized
system such as Ethereum may be thought of as an au-
tonomously executing piece of code whose inputs and out-
puts can include money. (We give more formalism below.)
As Bitcoin does for transactions, in a decentralized smart
contract system, the consensus system enforces autonomous
execution of contracts; no one entity or small set of entities
can interfere with the execution of a contract. As contracts
are self-enforcing, they eliminate the need for trusted inter-
mediaries or reputation systems to reduce transactional risk.
Decentralized smart contracts offer several advantages over
traditional cryptocurrencies such as Bitcoin:

• Fair exchange between mutually distrustful parties with
rich contract rules expressible in a programmable logic;
this feature prevents parties from cheating by aborting
an exchange protocol, yet removes the need for physical
rendezvous and (potentially cheating) third-party interme-
diaries;

• Minimized interaction between parties also for a rich set of
contracts expressible in a programmable logic, reducing
opportunities for unwanted monitoring and tracking;

• Enriched transactions with external state by allowing as
input authenticated data feeds (attestations) provided by
brokers on physical and other events outside the smart-
contract system, e.g., stock tickers, weather reports, etc.

Unfortunately, for all of their benefit, these properties
have a dark side, potentially facilitating crime because:
• Fair exchange enables transactions between mutually dis-

trustful criminal parties, eliminating the need for to-
day’s fragile reputation systems and/or potentially cheat-
ing or law-enforcement-infiltrated third-party intermedi-
aries [40], [54].

• Minimized interaction renders illegal activities harder for
law enforcement to monitor. In some cases, as for the
key-theft and calling-card CSCs we present, a criminal to
set up a contract and walk away, allowing it to execute
autonomously with no further interaction.

• Enriched transactions with external state significantly
broaden the scope of possible CSCs to take in, e.g.,
physical crimes (terrorism, arson, murder, etc.).

As decentralized smart contract systems typically inherit
the anonymity (pseudonymity) of Bitcoin, they offer similar
secrecy for criminal activities. Broadly speaking, therefore,
there is a risk that the capabilities enabled by decentralized
smart contract systems will enable new underground eco-
systems and communities.

1.2. Example CSC: Key theft

To exemplify the power of decentralized smart contracts
for CSC creation, as well as the challenge of constructing
commission-fair CSCs, we consider a key-theft CSC as an
example.
Example 1a (Key compromise contract). Contractor C posts

a request for theft and delivery of the signing key skV
of a victim certificate authority (CA) “Certs ’R Us.” C
offers a reward $reward to a perpetrator P for delivering
the Certs ’R Us private key skV to C.

In the Bitcoin ecosystem, there is no automated mech-
anism to enforce this contract. To ensure fair exchange of
the key and reward, a necessary condition for commission-
fairness (but not a sufficient one), C and P would need to
use a trusted third party or communicate directly, raising the
risk to both parties of being cheated (by the third party) or
discovered by law enforcement authorities (if the third party
is monitored or infiltrated or one of C or P is a mole). They
could rely on a reputation system, but such systems are often
infiltrated by law enforcement authorities [54].

By using a decentralized smart contract, Example 1a
could instead be self-enforcing and thus require no trusted
intermediary. We explore the following CSC Contract in
detail later in the paper:
Example 1b (Key compromise CSC). C generates a private

/ public key pair (skC , pkC) and initializes Contract with



public keys pkC and pkV (the Certs ’R Us public key).
Upon publication and execution Contract awaits input
from a claimed perpetrator P of a pair (ct, π), where
π is a zero-knowledge proof that ct = encpkC [skV ] is
well-formed. The zero-knowledge proof π can be im-
plemented as a SNARK [19] while applying appropriate
transformations to lift its security [43]. Contract then
verifies π and upon success sends a reward of $reward
to P . The contractor C can then download and decrypt
ct to obtain the compromised key skV .

This CSC implements a fair exchange between C and P .
Specifically, the contract pays a reward to P if and only if P
delivers a valid key (as proven by π). This CSC, however,
is not commission-fair. The CA Certs ’R Us can neutralize
the contract by preemptively revoking its own certificate and
then itself claiming C’s reward $reward!

As noted, a major thrust of this paper is showing how, for
key cases of interest, it is possible for criminals to construct
commission-fair CSCs. Additionally, we show that these
CSCs can be efficiently realized using existing cryptocur-
rency tools or features currently envisioned for cryptocur-
rencies. For example, we show that the proof π in the key
compromise CSC can be constructed and verified efficiently
using SNARKs [19] (with appropriate transformations to lift
its security [43]).

1.3. Threat Model and Security Guarantees

Threat model. Roughly speaking, we adopt the following
thread model.
• Blockchain: trusted for correctness but not privacy. We

assume that the blockchain will always correctly store data
and perform computation, and will always remain avail-
able. However, the blockchain exposes all of its internal
states to the public, and retains no private data.

• Arbitrarily malicious contractual parties. We assume that
contractual parties are mutually distrustful, and they act
solely to maximize their own benefits. In particular, not
only can they deviate arbitrarily from the prescribed pro-
tocol, they can also abort from the protocol prematurely.

• Network influence of the adversary. We assume that mes-
sages in between the blockchain and parties are guaranteed
to be delivered within bounded delay. However, an adver-
sary can arbitrarily reorder these messages. In particular,
as we show in Section 5 in the construction of a key-
theft contract, this enables a rushing attack. We assume
that communication channels in between the parties can
be unreliable – and an adversary can drop or reorder
messages between contractual parties.

The formal model we adopt (see Section 3) formally cap-
tures all of the above aspects of the threat model.

Twofold meanings of security. For a CSC to be secure,
the meaning is twofold:
• Securing emulation of the ideal functionality. First, we

show that the real-world protocol securely emulates some
desired ideal functionality in the standard Universally

Composable (UC) simulation paradigm [26] adopted in
the cryptography literature, against arbitrarily malicious
contractual counterparties as well as possible network
adversaries.
It is worth noting that our protocols are also secure
against aborting adversaries, e.g., a contractual party may
attempt to abort without paying the other party. As is well-
known by the cryptography community, fairness in the
presence of aborts is in general impossible in standard
models of distributed computation [32]. But as shown by
several recent works, by leveraging a blockchain that is
correct, available, and aware of the progression of time,
blockchain-based protocols can ensure a certain notion of
financial fairness against aborting parties [16], [20], [43].
In particular, aborting behavior can be made evident by the
elapse of time, in which case the blockchain may enforce
that the aborting party would lose its deposit to the honest
parties.

• Securing ideal functionality itself. Second, merely proving
a UC-style secure emulation does not imply the security
of a crimnal smart contract. As we show in Section 5
and in Appendix C, our naive-key theft contract securely
emulates a naive (and flawed) key-theft ideal functionality.
The problem is that even specifying the correct ideal
functionality itself is often challenging! We would like
our ideal functionality to satisfy a notion called com-
mission fairness as mentioned earlier. Interestingly, we
stress that commission fairness is a property of the ideal
functionality. We do not give a universal formal definition
of commission fairness since its semantic definition is
application dependent.

Contributions
Ours is one of the first papers exploring smart contracts

with a decentralized cryptocurrency backend. While our
focus is on preventing evil, the techniques we propose can
equally well underpin constructive contracts. We explore
both techniques for structuring CSCs and the use of cutting-
edge cryptographic tools, e.g., Succinct Non-interactive AR-
guments of Knowledge (SNARKs), in CSCs. Like the design
of benign smart contracts, CSC construction requires a
careful combination of cryptography with commission-fair
design [34].

In summary, our contributions are:
• Criminal smart contracts: We initiate the study of CSCs as

enabled by Turing-complete scripting languages and au-
thenticated data feeds in next-generation cryptocurrencies.
We explore CSCs for three different types of crimes: leak-
age of secrets in Section 4 (e.g., pre-release Hollywood
films), key compromise / theft (of, e.g., a CA signing key)
in Section 5, and “calling-card” crimes, such as assassi-
nation, that use authenticated data feeds in Section 6. We
explore the challenges involved in crafting such criminal
contracts and demonstrate (anticipate) new techniques to
resist neutralization and achieve commission-fairness.

• Formal security: We model the smart contract (executed
by the blockchain) as a functionality that is trusted for



correctness, but not for privacy. In particular, the contract
exposes its internal state to all parties. We design pro-
tocols in this contract-hybrid world, and prove security
under a standard cryptographic simulation paradigm. Our
modeling and notational approach follows from the formal
blockchain model proposed by Kosba et al. [43].
We give an overview of this formal model and notational
system in Section 3. More model details about the model
can be found in the recent work by Kosba et al. [43] or
in Appendix A.

• Proof of concept: To demonstrate that even sophisticated
CSC are realistic, we report (in their respective sections)
on implementation of the CSCs we explore. Our CSC
for leakage of secrets is efficiently realizable today in
existing smart contract languages (e.g., that of Ethereum).
Those for key theft and “calling-card” crimes rely respec-
tively for efficiency and realizability on features currently
envisioned by the cryptocurrency community. They too,
however, are within practical reach as shown for example
for our key-theft CSC, which relies on zk-SNARKs. Our
experiments show that verification—the most important
function, as it is performed by all full nodes—requires as
little as 9.9 msec on a 288-byte proof (with execution
on an Amazon EC2 r3.2xlarge instance with 2.5 GHz
processors).

We also briefly discuss in Section 7 how maturing
technologies, such as hardware roots of trust (e.g., Intel
SGX [41]) and program obfuscation can enrich the space
of possible CSCs—as they can, of course, beneficial smart
contracts.

2. Background and Related Work

We briefly review the cryptocurrency backdrop for CSCs
and research on the use of digital cash in crime.

2.1. Blockchains and smart contracts
Emerging decentralized cryptocurrencies [52], [60] rely

on a novel blockchain technology, where miners reach
consensus, not only about data, but also about computa-
tion. Loosely speaking, the Bitcoin blockchain (i.e., miners)
verify transactions and store a global ledger, which may
be modeled as a piece of public memory whose integrity
relies on correct execution of the underlying distributed
consensus protocol. Bitcoin offers rudimentary support for
a limited range of programmable logic to be executed by
the blockchain. Its scripting language is restrictive, however,
and difficult to use, as demonstrated by previous efforts at
building smart contract-like applications atop Bitcoin [8],
[16], [20], [46], [53].

When the computation performed by the blockchain (i.e.,
miners) is generalized to arbitrary Turing-complete logic,
we obtain a more powerful, general-purpose smart contract
system. The first embodiment of such a decentralized smart
contract system is the soon-to-be-launched Ethereum [60].
Hobbyists and companies are already building atop or fork-
ing off Ethereum to develop various smart contract applica-
tions such as security and derivatives trading [45], prediction
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Figure 1: Schematic of a decentralized cryptocurrency
system with smart contracts, as illustrated by Delmolino
et al. [34]. A smart contract’s state is stored on the public
blockchain. A smart contract program is executed by a
network of miners who reach consensus on the outcome
of the execution, and update the contract’s state on the
blockchain accordingly. Users can send money or data to
a contract; or receive money or data from a contract.

markets [6], supply chain provenance [12], and crowd fund
raising [2].

Figure 1 shows the high-level architecture of a smart
contract system instantiated over a decentralized cryptocur-
rency such as Bitcoin or Ethereum. When the underlying
consensus protocol employed the cryptocurrency is secure,
the majority of the miners (as measured by computational
or other resource) are assumed to correctly execute the
contract’s programmable logic.

Gas. Realistic instantiations of decentralized smart contract
systems rely on gas to protect miners against denial-of-
service attacks (e.g., running an unbounded contract). Gas
is a form of transaction fee that is, roughly speaking, pro-
portional to the runtime of a contract.

In this paper, although we do not explicitly express
gas in our smart contract notation, we attempt to factor
program logic away from the contract as an optimization
when possible, to keep gas and thus transactional fees low.
For example, some of the contracts we propose involve
program logic executed on the users’ side, with no loss in
security.

2.2. Digital cash and crime

Anonymous e-cash was introduced in 1982 in a seminal
paper by David Chaum [29]. Its dangers were brought to
light when Naccache and von Solms noted that anonymous
currency would render “perfect crimes” such as kidnap-
ping untraceable by law enforcement [58]. This observation
prompted the design of fair blind signatures or “escrow”
for e-cash [24], [59], which enables a trusted third party
to link identities and payments. Such linkage is possible
in classical e-cash schemes where a user identifies herself



upon withdraw of anonymous cash. Escrow schemes cannot
easily support contemporary virtual currency systems such
as Bitcoin that do not include withdrawal protocols.

Ransomware has appeared in the wild since the advent
of the AIDS Info Disk Trojan in 1989 [17]. Young and
Yung observed that better cryptographic design could im-
prove the effectiveness of ransomware [61], and coined the
term “cryptovirology” for the general use of cryptography
to improve malware. Another major cryptovirological “im-
provement” to ransomware has been use of Bitcoin, now
the most common method of payment for ransomware [44].
One strain of ransomware, CryptoLocker, has purportedly
netted hundreds of millions of dollars in ransom [22].

There has been extensive study of the enablement of
crime through Bitcoin, such as money laundering [51],
Bitcoin theft [49], and illegal transactions such as those
performed in the Silk Road marketplace [31]. Meiklejohn et
al. [49] note that Bitcoin is pseudonymous and that mixes,
mechanisms designed to confer anonymity on Bitcoins, do
not operate on large volumes of currency and in general
today it is hard for criminals to cash out anonymously in
volume.

On the other hand, Ron and Shamir provide evidence
that the FBI failed to locate most of the Bitcoin holdings of
Dread Pirate Roberts, the operator of the Silk Road, even
after seizing the laptop of the alleged user behind the nom
de guerre, Ross William Ulbricht [56]. Möser, Böhome, and
Breuker [51] find that they cannot successfully deanonymize
transactions in two of three mixes under study, suggesting
that the “Know-Your-Customer” principle, regulators’ main
tool in combatting money laundering, may prove difficult
to enforce in Bitcoin—and probably by extension in the
decentralized smart contract systems, such as Ethereum, that
we explore here. In addition, there have been increasingly
practical proposals to use NIZK proofs to construct stronger
anonymity protection for cryptocurrencies [18], [33], [50].
There is therefore good reason to anticipate criminals’ abil-
ity to achieve a strong degree of anonymity / pseudonymity,
particularly as cryptocurrencies mature.

3. Notation and Formalism

We adopt the formal blockchain model proposed by
Kosba et al. [43]. As background, we give a high-level de-
scription of this model in this section. We use this model to
specify cryptographic protocols in our paper; these protocols
encompass criminal smart contracts and corresponding user-
side protocols.

Protocols in the smart contract model. The model treats
a contract as a special party that is entrusted to enforce
correctness but not privacy, as noted above. (In reality,
of course, a contract is enforced by the network.) All mes-
sages sent to the contract and its internal state are publicly
visible. During the protocol, contract would interact with
users by exchanging messages (also referred to as transac-
tions). Money, expressed in the form of account balances,
is recorded in the global ledger (on the blockchain). Our

Init: Set all := {}, Tend := 10/12/2015, $price := 1.
Register: On receiving ($amt, name) from some party P:

Assert name /∈ all and $amt ≥ $price.
ledger[P] := ledger[P]− $amt.
all := all ∪ {name}.

Timer: If T > Tend and $price = 1: set $price := 10.

Figure 2: Warmup: a simple smart contract for domain
name registration. The formal operational semantics of a
contract program is supplied in Appendix A.

contracts can access and update the ledger to implement
money transfers between users (as represented by their
pseudonymous public keys).

Example contract program. As a warm-up example, Fig-
ure 2 gives a simple smart contract using our notation sys-
tem. This contract sells domain names. A name is awarded
to the first bidder to offer at least $price currency units.
When a presale time period expires indicated by Tend, the
price of each domain name is increased from 1 to 10
currency units. (The contract does not handle assignment
of domain names.)

3.1. Notational Conventions

We now explain some notational conventions for writing
contracts.
• Currency and ledger. We use ledger[P] to denote party
P’s balance in the global ledger. For clarity, variables that
begin with a $ sign denote money, but otherwise behave
like ordinary variables.
Unlike in Ethereum’s Serpent language, in our formal
notation, when a contract receives some $amount from a
party P , this is only message transfer, and no currency
transfer has taken place at this point. Money transfers only
take effect when the contract performs operations on the
ledger, denoted ledger.

• Pseudonymity. Parties can use pseudonyms to obtain
better anonymity. In particular, a party can generate arbi-
trarily many public keys. In our notational system, when
we refer to a party P , P denotes the party’s pseudonym.
Our contract wrapper (see Appendix A) manages the
pseudonym generation and the message signing necessary
for establishing an authenticated channel to the contract.
These details are abstracted away from the main contract
program.

• Timer. Time progresses in rounds. At the beginning
of each round, the contract’s Timer function will be
invoked. The variable T encodes the current time.

• Entry points and variable scope. A contract can have
various entry points, each of which is invoked when re-
ceiving a corresponding message type. Thus entry points
behave like function calls invoked upon receipt of mes-
sages.
All variables are assumed to be globally scoped with the
following exception: when an entry point says “Upon
receiving a message from some party P ,” this allows



the registration of a new party P . In general, contracts
are open to any party who interacts with them. When
a message is received from P (without the keyword
“some”), party P denotes a fixed party – and a well-
formed contract has already defined P .

3.2. Formal Modeling of Smart Contracts

The notational system described above is not only de-
signed for convenience, but is also endowed with precise,
formal meanings. We briefly describe our formal framework
below but relegate details to the Hawk work [43] or Ap-
pendix A. This notational system is designed modularly such
that the main body of the paper can be understood without
drilling into the details of the formalism.

Our notational system is compatible with the Universal
Composability framework [26], but specially designed for
easy expression of cryptographic protocols in the smart
contract model of execution.

Wrappers and programs. In support of such modular-
ization, our formal model adopts a wrapper-based based
approach. Wrappers factor out repetitive details related to
the decentralized smart contract execution model, as we now
explain.

Our protocols are described in the so-called
G(Contract)-hybrid world, where G(·) a contract wrapper,
and Contract is called a contract program. In this paper,
all contracts we write (e.g., Contract KeyTheft) are in the
form of contract programs. Contract programs describe the
user-defined portion of a contract. While contract programs
(e.g., KeyTheft) are written for intuitive understanding,
they must be combined with the contract wrapper G to be
endowed with formally precise operational semantics.

Specifically, the contract wrapper G(·) models several
elements that underlie decentralized smart contract systems
such as Bitcoin [52] and Ethereum [60], including 1) the
lapse of time, 2) handling of pseudonyms, 3) maintenance of
a global ledger and handling of currency transfer requests,
and 4) publicly exposing the contract’s internal states.

A contract interacts with user programs, and therefore
user programs must be specified for the protocol description
to be complete. In addition to the G(·) contract wrapper,
using a similar design rationale, our formal model also
defines wrappers for user programs as well as ideal func-
tionalities. We relegate the details of our modeling choices
to Appendix A.

4. CSCs for Leakage of Secrets

As a first example of the power of smart contracts,
we show how an existing type of criminal contract can
be made more robust and functionally enhanced through
implementation as a smart contract, and can in fact be
practically deployed in a system such as Ethereum.

Among the illicit practices stimulated by Bitcoin is
payment-incentivized leakage, i.e., public disclosure, of se-
crets. The recently created web site Darkleaks [3] serves as

a decentralized market for crowd-patronized public leakage
of a wide variety of secrets, including, “Hollywood movies,
trade secrets, government secrets, proprietary source code,
industrial designs like medicine or defence, [etc.].” (It may
be viewed as a subsidized variant on Wikileaks.)

In this section, using Darkleaks as an example, we
highlight the functional limitations of Bitcoin in construct-
ing contracts for leakage of secrets. We then show how
smart contracts can remedy these limitations to achieve
commission-fairness with high probability.

4.1. Darkleaks

In the Darkleaks system, a contractor C who wishes to
sell a piece of content M partitions it into a sequence of
n segments {mi}ni=1. At a time (block height) Topen pre-
specified by C, a randomly selected subset Ω ⊂ [n] of k
segments is publicly disclosed as a sample to entice donors
/ purchasers—those who will contribute to the purchase
of M for public leakage. When C determines that donors
have collectively paid a sufficient price, C decrypts the
remaining segments for public release. The parameter triple
(n, k, Topen) is set by C (where n = 100 and k = 20 are
recommended defaults).

To ensure a fair exchange of M for payment without
direct interaction between parties, Darkleaks implements a
(clever) protocol on top of the Bitcoin scripting language.
The main idea is that for a given segment mi of M that is
not revealed as a sample in Ω, donors make payment to a
Bitcoin account ai with public key is pki. The segment mi

is encrypted under a key κ = H(pki) (where H = SHA-
256). To spend its reward from account ai, C is forced by the
Bitcoin transaction protocol to disclose pki; thus the act of
spending the reward automatically enables the community
to decrypt mi.

We give further details in Appendix E.1.

Shortcomings and vulnerabilities. The Darkleaks pro-
tocol has three major shortcomings / vulnerabilities that
appear to stem from fundamental functional limitations of
Bitcoin’s scripting language when constructing contracts
without direct communication between parties. The first
two undermine commission-fairness, while the third limits
functionality.1 DarkLeaks has these shortcomings:

1. Delayed release: C can refrain from spending purchasers’
/ donors’ payments and releasing unopened segments of M
until after M loses value. E.g., C could withhold segments
of a film until after its release in theaters, of an industrial
design until after it is produced, etc.

2. Selective withholding: C can choose to forego payment
for select segments and not disclose them. For example, C
could leak and collect payment for all of a leaked film but
the last few minutes (which, with high probability, will not

1. That these limitations are fundamental is evidenced by calls for new,
time-dependent opcodes. One example is CHECKLOCKTIMEVERIFY;
apart from its many legitimate applications, proponents note that it can
facilitate secret leakage as in Darkleaks [36].



appear in the sample Ω), significantly diminishing the value
of leaked segments.

3. Public leakage only: Darkleaks can only serve to leak
secrets publicly. It does not enable fair exchange for private
leakage, i.e., for payment in exchange for a secret M
encrypted under the public key of a purchaser P .

Additionally, Darkleaks has a vulnerability due to a
protocol flaw:

4. Reward theft: In the Darkleaks protocol, the Bitcoin
private key ski corresponding to pki is derived from mi;
specifically ski = SHA-256(mi). Thus, the source of M
(e.g., the owner of a leaked film) can derive ski and steal
rewards received by C. (Also, when C claims a reward, a
malicious node that receives the transaction can decrypt
mi, compute ski = SHA-256(mi), and potentially steal the
reward by flooding the network with a competing transac-
tion [37].)

This last problem is easily remedied by generating the
set {κi}ni=1 of segment encryption keys pseudorandomly or
randomly, which we do in our CSC designs.

Remark: While selective withholding (shortcoming
2. above) is inherent to Darkleaks, there is a similar
vulnerability that affects any protocol in which a random
sample is displayed to entice buyers, including what we
now present. It is possible for the contractor to insert a
small number of incorrectly encrypted or simply valueless
segments into M . With non-negligible probability, these
will not appear in the sample Ω. The larger k and n, the
smaller the risk of such attack. It is in this sense that
revelation of Ω provides only a weak guarantee of the
global validity of M . A formal analysis is outside the scope
of this paper.

4.2. A generic public-leakage CSC

We now present a smart contract that realizes public
leakage of secrets using blackbox cryptographic primitives.
(We later present efficient realizations.) This contract over-
comes limitation 1. of the Darkleaks protocol (delayed re-
lease) by enforcing disclosure of M at a pre-specified time
Tend—or else immediately refunding buyers’ money. It ad-
dresses limitation 2. (selective withholding) by ensuring that
M is revealed in an all-or-nothing manner. (We later explain
how to achieve private leakage and overcome limitation 3.)

Again, we consider a setting in which C aims to sell M
for public release after revealing a sample of segments M∗.

Informal protocol description. Informally, the protocol
involves the following steps:
• Create contract. A seller C initializes a smart contract with

the encryption of a randomly generated master secret key
msk. The master secret key is used to generate (symmet-
ric) encryption keys for the segments {mi}ni=1. C provides
a cryptographic commitment c0 := Enc(pk,msk, r0) of
msk to the contract. (To meet the technical requirements

of our security proofs, the commitment is an encryption
with randomness r0 under a public key pk created during
a trusted setup step.) The master secret key msk can be
used to decrypt all leaked segments of M .

• Upload encrypted data. For each i ∈ [n], C generates
encryption key κi := PRF(msk, i), and encrypts the i-
th segment as cti = encκi

[mi]. C sends all encrypted
segments {cti}i∈[n] to the contract (or, for efficiency, pro-
vides hashes of copies stored with a storage provider, e.g.,
a peer-to-peer network). Interested purchasers / donors can
download the segments of M , but cannot decrypt them
yet.

• Challenge. The contract generates a random challenge set
Ω ⊂ [n], in practice based on the hash of the most recent
currency block, or using other well-known randomness
sources such as the NIST randomness beacon [10].

• Response. C reveals the set {κi}i∈Ω to the contract, and
gives ZK proofs that the revealed secret keys {κi}i∈Ω are
generated correctly from the msk encrypted as c0.

• Collect donations. During a donation period, potential
purchasers / donors can use the revealed secret keys
{κi}i∈Ω to decrypt the corresponding segments. If they
like the decrypted segments, they can donate money to
the contract as contribution for the leakage.

• Accept. If C determines that enough money has been
collected, C decommits msk for the contract (sends the
randomness for the ciphertext along with msk). If the
contract verifies the decommitment successfully, all do-
nated money is paid to C. The contract thus enforces a fair
exchange of msk for money. (If the contract expires at time
Tend without release of msk, all donations are refunded.)

The contract. Our proposed smart contract PublicLeaks
for implementing this public leakage protocol is given in
Figure 3. The corresponding user-side is as explained in-
formally (and inferrable from the contract); thus we defer
a formal specification of these protocols to Appendix D, in
which we also describe an ideal functionality for the public
leakage contract, and formally prove that our protocols
securely emulate this ideal functionality.

Formal proof. In a formal proof, PublicLeaks is shown
to realize an ideal functionality that ensures commission-
fairness assuming all revealed segments are valid—a prop-
erty enforced with high (although not overwhelming) prob-
ability by the Create CSC functionality. The security proof
is relegated to Appendix D.

4.3. Optimizations and Ethereum implementation

The contract PublicLeaks uses generic cryptographic
primitives in a blackbox manner. We now give a practi-
cal, optimized version relying on the random oracle model
(ROM) that eliminates a trusted setup, and also achieves
better efficiency and easy integration with Ethereum [60].

A practical optimization. During contract creation, C
chooses random κi

$←{0, 1}λ for i ∈ [n], and computes

c0 := {H(κ1, 1), . . . ,H(κn, n)}.



Contract PublicLeaks

Init: Set state := INIT, and donations := {}. Let
crs := KeyGennizk(1λ), pk := KeyGenenc(1

λ)
denote hardcoded public parameters generated
through a trusted setup.

Create: Upon receiving (“create”, c0, {cti}ni=1, Tend) from
some leaker C:

Set state := CREATED.
Select a random subset Ω ⊂ [n] of size k, and
send (“challenge”, Ω) to C.

Confirm: Upon receiving (“confirm”, {(κi, πi)}i∈Ω) from C:
Assert state = CREATED.
Assert that ∀i ∈ S: πi is a valid NIZK proof
(under crs) for the following statement:

∃(msk, r0), s.t. (c0 = Enc(pk,msk, r0))
∧ (κi = PRF(msk, i))

Set state := CONFIRMED.
Donate: Upon receiving (“donate”, $amt) from some pur-

chaser P:
Assert state = CONFIRMED.
Assert ledger[P] ≥ $amt.
Set ledger[P] := ledger[P]− $amt.
donations := donations ∪ {($amt,P)}.

Accept: Upon receiving (“accept”, msk, r0) from C:
Assert state = CONFIRMED
Assert c0 = Enc(pk,msk, r0)
ledger[C] := ledger[C] + sum(donations)
Send (“leak”,msk) to all parties.
Set state := ABORTED.

Timer: If state = CONFIRMED and T > Tend:
∀($amt,P) ∈ donations: let ledger[P] :=
ledger[P] + $amt. Set state := ABORTED.

Figure 3: A contract PublicLeaks that leaks a secret M to
the public in exchange for donations.

The master secret key is simply msk := {κ1, . . . , κn},
i.e., the set of hash pre-images. As in PrivateLeaks,
each segment mi will still be encrypted as cti :=
encκ[mi]. (For technical reasons—to achieve simulata-
bility in the security proof— here encκ[mi] = mi ⊕
[H(κi, 1, “enc”) ||H(κi, 2, “enc”) . . . ,
||H(κi, z, “enc”)] for suitably large z.)
C submits c0 to the smart contract. When challenged

with the set Ω, C reveals {κi}i∈Ω to the contract, which
then verifies its correctness by hashing and comparing with
c0. Finally, to accept donations, C reveals the entire msk.

Although this optimized scheme is asymptotically
less efficient than our generic, blackbox construction
PublicLeaks— as the master secret key scales linearly
in the number of segments n— for typical document set
sizes encountered in realistic settings (e.g., n = 100, as
recommended for Darkleaks), it is more efficient in practice.

Finally, we make a remark on the security proof for the
optimized scheme given in the full version of the paper.

Our overall proof structure would remain the same for the
optimized scheme, under the ROM for H . For schemes
under the ROM to be universally composable, each protocol
instance needs to instantiate a different random oracle, or the
approach of Canetti et al. [28] can be adopted.

Ethereum-based implementation. To demonstrate the fea-
sibility of implementing secret-leakage contracts using cur-
rently available technology, we implemented a version of
the contract PublicLeaks atop Ethereum [60], using their
Serpent contract language [11]. We specify the full imple-
mentation in detail in Appendix E.2.

The version we implemented relies on the practical opti-
mizations described above. As a technical matter, Ethereum
does not appear at present to support timer-activated func-
tions, so we implemented Timer in such a way that pur-
chasers / donors make explicit withdrawals, rather than
receiving automatic refunds.

This public leakage Ethereum contract is highly efficient,
as it does not require expensive cryptographic operations. It
mainly relies on hashing (SHA3-256) for random number
generation and for verifying hash commitments. The total
number of storage entries (needed for encryption keys) and
hashing operations is O(n), where we recall that n = 100 is
the Darkleaks recommended parameter. Each hash function
call in practice takes a few micro-seconds, e.g. 3.92 µsecs
measured on a core i7 processor.

4.4. Extension: private leakage

As noted above, shortcoming 3. of Darkleaks is its
inability to support private leakage, in which C sells a secret
exclusively to a purchaser P . In Appendix E.3, we show
how PublicLeaks can be modified for this purpose. The
basic idea is for C not to reveal msk directly, but to provide
a ciphertext ct = encpkP [msk] on msk to the contract for a
purchaser P , along with a proof that ct is correctly formed.
We describe a blackbox variant whose security can be
proven in essentially the same way as PublicLeaks. We also
describe a practical variant that variant combines a verifiable
random function (VRF) of Chaum and Pedersen [30] (for
generation of {κi}ni=1) with a verifiable encryption (VE)
scheme of Camensich and Shoup [25] (to prove correctness
of ct). This variant can be deployed today using beta features
in Ethereum’s Serpent scripting language that support big
number arithmetic and is efficient enough for practical use.

5. A Key-Compromise CSC

Example 1b described a CSC that rewards a perpetrator
P for delivering to C the stolen key skV of a victim V—
in this case a certificate authority (CA) with public key
pkV . C generates a private / public key encryption pair
(skC , pkC). The contract accepts as a claim by P a pair
(ct, π). It sends reward $reward to P if π is a valid proof that
ct = encpkC [skV ] and skV is the private key corresponding
to pkV .



Contract KeyTheft-Naive
Init: Set state := INIT. Let crs := KeyGennizk(1λ) de-

note a hard-coded NIZK common reference string
generated during a trusted setup process.

Create: Upon receiving (“create”, $reward, pkV , Tend) from
some contractor C := (pkC , . . .):

Assert state = INIT.
Assert ledger[C] ≥ $reward.
ledger[C] := ledger[C]− $reward.
Set state := CREATED.

Claim: Upon receiving (“claim”, ct, π) from some pur-
ported perpetrator P:

Assert state = CREATED.
Assert that π is a valid NIZK proof (under crs)
for the following statement:

∃r, skV s.t. ct = Enc(pkC , (skV ,P), r)
and match(pkV , skV) = true

ledger[P] := ledger[P] + $reward.
Set state := CLAIMED.

Timer: If state = CREATED and current time T > Tend:
ledger[C] := ledger[C] + $reward
state := ABORTED

Figure 4: A naı̈ve, flawed key theft contract (lacking
commission-fairness)

This form of contract can be used to solicit theft of
any type of private key, e.g., the signing key of a CA, the
private key for a SSL/TLS certificate, a PGP private key,
etc. (Similar contracts can be applied to solicit abuse, but
not full compromise of a private key, e.g., to obtain a forged
certificate.)

Figure 4 shows the contract of Example 1b in our nota-
tion for smart contracts. We let crs here denote a common
reference string for a NIZK scheme and match(pkV , skV)
denote an algorithm that verifies whether skV is the corre-
sponding private key for some public key pkV in a target
public-key cryptosystem.

As noted above and as we now discuss, this CSC is not
commission-fair. Thus we refer to it as KeyTheft-Naive. We
use KeyTheft-Naive as a helpful starting point for motivat-
ing and understanding the construction of a commission-fair
contract proposed later, called KeyTheft.

5.1. Flaws in KeyTheft-Naive

The contract KeyTheft-Naive fails to achieve
commission-fairness due to two shortcomings.

Revoke-and-claim attack. The more serious vulnerability
is an attack in which the CA V revokes the key skV and then
submits it for payment. The CA then not only negates the
value of the contract but actually profits from it. This revoke-
and-claim attack demonstrates that KeyTheft-Naive is not
commission-fair in the sense of ensuring for payment the

delivery of a usable private key skV . Related to the revoke-
and-claim attack, there is another problem: The target and
state of contract KeyTheft-Naive are publicly visible. V
can thus learn whether it is the target of KeyTheft-Naive.
V also learns of the existence of a successful claim—and
thus whether skV has been stolen. V can thus take informed
defensive action against the contract. For example, as key
revocation is expensive and time-consuming, V may choose
not to perform a revoke-and-claim attack when KeyTheft-
Naive is posted, but instead wait until a successful claim
occurs and then revoke its key.

Rushing attack. Another attack is a rushing attack, where
a corrupted contractor deprives the pepertrator of its reward.
Specifically, notice that in our formalism in Section 3 and
in Appendix A, the contract wrapper G notifies the adver-
sary of any message it receives without delay. Therefore,
a corrupted contractor can immediately decrypt and learn
skV , and construct another valid claim to compete with the
perpetrator P . In real-life decentralized cryptocurrencies, the
contractor’s claim and the perpetrator’s claim will arrive in
the same round, and the order in which they are processed
by the winning miner will determine who gets the reward.
To model potential attacks where an adversary bribes min-
ers, in our formalism we allow the adversary to submit a
permutation on all transactions arriving in the same round.

We now show how to modify KeyTheft-Naive to pre-
vent revoke-and-claim and rushing attacks and thus achieve
commission-fairness. We also propose techniques for hiding
the target and state of KeyTheft-Naive.

5.2. Thwarting Attacks

Thwarting the revoke-and-claim attack. In a revoke-
and-claim attack against KeyTheft-Naive, V preemptively
revokes its public key pkV and replaces it with a fresh one
pk′V . As noted above, the victim can then play the role of
perpetrator P , submit skV to the contract and itself claim the
reward. The result is that C pays $reward to V and obtains
a stale key.

We address this problem by adding to the contract
a feature called reward truncation, whereby the contract
accepts evidence of revocation Πrevoke.

This evidence Πrevoke can assume any of several forms.
It can be an Online Certificate Status Protocol (OCSP)
response indicating that pkV is no longer valid, a new
certificate for V that was unknown at the time of contract
creation (and thus not stored in Contract), or a certificate
revocation list (CRL) containing the certificate with pkV .

Although C could submit Πrevoke, to minimize interaction
by C, KeyTheft could instead provide a reward $smallre-
ward to a third-party submitter. The reward can be small,
as Πrevoke would be easy for an ordinary user to obtain.

The contract then provides a reward based on the interval
of time over which the key skV remains valid. Let Tclaim
denote the time at which the key skV is provided and Tend
be an expiration time for the contract (which must not ex-
ceed the expiration of the certificate containing the targeted



key). Let Trevoke be the time at which Πrevoke is presented
(Trevoke = ∞ if no revocation happens prior to Tend). Then
the contract assigns to P a reward of f(reward, t), where
t = min(Tend, Trevoke)− Tclaim, and thus t ≤ Tend − Tclaim.

We do not explore choices of f here. We note, however,
that given that a CA key skV can be used to forge certificates
for rapid use in, e.g., malware or falsified software updates,
much of its value can be realized in a short interval of time
which we denote by δ. (A slant toward up-front realization
of the value of exploits is common in general [21].) A
suitable choice of reward function should be front-loaded
and rapidly decaying. A natural, simple choice with this
property is

f($reward, t) =

{
0 : t < δ
$reward(1− ae−b(t−δ)) : t ≥ δ

for a < 1/2 and some positive real value b. Note that a
majority of the reward is paid provided that t ≥ δ.

Thwarting the rushing attack. To thwart the rushing
attack, our idea is to separate the claim into two phases. In
the first phase, the perpetrator expresses an intent to claim
by submitting a commitment of the real claim message. The
pepertrator then waits for the next round, and then opens the
commitment and reveals the claim message. Due to technical
subtleties in the proof, the commitment must be adaptively
secure – in the proof, the simulator must be able to sim-
ulate a commitment without knowing the string s being
committed to, and later, be able to explain the commitment
to any string s. In real-life decentralized cryptocurrencies,
the perpetrator can potentially wait multiple block intervals
before opening the commitment, to have higher confidence
that the blockchain cannot be reversed. In our formalism,
one round can potentially correspond to one or more block
intervals.

Figure 5 gives a key theft contract KeyTheft that thwarts
the revoke-and-claim attack and the rushing attack.

Formal proof. We relegate a formal proof of security for
KeyTheft to Appendix C.

5.3. Limiting target and state exposure

To limit target and state exposure, we propose two
possible enhancements to KeyTheft. The first is a multi-
target contract, in which key theft is requested for any one
of a set of multiple victims. The second is use of what we
call cover claims, false claims that conceal any true claim
and for which a small reward is paid. Our implementation
of KeyTheft, described below, is a multi-target contract, as
this technique provides both partial target and partial state
concealment.

Multi-target contract. A multi-target contract solicits the
private key of any of m potential victims V1,V2, . . . ,Vm.
There are many settings in which the private keys of differ-
ent victims are of similar value. For example, a multi-target
contract KeyTheft could offer a reward for the private key
skV of any CA able to issue SSL/TLS certificates trusted

by, e.g., Internet Explorer (of which there are more than
650 [38]).

A challenge here is that because the contract state is
public, the contract must be able to verify the submission
of a valid claim (private key) skVi without knowing which
key was furnished, i.e., without learning i. We show in
our implementation that the construction of such proofs as
zk-SNARKs is practical. (Note that determination of i by
C is quite efficient: C decrypts skVi , generates pkVi , and
identifies the corresponding victim.)

Cover claims. As the state of a contract is publicly visible,
a victim V learns whether or not a successful claim has
been submitted to KeyTheft-Naive. This is particularly
problematic in the case of single-target contracts.

Rather than sending the NIZK proof π with ct, we can
instead delay submission of π (and payment of the reward)
until Tend. (That is, Claim takes as input (“claim”, ct).) This
approach conceals the validity of ct. Note that even without
π, C can still make use of ct.

A contract that supports such concealment can also
support an idea that we refer to as cover claims. A cover
claim is an invalid claim of the form (“claim”, ct), i.e.,
one in which ct is not a valid encryption of skV . Cover
claims may be submitted by C to conceal the true state of
the contract. Alternatively, so that C need not interact with
the contract after its creation, the contract can parcel out a
small reward at time Tend to third parties that submit cover
claims.

1-Target #threads RSA-2048 ECDSA P256
Key Gen.[C] 1 418.27 sec 926.308 sec

4 187.49 sec 421.05 sec
Eval. Key 0.78GB 1.80 GB
Ver. Key 17.29 KB 15.6 KB

Prove[P] 1 133.06 sec 325.73 sec
4 55.30 sec 150.80 sec

Proof 288 B 288 B
Verification [Contract] 0.0102 sec 0.0099 sec

500-Target #threads RSA-2048 ECDSA P256
Key Gen.[C] 1 419.93 sec 934.89 sec

4 187.88 sec 329.39 sec
Eval. Key 0.79 GB 1.81 GB
Ver. Key 1.14 MB 330.42 KB

Prove[P] 1 132.98 sec 325.73 sec
4 68.67 sec 149.19 sec

Proof 288 B 288 B
Verification [Contract] 0.0316 sec 0.0159 sec

TABLE 1: Performance of the key-compromise zk-SNARK cir-
cuit for Claim in the case of a 1-target and 500-target contracts.
[.] refers to the entity performing the computational work.

5.4. Implementation

We rely on zk-SNARKs for efficient realization of the
protocols above. zk-SNARKs are zero-knowledge proofs of
knowledge that are succinct and very efficient to verify.
zk-SNARKs have weaker security than what is needed in
UC-style simulation proofs. We therefore we use a generic
transformation described in the Hawk work [43] to lift



Contract KeyTheft
Init: Set state := INIT. Let crs := KeyGennizk(1λ) de-

note a hard-coded NIZK common reference string
generated during a trusted setup process.

Create: Same as in Contract KeyTheft-Naive (Figure 4),
except that an additional parameter ∆T is addi-
tionally submitted by C.

Intent: Upon receiving (“intent”, cm) from some pur-
ported perpetrator P:

Assert state = CREATED
Assert that P has not sent “intent” earlier
Store cm,P

Claim: Upon receiving (“claim”, ct, π, r) from P:
Assert state = CREATED
Assert P submitted (“intent”, cm) earlier such
that cm = comm(ct||π, r).

Continue in the same manner as in contract
KeyTheft-Naive, except that the ledger update
ledger[P] := ledger[P] + $reward does not take
place immediately.

Revoke: On receive (“revoke”, Πrevoke) from some R:
Assert Πrevoke is valid, and state 6= ABORTED.
ledger[R] := ledger[R] + $smallreward.
If state = CLAIMED:

Let t := (time elapsed since successful
Claim).
Let P := (successful claimer).
rewardP := f($reward, t).
ledger[P] := ledger[P] + rewardP .

Else, rewardP := 0
ledger[C] := ledger[C] + $reward− $smallreward

−rewardP
Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed
since Claim:
ledger[P] := ledger[P] + $reward;
Set state := ABORTED.

Else if current time T > Tend and state 6=
ABORTED:
ledger[C] := ledger[C] + $reward.
Set state := ABORTED.

// P should not submit claims after Tend −∆T .

Figure 5: Key compromise CSC that thwarts the revoke-and-
claim attack and the rushing attack.

its security such that the zero-knowledge proof ensures
simulation extractable soundness. In brief, a one-time key
generation phase is needed to generate two keys: a public
evaluation key, and a public verification key. To prove a
certain NP statement, an untrusted prover uses the evaluation
key to compute a succinct proof; any verifier can use the
public verification key to verify the proof. (The verifier
in our case is the contract.) It is important that the key
generation be executed confidentially, otherwise a prover can

produce a valid proof for a false statement.

zk-SNARK circuits for Claim. To estimate the proof
computation and verification costs required for Claim, we
implemented the above protocol for theft of RSA-2048 and
ECDSA P256 keys, which are widely used in SSL/TLS
certificates currently. The circuit has two main sub-circuits: a
key-check circuit, and an encryption circuit 2 The encryption
circuit was realized using RSAES-OAEP [42] with a 2048-
bit key. Relying on compilers for high-level implementation
of these algorithms may produce expensive circuits for the
zk-SNARK proof computation. Instead, we built customized
circuit generators that produce more efficient circuits. We
then used the state-of-the-art zk-SNARK library [19] to
obtain the evaluation results. Table 1 shows the results of the
evaluation of the circuits for both single-target and multi-
target contracts. The experiments were conducted on an
Amazon EC2 r3.2xlarge instance with 61GB of memory
and 2.5 GHz processors.

The results yield two interesting observations: i) Once
a perpetrator obtains the secret key of a TLS public key,
computing the zk-SNARK proof would require much less
than an hour, costing less than 1 USD [5] for either single or
multi-target contracts; ii) The overhead introduced by using
a multi-target contract with 500 keys on the prover’s side is
minimal. This minimized overhead for the 500-key contract
is obtained by the use of a very cheap multiplexing circuit
with a secret input, while using the same components of the
single-target case as is. On the other hand, in the 500-key
case, the contract will have to store a larger verification key,
resulting in verification times of 35msec for RSA. Further
practical implementations optimizations, though, can reduce
the contract verification key size and overhead.

Validation of revoked certificates. The reward function in
the contract above relies on certificate revocation time, and
therefore the contract needs modules that can process certifi-
cate revocation proofs, such as CRLs and OCSP responses,
and verify the CA digital signatures on them. As an ex-
ample, we measured the running time of openssl verify
-crl_check command, testing the revoked certificate at
[13] and the CRL last updated at [9] on May 14th, 2015, that
had a size of 64KB. On average, the verification executed
in about 0.011 seconds on a 2.3 GHz i7 processor. The
signature algorithm was sha256WithRSAEncryption, with a
2048-bit key. Since OCSP responses can be smaller than
CRLs, the verification time could be even less for OCSP.

The case of multi-target contracts. Verifying the revoca-
tion proof in the case of single-target contracts is straight-
forward; the contract can determine whether a revocation
proof corresponds to the targeted key. In the case of multi-
target contracts, however, the contract does not know which
target key corresponds to the proof of key theft P submitted.
Thus, an additional step is needed to prove that the revo-
cation corresponds to the stolen key, and the proof must be
submitted by C. C can either:

2. The circuit also has other signature and encryption sub-circuits needed
for the simulation extractability of the proof – see Appendix B.



• Show the plaintext (the leaked private key) correspond-
ing to the ciphertext submitted by P . The contract will
be able to verify the correctness of the encryption and
identify the revoked target key. The main drawback in
this case is public leakage of the stolen private key,
which may have residual value despite revocation.

• Produce a zk-SNARK proof of revocation of a public
key corresponding to the private key in the ciphertext
produced by P , without revealing any more information
regarding the leaked private keys.

To avoid the drawback of revealing the stolen private
key, we built a zk-SNARK circuit through which C can
prove the connection between the ciphertext submitted by
the perpetrator and a target key with a secret index. For
efficiency, we eliminated the need for the key-check sub-
circuit in Revoke by forcing P to append the secret index
to the secret key before applying encryption in Claim.
The evaluation in Table 2 illustrates the efficiency of the
verification done by the contract receiving the proof, and
the practicality for C of constructing the proof. In contrast
to the case for Claim, the one-time key generation for this
circuit must be done independently from C, so that C cannot
cheat the contract. We note that the Revoke circuit we built
is invariant to the cryptosystem of the target keys.

#threads RSA-2048 ECDSA P256
Key Gen. 1 394.93 sec 398.53 sec

4 178.33 sec 162.537 sec
Eval. Key 0.74 GB 0.74 GB
Ver. Key 14.62 KB 14.62 KB

Prove[C] 1 131.38 sec 133.88 sec
4 68.66 sec 69.036 sec

Proof 288 B 288 B
Verification [Contract] 0.0098 sec 0.0097 sec

TABLE 2: Performance of the key-compromise zk-SNARK cir-
cuit for Revoke needed in the case of multi-target contract. [.]
refers to the entity performing the computational work.

6. Calling-Card Crimes

As noted above, ecosystems for decentralized smart
contract systems (e.g., Ethereum) are expected to incorpo-
rate services that provide authenticated data feeds, digitally
signed attestations to news, facts about the physical world,
etc. This powerful capability will the range of CSCs very
broadly to encompass events in the physical world, as in the
following example:
Example 2 (Assassination CSC). Contractor C posts a

contract Contract for the assassination of Senator X .
The contract rewards a perpetrator P for commission of
this crime.
The contract Contract takes as input from a perpetrator
P a commitment vcc specifying in advance the details
(day, time, and place) of the assassination. To claim
the reward, P decommits vcc after the assassination.
To verify P’s claim, Contract searches an authenticated
data feed on news to confirm the assassination of Senator
X with details matching vcc.

This example also illustrates the use of what we refer
to as a calling card, denoted cc. A calling card is an
unpredictable feature of a to-be-executed crime (e.g., in
Example 2, a day, time, and place). As we show here, calling
cards alongside authenticated data feeds can serve as the
basis of a general framework for a wide variety of CSCs.

A generic construction for a CSC based on a calling card
is as follows. P provides a commitment vcc to a calling
card cc to a contract in advance. After the commission
of the crime, P proves that cc corresponds to vcc (e.g.,
decommits vcc). The contract refers to some trustworthy
and authenticated data feed to verify that: (1) The crime was
committed and (2) The calling card cc matches the crime.
If both conditions are met, the contract pays a reward to P .

More formally, let CC be a set of possible calling cards
and cc ∈ CC denote a calling card. As noted above, it is
anticipated that an ecosystem of authenticated data feeds
will arise around smart contract systems such as Ethereum.
We model a data feed as a sequence pairs emanating from
a source S, where (s(t), σ(t)) is the emission for time t.
The value s(t) ∈ {0, 1}∗ here is a piece of data (e.g., news
reportage) released at time t, while σ(t) is a corresponding
digital signature; S has an associated private / public key
pair (skS , pkS) used to sign / verify signatures.

Note that after creation, a calling-card contract requires
no further interaction from C, making it hard for law en-
forcement to trace C using subsequent network traffic.

6.1. Example: website defacement contract

As an example, we specify a simple CSC SiteDeface
for website defacement. The contractor C specifies a website
url to be hacked and a statement stmt to be displayed. (For
example, stmt = ”Anonymous. We are Legion. We do not
Forgive...” and url = whitehouse.gov.)

We assume a data feed that authenticates website con-
tent, i.e., s(t) = (w, url, t), where w is a representation
of the webpage content and t is a timestamp, denoted
for simplicity in contract time. (For efficiency, w might
be a hash of and pointer to the page content.) Such an
authenticated feed service might take the form of, e.g., a
digitally signed version of an archive of hacked websites
(e.g., zone-h.com).

We also use a special function preamble(a, b) that ver-
ifies b = a||x for strings a, b and some x. The function
SigVer does the obvious signature verification operation.

For our example, we let CC = {0, 1}256, i.e., cc is
a 256-bit string. A perpetrator P simply selects a calling
card as cc

$← {0, 1}256. P computes a commitment as
vcc := commit(cc,P; ρ), where commit denotes a com-
mitment scheme, and ρ randomness. (In practice, HMAC-
SHA256 is a suitable choice for easy implementation in
Ethereum, as it supports SHA-256 among its core primi-
tives.) P decommits by revealing all arguments to commit.

The CSC SiteDeface is shown in Figure 6.



Contract SiteDeface
Init: On receiving ($reward, pkS , url, stmt) from some

C:
Store ($reward, pkS , url, stmt)
Set i := 0, Tstart := T

Commit: Upon receiving commitment vcc from some P:
Store vcci := vcc and Pi := P ; i := i+ 1.

Claim: Upon receiving as input a tuple (cc, ρ, σ, w, t)
from some P:

Find smallest i such that vcci =
commit(cc,P; ρ).
If valid i is found:

Assert stmt ∈ w
Asset preamble(cc, w) = true
Assert t ≥ Tstart
Assert SigVer(pkS , (w, url, t), σ) = true
Send $reward to Pi and abort.

Figure 6: CSC for website defacement

We defer formal security definitions and proofs of
commission-fairness for SiteDeface, as well as issues of
protocol instance composition, for the full paper version.

Remarks. SiteDeface could be implemented alternatively
by having P generate cc as a digital signature. Our imple-
mentation, however, also accommodates short, low-entropy
calling cards cc, which is important for general calling-card
CSCs, as we show in the next subsection.

Implementation. Given an authenticated data feed, imple-
menting SiteDeface would be straightforward and efficient.
The main overhead lies in the Claim module, where the
contract is supposed to compute a couple of hashes, and
validate the feed signature of the retrieved website data. As
illustrated earlier in Section 4, a hash function call can be
computed in very short time (4µsec), while checking the
signature would be more costly. For example, if the retrieved
content is 100KB, the contract will need about 10msec to
verify the signature, in case RSA-2048 and SHA-256 are
used, which would be practical in that case.

6.2. Other calling-card crimes

Using a CSC very similar to SiteDeface, a contractor
C can solicit many other crimes, e.g., assassination, assault,
murder, sabotage, hijacking, kidnapping, denial-of-service
attacks, and terrorist attacks. For successful contract con-
struction, a perpetrator P must be able to designate a calling
card that is reliably reported by an authenticated data feed.
(If C is concerned about suppression of information in one
source, it can of course create a CSC that references multiple
sources, e.g., multiple news feeds.)

In SiteDeface, the calling card cc is high-entropy—
drawn uniformly (in the ROM) from a space of size
|CC| = 2256. For other crimes, the space CC can be much
smaller. Suppose, for example, that cc for an assassination

of a public figure X is a day and city. Then an adversary
can make a sequence of online guesses at cc with corre-
sponding commitments vcc(1), vcc(2), . . . , vcc(n) such that
with high probability for relatively small n (on the order
of thousands), some vcc(i) will contain the correct value
cc. (Note that commit conceals cc, but does not prevent
guessing attacks against it.) These guesses, moreover, can
potentially be submitted in advance of the calling call cc
of a true perpetrator P , resulting in theft of the reward and
undermining commission-fairness.

There are two possible, complementary ways to address
this problem. One is to enlarge the space CC by tailoring
attacks to include hard-to-guess details. For example, the
contract might support commitment to a one-time, esoteric
pseudonym Y used to claim the attack with the media, e.g.,
“Police report a credible claim by a group calling itself the
[Y =] ‘Star-Spangled Guerilla Girls’.” Or a murder might
involve a rare poison (Y = Polonium-210 + strychnine).

Another option is to require a commitment vcc to carry a
deposit $deposit for the contract that is forfeit to C if there is
no successful claim against vcc after a predetermined time.
Treating cc as a random variable, let p = 2−H∞[cc]. Provided
that $deposit > p × $reward, adversaries are economically
disincentivized from brute-force guessing of calling cards.
Commission-fairness then relies on economic rationality.

7. Future Directions: Attacks and Defenses

Important research remains to be done on the scope of
possible CSCs and on potential countermeasures, as we now
briefly explain.

7.1. Other CSCs

The CSCs we have described are just a few examples
of the broad range possible with existing technologies. Also
deserving study are CSCs based on emerging or as yet not
practical technologies, such as:

Password theft (using SGX): It is challenging to create
a smart contract PwdTheft for theft of a password PW
(or other credentials such as answers to personal questions)
sufficient to access a targeted account (e.g., webmail ac-
count) A. There is no clear way for P to prove that PW
is valid for A. Leveraging trusted hardware, however, such
as Intel’s pending Software Guard eXtension (SGX) set
of x86-64 ISA extensions [41], it is possible to craft an
incentive compatible contract PwdTheft. SGX creates a
confidentiality- and integrity-protected application execution
environment called an enclave; it protects against even a
hostile OS and the owner of the computing device. SGX also
supports generation of a quote, a digitally signed attestation
to the hash of a particular executable app in an enclave and
permits inclusion of app-generated text, such as an app-
specific key pair (skapp, pkapp). A quote proves to a remote
verifier that data came from an instantiation of app on an
SGX-enabled host.
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Figure 7: Diagram of execution of PwdTheft with applica-
tion app running on SGX-enabled platform. The steps of
operation are described in text.

We sketch the design of an executable app for
PwdTheft. It does the following: (1) Ingests the password
PW from P and (pkC , A) from the contract; (2) Creates and
authenticates (via HTTPS, to support source authentication)
a connection to the service on which A is located; and logs
into A using PW ; and (3) If steps (1) and (2) are suc-
cessful, sends to PwdTheft the values ct = encpkC [PW ],
σ = Sigskapp [ct], and a quote α for app. The functionality
Claim in PwdTheft inputs these values and verifies σ and
α, ensuring that PW is a valid password for A. At this
point, PwdTheft releases a reward to P; we omit details
for this step. Figure 7 depicts the basic setup for this CSC.

After delivery of PW , P could cheat by changing PW ,
thus retaining access to A but depriving C of it. It is possible
for app thus to include a step (2a) that changes PW to a
fresh, random password PW ′ without revealing PW ′ to
P . This is in effect a “proof of ignorance,” a capability of
trusted hardware explored in [47]. To ensure freshness, app
might also ingest a timestamp, e.g., the current block header
in the cryptocurrency.

Sale of 0-days: A zero-day exploit (“0-day”) is a piece
of code that exploits a target piece of software through a
vulnerability as yet unknown to the developers and for which
patches are thus unavailable. A substantial market [35] exists
for the sale of 0-days as cyberweaponry [57]. Demonstrating
the validity of a “0-day” without revealing it has been a
persistent problem in 0-day markets, which consequently
rely heavily on reputations [55].

SGX could enable proofs of validity of a 0-days: app
would in this case simulate an execution environment and
attest to the state of a target piece of software after execution
of the 0-day. An alternative, in principle, is to construct a
zk-SNARK, although, simulation of a complete execution
environment would carry potentially impractical overhead.

Either technique would support the creation of a smart
contract for the sale of 0-day vulnerabilities, greatly sim-
plifying 0-day markets. Additionally, sales could be masked
using an idea like that of cover claims, namely by formulat-
ing contracts EITHER to sell a 0-day vulnerability for $X
OR sell $X worth of cryptocurrency. “Cover” or “decoy”
contracts could then be injected into the marketplace.

7.2. CSC countermeasures

Ideas such as blacklisting “tainted” coins /
transactions—those known to have been involved in
criminal transactions—have been brought forward for
cryptocurrencies such as Bitcoin. Such countermeasures to
crime would in principle be useful to deter the creation of
CSCs. Coin mixes [23], however, pose a challenge to coin
tainting; if coins are mixed before they are blacklisted, then
it becomes necessary also to blacklist the coins with which
they were mixed, even if those coins were not involved in
criminal transactions. Additionally, the notion of tainting
coins has been poorly received by the cryptocurrency
community because it undermines the basic cash-like
property of fungibility [14], [48]. Nonetheless, this idea
might deserve to be further explored if the alternative is
unacceptable levels of crime.

As noted in Section 2, one approach developed as a
countermeasure to crime in early (centralized) e-cash sys-
tems was a form of key escrow sometimes referred as
trustee-based tracing [24], [59]. Trustee-tracing schemes
permitted a single trusted party (“trustee”) or a quorum
of such parties to trace monetary transactions that would
otherwise remaining anonymous. Two major forms of trac-
ing were generally supported: tracing of the transactions
performed by a given user and tracing of the user associated
with a particular transaction. In decentralized cryptocur-
rencies, however, users do not register identities with an
authority or set of authorities, and this very feature is one
of the attraction of these systems to many users.

As an alternative directed specifically at CSCs, we
propose the notion of trustee-neutralizable smart contracts.
A smart contract system might be designed such that an
authority or quorum of authorities is empowered to remove a
contract from the blockchain. Such an approach would have
a big advantage over traditional trustee-based protections, in
that it would not require users to register identities. Whether
the idea would be palatable to cryptocurrency communities
and whether a broadly acceptable set of authorities could be
identified are, of course, open questions.

8. Conclusion

We have demonstrated that a range of commission-fair
criminal smart contracts (CSCs) are practical for implemen-
tation in decentralized currencies with smart contracts. We
presented three, leakage of secrets, key theft, and calling-
card crimes, and showed that they are efficiently imple-
mentable with existing cryptographic techniques, given suit-
able opcode support and the authenticated-data-feed ecosys-
tem anticipated to arise around smart contract systems such
as Ethereum. Our proposed contract PublicLeaks and its
private variant can be efficiently implemented in Serpent,
the Ethereum scripting language and are thus imminent
possibilities. Similarly, KeyTheft would require only mod-
est, already envisioned opcode support for SNARKs; our
experiments have shown that zk-SNARKs for this contract
are well within reach. Calling-card CSCs will be possible



given a sufficiently rich data-feed ecosystem. Many more
CSCs are no doubt possible.

Ours is among the first academic treatment of smart con-
tracts in distributed cryptocurrencies. It is worth emphasiz-
ing our belief that smart contracts in distributed cryptocur-
rencies have numerous promising, legitimate applications,
such as a spectrum of new over-the-counter (OTC) finan-
cial instruments. Banning smart contracts would be neither
sensible nor, in all likelihood, possible. The urgent open
question raised by our work is thus how to create safeguards
against the most dangerous abuses while supporting the
many powerful, beneficial applications of smart contracts
in distributed cryptocurrencies.
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Appendix A.
Cryptographic Model for Smart Contracts

To formally prove the security of our protocols, we will
adopt a formal model for decentralized smart contracts, that
has been recently proposed in the Hawk work [43]. We refer
the readers to the Hawk manuscript for a detailed description
of the model. For completeness and for this paper to be self-
contained, below we restate the formal model proposed in
the Hawk work [43].

We describe a formal model for smart contract execution
under which we give formal proofs of security for our
protocols. Our model conforms to the Universal Compos-
ability (UC) framework [26]. First, our model allows us
to easily capture the temporal and pseudonym features of
cryptocurrencies. In cryptocurrencies such as Bitcoin and
Ethereum, time progresses in discrete intervals (known as
“epochs.” A smart contract program is able to query the
current time, and make decisions accordingly, e.g., make a
refund operation after a timeout. Second, our model captures
the role of a smart contract as a party trusted for correctness
but not for privacy. Third, our formalism modularizes our
notations by factoring out common specifics related to the
smart contract execution model, and implementing these in
central wrappers.

In a real-life cryptocurrency system such as Bitcoin
or Ethereum, users can make up any number of identities
by generating new public keys. In our formal model, for
simplicity, we assume that there can be any number of
identities in the system, and that they are fixed a priori.
It is easy to extend our model to capture registration of new
identities dynamically. As mentioned later, we allow each
identity to generate an arbitrary number of pseudonyms.

A.1. Programs, Functionalities, and Wrappers

To simply the notation for ideal functionalities and smart
contracts, we introduce wrapper functionalities. Wrapper
functionalities implement in a central place a set of common
features (e.g., timer, ledger, pseudonyms) that are applicable
to all ideal functionalities and contracts in our smart contract
model of execution. In this way, we can modularize our
notational system such that these general (and tedious)
details need not be repeated across ideal functionalities and
contract programs.

We introduce the following wrappers:

Ideal functionality wrapper F: An ideal functional-
ity F(idealP) takes in an ideal program denoted idealP.
Specifically, the wrapper F(·) part defines standard features
such as time, pseudonyms, a public ledger, and money
transfers between parties. Our ideal functionality wrapper
is formally presented in Figure 8.

Contract functionality wrapper G: A contract function-
ality wrapper G(Contract) takes in a contract program
denoted Contract, and produces a contract functionality. Our
real world protocols will be defined in the G(Contract)-
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F(idealP) functionality

Given an ideal program denoted idealP, the F(idealP) functionality is defined as below:
Init: Upon initialization, perform the following:

Time. Set current time T := 0. Set the receive queue rqueue := ∅.
Pseudonyms. Set nyms := {(P1, P1), . . . , (PN , PN )}, i.e., initially every party’s true identity is recorded as a default
pseudonym for the party.
Ledger. A ledger dictionary structure ledger[P ] stores the endowed account balance for each identity P ∈
{P1, . . . , PN}. Before any new pseudonyms are generated, only true identities have endowed account balances.
Send the array ledger[] to the ideal adversary S.
idealP.Init. Run the Init procedure of the idealP program.

Tick: Upon receiving tick from an honest party P : notify S of (tick, P ). If the functionality has collected tick
confirmations from all honest parties since the last clock tick, then

Call the Timer procedure of the idealP program.
Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.
For each (m, P̄ ) ∈ rqueue in the permuted order, invoke the delayed actions (in gray background) defined by ideal
program idealP at the activation point named “Upon receiving message m from pseudonym P̄”. Notice that the
program idealP speaks of pseudonyms instead of party identifiers. Set rqueue := ∅.
Set T := T + 1

Other activations: Upon receiving a message of the form (m, P̄ ) from a party P :
Assert that (P̄ , P ) ∈ nyms.
Invoke the immediate actions defined by ideal program idealP at the activation point named “Upon receiving message
m from pseudonym P̄”.
Queue the message by calling rqueue.add(m, P̄ ).

Permute: Upon receiving (permute, perm) from the adversary S, record perm.
GetTime: On receiving gettime from a party P , notify the adversary S of (gettime, P ), and return the current time
T to party P .
GenNym: Upon receiving gennym from an honest party P : Notify the adversary S of gennym. Wait for S to respond
with a new nym P̄ such that P̄ /∈ nyms. Now, let nyms := nyms∪{(P, P̄ )}, and send P̄ to P . Upon receiving (gennym,
P̄ ) from a corrupted party P : if P̄ /∈ nyms, let P̄ := nyms ∪ {(P, P̄ )}.

Ledger operations: // inner activation
Transfer: Upon receiving (transfer, amount, P̄r) from some pseudonym P̄s:

Notify (transfer, amount, P̄r, P̄s) to the ideal adversary S.

Assert that ledger[P̄s] ≥ amount.
ledger[P̄s] := ledger[P̄s]− amount
ledger[P̄r] := ledger[P̄r] + amount

/* P̄s, P̄r can be pseudonyms or true identities. Note that each party’s identity is a default pseudonym for the party. */
Expose: On receiving exposeledger from a party P , return ledger to the party P .

Figure 8: The F(idealP) functionality is parameterized by an ideal program denoted idealP. An ideal program idealP can
specify two types of activation points, immediate activations and delayed activations. Activation points are invoked upon
recipient of messages. Immediate activations are processed immediately, whereas delayed activations are collected and batch
processed in the next round. The F(·) wrapper allows the ideal adversary S to specify an order perm in which the messages
should be processed in the next round. For each delayed activation, we use the leak notation in an ideal program idealP to
define the leakage which is immediately exposed to the ideal adversary S upon recipient of the message.



G(Contract) functionality

Given a contract program denoted Contract, the G(Contract) functionality is defined as below:
Init: Upon initialization, perform the following:

A ledger data structure ledger[P̄ ] stores the account balance of party P̄ . Send the entire balance ledger to A.
Set current time T := 0. Set the receive queue rqueue := ∅.
Run the Init procedure of the Contract program.
Send the Contract program’s internal state to the adversary A.

Tick: Upon receiving tick from an honest party, if the functionality has collected tick confirmations from all honest
parties since the last clock tick, then

Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.
Call the Timer procedure of the Contract program.
Pass the reordered messages to the Contract program to be processed. Set rqueue := ∅.
Set T := T + 1

Other activations:
• Authenticated receive: Upon receiving a message (authenticated, m) from party P :

Send (m,P ) to the adversary A
Queue the message by calling rqueue.add(m,P ).

• Pseudonymous receive: Upon receiving a message of the form (pseudonymous,m, P̄ , σ) from any party:
Send (m, P̄ , σ) to the adversary A
Parse σ := (nonce, σ′), and assert Verify(P̄ .spk, (nonce, T, P̄ .epk,m), σ′) = 1
If message (pseudonymous,m, P̄ , σ) has not been received earlier in this round, queue the message by calling
rqueue.add(m, P̄ ).

• Anonymous receive: Upon receiving a message (anonymous, m) from party P :
Send m to the adversary A
If m has not been seen before in this round, queue the message by calling rqueue.add(m).

Permute: Upon receiving (permute, perm) from the adversary A, record perm.
Expose: On receiving exposestate from a party P , return the functionality’s internal state to the party P . Note that
this also implies that a party can query the functionality for the current time T .

Ledger operations: // inner activation
Transfer: Upon recipient of (transfer, amount, P̄r) from some pseudonym P̄s:

Assert ledger[P̄s] ≥ amount
ledger[P̄s] := ledger[P̄s]− amount
ledger[P̄r] := ledger[P̄r] + amount

Figure 9: The G(Contract) functionality is parameterized by a contract program denoted Contract. The G(·) wrapper
mainly performs the following: i) exposes all of its internal states and messages received to the adversary; ii) makes the
functionality time-aware: messages received in one round and queued and processed in the next round. The G(·) wrapper
allows the adversary to specify an ordering to the messages received by the contract in one round.

hybrid world. Our contract functionality wrapper is formally
presented in Figure 9.

Like the ideal functionality wrapper F(·), the contract
wrapper also implements standard features such as a timer,
a global ledger, and money transfers between parties. In
addition, the contract wrapper also models the specifics
of the smart contract execution model. We point out the
following important facts about the G(·) wrapper:
• Trusted for correctness but not privacy. The contract

functionality wrapper G(·) stipulates that a smart contract
is trusted for correctness but not for privacy. In particular,
the contract wrapper exposes the contract’s internal state
to any party that makes a query.

• Time and batched processing of messages. In popu-

lar decentralized cryptocurrencies such as Bitcoin and
Ethereum, time progresses in discrete intervals marked
by the creation of each new block. Intuitively, our G(·)
wrapper captures the following fact. In each round (i.e.,
block interval), the smart contract program may receive
multiple messages (also referred to as transactions in the
cryptocurrency literature). The order of processing these
transactions is determined by the miner who mines the
next block. In our model, we allow the adversary to
specify an ordering of the messages collected in a round,
and our contract program will then process the messages
in this adversary-specified ordering.

• Rushing adversary. The contract wrapper G(·) naturally
models a rushing adversary. Specifically, the adversary



can first see all messages sent to the contract by honest
parties, and then decide its own messages for this round,
as well as an ordering in which the contract should
process the messages in the next round. Modeling a
rushing adversary is important, since it captures a class of
well-known front-running attacks, e.g., those that exploit
transaction malleability [4], [18]. For example, in a “rock,
paper, scissors” game, if inputs are sent in the clear, an
adversary can decide its input based on the other party’s
input. An adversary can also try to maul transactions sub-
mitted by honest parties to potentially redirect payments
to itself. Since our model captures a rushing adversary, we
can write ideal functionalities that preclude such front-
running attacks.

Protocol wrapper Π: Our protocol wrapper allows us to
modularize the presentation of user protocols. Our protocol
wrapper is formally presented in Figure 10.

Simulator wrapper S: The ideal adversary S can typically
be obtained by applying the simulator wrapper S(·) to the
user-defined portion of the simulator simP. The simulator
wrapper modularizes the simulator construction by factoring
out the common part of the simulation pertaining to all
protocols in this model of execution.

The simulator is defined formally in Figure 11.

A.2. Modeling Time

At a high level, we express time in a way that conforms
to the Universal Composability framework [26]. In the ideal
world execution, time is explicitly encoded by a variable T
in an ideal functionality F(idealP). In the real world execu-
tion, time is explicitly encoded by a variable T in contract
functionality G(Contract). Time progresses in rounds. The
environment E choses when to advance the timer.

We assume the following convention: to advance the
timer, the environment E sends a “tick” message to all
honest parties. Honest parties’ protocols would then forward
this message to F(idealP) in the ideal-world execution, or
to the G(Contract) functionality in the real-world execution.
On collecting “tick” messages from all honeset parties, the
F(idealP) or G(Contract) functionality would then advance
the time T := T + 1. The functionality also allows parties
to query the current time T .

A.3. Modeling Pseudonyms

We model a notion of “pseudonymity” that provides a
form of privacy, similar to that provided by typical cryp-
tocurrencies such as Bitcoin. Any user can generate an
arbitrary (polynomially-bounded) number of pseudonyms,
and each pseudonym is “owned” by the party who generated
it. The correspondence of pseudonyms to real identities is
hidden from the adversary.

Effectively, a pseudonym is a public key for a digital
signature scheme; the corresponding private key is known by
the party who “owns” the pseudonym. The public contract

functionality allows parties to publish authenticated mes-
sages that are bound to a pseudonym of their choice. Thus
each interaction with the public contract is, in general, as-
sociated with a pseudonym, but not to a user’s real identity.

We abstract away the details of pseudonym management
by implementing them in our wrappers. This allows user-
defined applications to be written very simply, as though
using ordinary identities, while enjoying the privacy benefits
of pseudonymity.

Our wrapper provides a user-defined hook, “gennym”,
that is invoked each time a party creates a pseudonym. This
allows the application to define an additional per-pseudonym
payload, such as application-specific public keys. From the
point of view of the application, this is simply an initializa-
tion subroutine invoked once for each participant.

Our wrapper provides several means for users to com-
municate with a contract. The most common way is for a
user to publish an authenticated message associated with
one of their pseudonyms, as described above. Additionally,
“anonsend” allows a user to publish a message without
reference to any pseudonym at all.

In spite of pseudonymity, it is sometimes desirable to
assign a particular user to a specific role in a contract
(e.g., “auction manager”). The alternative is to assign roles
on a “first-come first-served” basis (e.g., as the bidders in
an auction). To this end, we allow each party to define
generate a single “default” pseudonym which is publicly-
bound to their real identity. We allow applications to make
use of this through a convenient abuse of notation, by simply
using a party identifier as a parameter or hardcoded string.
Strictly speaking, the pseudonym string is not determined
until the “gennym” subroutine is executed; the formal in-
terpretation is that whenever such an identity is used, the
default pseudonym associated with the identity is fetched
from the contract. (This approach is effectively the same
as taken by Canetti [27], where a functionality FCA allows
each party to bind their real identity to a single public key
of their choice).

A.4. Modeling Money

We model money as a public ledger, which associates
quantities of money to pseudonyms. Users can transfer
funds to each other (or among their own pseudonyms)
by sending “transfer” messages to the public contract (as
with other messages, these are delayed util the next round
and may be delivered in any order). The ledger state is
public knowledge, and can be queried immediately using
the “exposeledger” instruction.

There are many conceivable policies for introducing new
currency into such a system: for example, Bitcoin “mints”
new currency as a reward for each miner who solves a proof-
of-work puzzles. We take a simple approach of defining an
arbitrary, publicly visible (i.e., common knowledge) initial
allocation that associates a quantity of money to each party’s
real identity. Except for this initial allocation, no money is
created or destroyed.



Π(prot) protocol wrapper in the G(Contract)-hybrid world

Given a party’s local program denoted prot, the Π(prot) functionality is defined as below:
Pseudonym related:

GenNym: Upon receiving input gennym from the environment E , generate (epk, esk)← Keygenenc(1
λ), and (spk, ssk)←

Keygensign(1λ). Call payload := prot.GenNym(1λ, (epk, spk)). Store nyms := nyms∪{(epk, spk, payload)}, and output
(epk, spk, payload) as a new pseudonym.
Send: Upon receiving internal call (send, m, P̄ ):

If P̄ == P : send (authenticated, m) to G(Contract). // this is an authenticated send
Else, // this is a pseudonymous send

Assert that pseudonym P̄ has been recorded in nyms;
Query current time T from G(Contract). Compute σ′ := Sign(ssk, (nonce, T, epk,m)) where ssk is the recorded
secret signing key corresponding to P̄ , nonce is a freshly generated random string, and epk is the recorded public
encryption key corresponding to P̄ . Let σ := (nonce, σ′).
Send (pseudonymous,m, P̄ , σ) to G(Contract).

AnonSend: Upon receiving internal call (anonsend, m, P̄ ): send (anonymous, m) to G(Contract).
Timer and ledger transfers:

Transfer: Upon receiving input (transfer, $amount, P̄r, P̄ ) from the environment E :
Assert that P̄ is a previously generated pseudonym.
Send

(
transfer, $amount, P̄r

)
to G(C) as pseudonym P̄ .

Tick: Upon receiving tick from the environment E , forward the message to G(Contract).
Other activations:

Act as pseudonym: Upon receiving any input of the form (m, P̄ ) from the environment E :
Assert that P̄ was a previously generated pseudonym.
Pass (m, P̄ ) the party’s local program to process.

Others: Upon receiving any other input from the environment E , or any other message from a party: Pass the
input/message to the party’s local program to process.

Figure 10: Protocol wrapper.

A.5. Conventions for Writing Programs

Thanks to our wrapper-based modularized notational
system, The ideal program and the contract program are the
main locations where user-supplied, custom program logic
is defined. We use the following conventions for writing the
ideal program and the contract program.

Timer activation points. Every time F(idealP) or
G(Contract) advances the timer, it will invoke a Timer
interrupt call. Therefore, by convention, we allow the ideal
program or the contract program can define a Timer ac-
tivation point. Timeout operations (e.g., refunding money
after a certain timeout) can be implemented under the Timer
activation point.

Delayed processing in ideal programs. When writing the
contract program, every message received by the contract
program is already delayed by a round due to the G(·)
wrapper.

When writing the ideal program, we introduce a simple
convention to denote delayed computation. Program instruc-
tions that are written in gray background denote computa-
tion that does not take place immediately, but is deferred to
the beginning of the next timer click. This is a convenient
shorthand because in our real-world protocol, effectively

any computation done by a contract functionality will be
delayed. Formally, delayed processing can be implemented
simply by storing state and invoking the delayed program
instructions on the next Timer click. To avoid ambiguity,
we assume that by convention, the delayed instructions
are invoked at the beginning of the Timer call. In other
words, upon the next timer click, the delayed instructions
are executed first.

Pseudonymity. All party identifiers that appear in ideal
programs, contract programs, and user-side programs by
default refer to pseudonyms. When we write “upon receiving
message from some P ”, this accepts a message from any
pseudonym. Whenever we write “upon receiving message
from P ”, without the keyword some, this accepts a message
from a fixed pseudonym P , and typically which pseudonym
we refer to is clear from the context.

Whenever we write “send m to G(Contract) as nym
P ” inside a user program, this sends an internal message
(“send”, m, P ) to the protocol wrapper Π. The proto-
col wrapper will then authenticate the message appropri-
ately under pseudonym P . When the context is clear, we
avoid writing “as nym P ”, and simply write “send m to
G(Contract)”. Our formal system also allows users to send
messages anonymously to a contract – although this option



S(simP)

Init. The simulator S simulates a G(contract) instance internally. Here S calls G(contract).Init to initialize the internal
states of the contract functionality. S also calls simP.Init.

Simulating honest parties.
• Tick: Environment E sends input tick to an honest party P : simulator S receives notification (tick, P ) from the ideal

functionality. Simulator forwards the tick message to the simulated G(contract) functionality.
• GenNym: Environment E sends input gennym to an honest party P : simulator S receives notification gennym from the

ideal functionality. Simulator S honestly generates an encryption key and a signing key as defined in Figure 10, and
remembers the corresponding secret keys. Simulator S now calls simP.GenNym(epk, spk) and waits for the returned
value payload. Finally, the simulator passes the nym P̄ = (epk, spk, payload) to the ideal functionality.

• Other activations. // From the inner idealP
If ideal functionality sends (transfer, $amount, Pr, Ps), then update the ledger in the simulated G(Contract) instance
accordingly.
Else, forward the message to the inner simP.

Simulating corrupted parties.
• Permute: Upon receiving (permute, perm) from the environment E , forward it to the internally simulated G(contract)

and the ideal functionality.
• Expose. Upon receiving exposestate from the environment E , expose all states of the internally simulated G(contract).
• Other activations.
– Upon receiving (authenticated, m) from the environment E on behalf of corrupted party P : Forward to internally

simulated G(contract). If the message is of the format (transfer, $amount, Pr, Ps), then forward it to the ideal
functionality. Otherwise, forward to simP.

– Upon receiving (pseudonymous, m, P̄ , σ) from the environment E on behalf of corrupted party P : Forward to internally
simulated G(contract). Now, assert that σ verifies just like in G(contract). If the message is of the format (transfer,
$amount, Pr, Ps), then forward it to the ideal functionality. Else, forward to simP.

– Upon receiving (anonymous, m) from the environment E on behalf of corrupted party P : Forward to internally
simulated G(contract). If the message is of the format (transfer, $amount, Pr, Ps), then forward it to the ideal
functionality. Else, forward to simP.

Figure 11: Simulator wrapper.

will not be used in this paper.

Ledger and money transfers. A public dedger is denoted
ledger in our ideal programs and contract programs. When a
party sends $amt to an ideal program or a contract program,
this represents an ordinary message transmission. Money
transfers only take place when ideal programs or contract
programs update the public ledger ledger. For clarity, a
variable beginning with the $ sign means that this variable
denotes some amount of money. Otherwise, there is no
special mathematical significance related to the $ sign.

Appendix B.
Preliminaries

Notation. In the remainder of the paper, f(λ) ≈ g(λ)
means that there exists a negligible function ν(λ) such that
|f(λ)− g(λ)| < ν(λ).

B.1. Non-Interactive Zero-Knowlege Proofs

A non-interactive zero-knowlege proof system (NIZK)
for an NP language L consists of the following algorithms:

• crs ← K(1λ,L), also written as crs ←
KeyGennizk(1λ,L): Takes in a security parameter
λ, a description of the language L, and generates a
common reference string crs.

• π ← P(crs, stmt, w): Takes in crs, a statement stmt,
a witness w such that (stmt, w) ∈ L, and produces a
proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt,
and a proof π, and outputs 0 or 1, denoting accept or
reject.

Perfect completeness. A NIZK system is said to be per-
fectly complete, if an honest prover with a valid witness can
always convince an honest verifier. More formally, for any
(stmt, w) ∈ R, we have that

Pr

[
crs← K(1λ,L), π ← P(crs, stmt, w) :
V(crs, stmt, π) = 1

]
= 1

Computational zero-knowlege. Informally, a NIZK sys-
tem is computationally zero-knowledge, if the proof does
not reveal any information about the witness to any
polynomial-time adversary. More formally, a NIZK system
is said to computationally zero-knowledge, if there exists



a polynomial-time simulator S = (K̂, P̂), such that for all
non-uniform polynomial-time adversary A, we have that

Pr
[
crs← K(1λ,L) : AP(crs,·,·) = 1

]
≈ Pr

[
(ĉrs, τ)← K̂(1λ,L) : AP̂1(ĉrs,τ,·,·) = 1

]
In the above, P̂1(ĉrs, τ, stmt, w) verifies that (stmt, w) ∈ L,
and if so, outputs P̂(ĉrs, τ, stmt) which simulates a proof
without knowing a witness.

Computational soundness. A NIZK scheme for the lan-
guage L is said to be computationally sound, if for all
polynomial-time adversaries A,

Pr

[
crs← K(1λ,L), (stmt, π)← A(crs) :
(V(crs, stmt, π) = 1) ∧ (stmt /∈ L)

]
≈ 0

Simulation sound extractability. Simulation sound ex-
tractability says that even after seeing many simulated
proofs, whenever the adversary makes a new proof, a sim-
ulator is able to extract a witness. Simulation extractability
implies simulation soundness and non-malleability, since if
the simulator can extract a valid witness from an adver-
sary’s proof, the statement must belong to the language.
More formally, a NIZK system is said to be simulation
sound extractable, if there exist polynomial-time algorithms
(K̂, P̂, E), such that for any polynomial-time adversary A,
it holds that

Pr


(ĉrs, τ, ek)← K̂(1λ,L);

(stmt, π)← AP̂(ĉrs,τ,·)(ĉrs, ek);
w ← E(ĉrs, ek, stmt, π) : stmt /∈ Q and

(stmt, w) /∈ L and V (ĉrs, stmt, π) = 1

 ≈ 0

In the above, Q is the list of simulation queries. Here
the K̂ is identical to the zero-knowledge simulation setup
algorithm when restricted to the first two terms.

Note that in the above definition, the adversary may be
able to fake a (different) proof for a statement that has
been queried, however, it is not able to forge a proof for
any other invalid statement. There is a natural strengthening
of the above notion where the adversary cannot even fake
a different proof for a statement queried. In our paper,
however, the weaker notion defined above would suffice.

B.2. Simulation Sound Extractable Proofs from
Ordinary NIZKs

We give a generic transformation that turns an ordinary
NIZK into one that satisfies simulation sound extractability.
In our implementation, we use Zero-Knowledge Succinct
Non-interactive ARguments of Knowledge (SNARKs) as
the underlying NIZK, and apply our transformation here to
make it a NIZK with simulation sound extractability. For this
reason, in the transformation described below, we simply use
snark to denote the underlying NIZK.
• K(1λ,L): Run (pk, sk) ← Σ.Gen(1λ). Run (pke, ske) ←
KeyGenenc(1

λ).

Let L′ be the following language: ((stmt, c), (r, w, σ)) ∈
L′ iff

(c = Enc(pke, (w, σ), r)) ∧
((stmt, w) ∈ L ∨ (Σ.V(pk, stmt, σ) = 1))

Run snark.crs← snark.K(1λ,L′).
Publish crs := (snark.crs, pk, pke) as the common refer-
ence string.

• P(crs, stmt, w): Parse crs := (snark.crs, pk). Choose ran-
dom r, and compute c := Enc(pke, (w, σ), r).
Call π := snark.P(snark.crs, (stmt, c), (r, w,⊥)), and
output π′ := (c, π).

• V(crs, stmt, π′): Parse π′ := (c, π), and output
snark.V(snark.crs, (stmt, c), π).

Theorem 1. Assume that the SNARK scheme satisfies
perfect completeness, computational soundness, and
computational zero-knowlege, and that the encryption
scheme is perfectly correct, then the above construc-
tion is a zero-knowledge proof system satisfying perfect
completeness, computational zero-knowledge, and sim-
ulation sound extractability.

Proof: The proofs of perfect completeness and computa-
tional zero-knowledge are obvious. We now show that this
transformation gives a simulation sound extractable NIZK.
We construct the following simulation and extractor:
• K̂(1λ,L): Run the honest K algorithm, but retain the

signing key sk as the simulation trapdoor τ := sk. The
extraction key ek := ske, the simulated ĉrs := crs =
(snark.crs, pk, pke).

• P̂(ĉrs, τ, stmt): the simulator calls

π := snark.P(snark.crs, (stmt, c), (⊥,⊥, σ))

where c is an encryption of 0, and

σ := Σ.Sign(sk, stmt)

Output (c, π).
• E(ĉrs, ek, stmt, π′): parse π′ := (c, π), and let

(w, σ) := Dec(ske, c). Output w.
We now show that no polynomial-time adversary A

can win the simulation sound extractable game except with
negligible probability. Given that the encryption scheme is
perfectly correct, and that snark is computationally sound,
the witness (w, σ) decrypted by E must satisfy one of the
following two cases except with negligible probability: 1)
w is a valid witness for stmt under language L; or 2) σ is
a valid signature for stmt. If stmt has not been queried by
the adversary A, then it must be that w is a valid witness
for stmt, since otherwise, the simulator can easily leverage
the adversary to break the security of the signature scheme.

Appendix C.
Formal Protocols for Key Theft Contract

C.1. Ideal Program for the Naive Key Theft

The ideal program for the naive key theft contract is
given in Figure 12. We stress that here, this naive key theft



Ideal-NaiveKeyTheft

Init: Set state := INIT.
Create: Upon recipient of (“create”, $reward, pkV , Tend)

from some contractor C:
Notify (“create”, $reward, pkV , Tend, C) to S.
Assert ledger[C] ≥ $reward.
ledger[C] := ledger[C]− $reward
state := CREATED.

Intent: On recv (“intent”, skV ) from some perpetrator P:
Assert state = CREATED.
Notify (“intent”,P) to S.
Assert this is the first “intent” received from P .
Store (P, skV).

Claim: Upon recipient of (“claim”) from P:
Assert state = CREATED.
Assert that P has sent (“intent”, skV ) earlier.
Assert match(pkV , skV) = 1
Notify (“claim”,P) to S.
If C is corrupted, send skV to S.
ledger[P] := ledger[P] + $reward
Send skV to C
Set state := CLAIMED.
/* reward goes to 1st successful claim*/

Timer: If state = CREATED and current time T > Tend:
Set ledger[C] := ledger[C] + $reward
Set state := ABORTED.

Figure 12: Ideal program for naive key theft. This version
of the ideal program defends against the rushing attack, but
does not protect against the revoke-and-claim attack.

ideal program is different from the strawman example in the
main body (Figure 4). For ease of understanding, Figure 4
in the main body is prone to a rushing attack by a corrupted
contractor. Here, our naive key theft ideal program secures
against the rushing attack – however, this naive key theft
ideal program is still prone to the revoke-and-claim attack
(see Section 5.1). We will fix the revoke-and-claim attack
later in Appendix C.4

Remarks. We make the following remarks about this ideal
functionality:
• All bank balances are visible to the public.
• Bank transfers are guaranteed to be correct.
• The ideal functionality captures transaction non-

malleability, and precludes any front-running attack,
since our real-world execution model assumes a rushing
adversary.

C.2. Full Protocol for Naive Key Theft

The contract and full protocols for naive key theft are
given in Figures 13 and 14. Specifically, Figure 13 is a repeat
of Figure 4 for the readers’ convenience.
Theorem 2. Assume that the encryption scheme (Enc,Dec)

is perfectly correct and semantically secure, the

Contract-NaiveKeyTheft
Init: Set state := INIT. Let crs := KeyGennizk(1λ) de-

note a hard-coded NIZK common reference string
generated during a trusted setup process.

Create: Upon receiving (“create”, $reward, pkV , Tend) from
some contractor C := (pkC , . . .):

Assert state = INIT.
Assert ledger[C] ≥ $reward.
ledger[C] := ledger[C]− $reward.
Set state := CREATED.

Intent: Upon receiving (“intent”, cm) from some purported
perpetrator P:

Assert state = CREATED.
Assert that P did not send “intent” earlier.
Store cm,P .

Claim: Upon receiving (“claim”, ct, π, s) from P:
Assert state = CREATED.
Assert P sent (“intent”, cm) earlier such that
cm := comm(ct||π, s).
Assert that π is a valid NIZK proof (under crs)
for the following statement:

∃r, skV s.t. ct = Enc(pkC , (skV ,P), r)
and match(pkV , skV) = true

ledger[P] := ledger[P] + $reward.
Send (“claim”, ct) to the contractor C.
Set state := CLAIMED.

Timer: If state = CREATED and current time T > Tend:
ledger[C] := ledger[C] + $reward
state := ABORTED

Figure 13: A naı̈ve, flawed key theft contract (lacking
incentive compatibility). The notation pkC serves as a short-
hand for C.epk. This figure is a repeat of Figure 4 for the
readers’ convenience.

NIZK scheme is perfectly complete, computation-
ally zero-knowledge and simulation sound extractable,
the commitment scheme comm is adaptively se-
cure, then the above protocol securely emulates
F(Ideal-NaiveKeyTheft).

C.3. Proofs for Naive Key Theft Contract

We now prove Theorem 2. For any real-world adversary
A, we construct an ideal-world simulator S, such that no
polynomial-time environment E can distinguish whether it is
in the real or ideal world. We first describe the construction
of the simulator S and then argue the indistinguishability of
the real and ideal worlds.

C.3.1. Ideal-World Simulator. Due to Canetti [26], it suf-
fices to construct a simulator S for the dummy adversary
that simply passes messages to and from the environment
E . The ideal-world simulator S also interacts with the



Prot-NaiveKeyTheft

Contractor C:
Create: Upon receiving input (“create”, $reward, pkV , Tend,

C):
Send (“create”, $reward, pkV , Tend) to
G(Contract-NaiveKeyTheft).

Claim: Upon receiving a message (“claim”, ct) from
G(Contract-NaiveKeyTheft):

Decrypt and output m := Dec(skC , ct).

Perpetrator P:
Intent: Upon receiving input (“intent”, skV , P):

Assert match(pkV , skV) = true
Compute ct := Enc(pkC , (skV ,P), s) where s is
randomly chosen.
Compute a NIZK proof π for the following state-
ment:

∃r, skV s.t. ct = Enc(pkC , (skV ,P), r)
and match(pkV , skV) = true

Let cm := comm(ct||π, s) for some random s ∈
{0, 1}λ.
Send (“intent”, cm) to
G(Contract-NaiveKeyTheft).

Claim: Upon receiving input (“claim”):
Assert an “intent” message was sent earlier.
Send (“claim”, ct, π, s) to
G(Contract-NaiveKeyTheft).

Figure 14: User-side programs for naive key theft. The
notation pkC serves as a short-hand for C.epk.

F(Ideal-NaiveKeyTheft) ideal functionality. Below we con-
struct the user-defined portion of our simulator simP. Our
ideal adversary S can be obtained by applying the simulator
wrapper S(simP). The simulator wrapper modularizes the
simulator construction by factoring out the common part of
the simulation pertaining to all protocols in this model of
execution.

Init. The simulator simP runs (ĉrs, τ, ek) ← NIZK.K̂(1λ),
and gives ĉrs to the environment E , and retains the trapdoor
τ .

Simulating honest parties. When the environment E sends
inputs to honest parties, the simulator S needs to simulate
messages that corrupted parties receive, from honest parties
or from functionalities in the real world. The honest parties
will be simulated as below.
• Environment E sends input (“create”, $reward,
pkV , Tend, C) to an honest contractor C: Simulator
simP receives (“create”, $reward, pkV , Tend, C)
from F(Ideal-NaiveKeyTheft). simP forwards the
message to the simulated inner contract functionality
G(Contract-NaiveKeyTheft), as well as to the
environment E .

• Environment E sends input (“intent”, skV ) to an honest

perpetrator P: Simulator simP receives notification from
the ideal functionality F(Ideal-NaiveKeyTheft) without
seeing skV . Simulator simP now computes ct to be an
encryption of the 0 vector. simP then simulates the NIZK
π. simP now computes the commitment cm honestly.
simP sends (“intent”,cm) to the simulated G(Contract-
NaiveKeyTheft) functionality, and simulates the contract
functionality in the obvious manner.

• Environment E sends input (“claim”) to an honest perpe-
trator P:

Case 1: Contractor C is honest. simP sends the (“claim”, ct,
π, r) values to the internally simulated G(Contract-
NaiveKeyTheft) functionality, where ct and π are
the previously simulated values and r is the ran-
domness used in the commitment cm earlier.

Case 2: Contractor C is corrupted. simP receives skV from
F(Ideal-NaiveKeyTheft).
simP computes (ct′, π′) terms using the honest
algorithm. simP now explains the commitment cm
to the correctly formed (ct′, π′) values. Notice here
we rely the commitment scheme being adaptively
secure. Suppose the corresponding randomness is
r′ simP now sends (“claim”, ct′, π′, r′) to the inter-
nally simulated G(Contract-NaiveKeyTheft) func-
tionality, and simulates the contract functionality in
the obvious manner.

Simulating corrupted parties. The following messages
are sent by the environment E to the simulator S(simP)
which then forwards it onto simP. All of the following
messages received by simP are of the “pseudonymous” type,
we therefore omit writing “pseudonymous”.
• simP receives an intent message (“intent”, cm): forward

it to the internally simulated G(Contract-NaiveKeyTheft)
functionality,

• simP receives a claim message (“claim”, ct, π, r,P): If
π verifies, simulator simP runs the NIZK’s extraction
algorithm, and extracts a set of witnesses including skV .
S now sends (“claim”, skV ,P) to the ideal functionality
F(Ideal-NaiveKeyTheft).

• Simulator simP receives a message (“create”, $reward,
pkV , Tend, C): do nothing.

C.3.2. Indistinguishability of Real and Ideal Worlds. To
prove indistinguishability of the real and ideal worlds from
the perspective of the environment, we will go through a
sequence of hybrid games.

Real world. We start with the real world with a dummy
adversary that simply passes messages to and from the
environment E .

Hybrid 1. Hybrid 1 is the same as the real world, except
that now the adversary (also referred to as a simulator) will
call (ĉrs, τ, ek)← NIZK.K̂(1λ) to perform a simulated setup
for the NIZK scheme. The simulator will pass the simulated
ĉrs to the environment E . When an honest perpetrator P
produces a NIZK proof, the simulator will replace the real
proof with a simulated NIZK proof before passing it onto the



environment E . The simulated NIZK proof can be computed
by calling the NIZK.P̂(ĉrs, τ, ·) algorithm which takes only
the statement as input but does not require knowledge of a
witness.
Fact 1. It is not hard to see that if the NIZK scheme is

computational zero-knowledge, then no polynomial-time
environment E can distinguish Hybrid 1 from the real
world except with negligible probability.

Hybrid 2. The simulator simulates the G(Contract-
NaiveKeyTheft) functionality. Since all messages to the
G(Contract-NaiveKeyTheft) functionality are public, simu-
lating the contract functionality is trivial. Therefore, Hybrid
2 is identically distributed as Hybrid 1 from the environment
E’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except for the
following changes. When an honest party sends a message to
the contract (now simulated by the simulator S), it will sign
the message with a signature verifiable under an honestly
generated nym. In Hybrid 3, the simulator will replace all
honest parties’ nyms and generate these nyms itself. In this
way, the simulator will simulate honest parties’ signatures
by signing them itself. Hybrid 3 is identitally distributed as
Hybrid 2 from the environment E’s view.

Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the
following changes. When the honest perpetrator P produces
an ciphertext ct and if the contractor is also uncorrupted,
then simulator will replace this ciphertext with an encryption
of 0 before passing it onto the environment E .
Fact 2. It is not hard to see that if the encryption scheme is

semantically secure, then no polynomial-time environ-
ment E can distinguish Hybrid 4 from Hybrid 3 except
with negligible probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except the
following changes. Whenever the environment E passes to
the simulator S a message signed on behalf of an honest
party’s nym, if the message and signature pair was not
among the ones previously passed to the environment E ,
then the simulator S aborts.
Fact 3. Assume that the signature scheme employed is

secure, then the probability of aborting in Hybrid 5 is
negligible. Notice that from the environment E’s view,
Hybrid 5 would otherwise be identically distributed as
Hybrid 4 modulo aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for
the following changes. Whenever the environment passes
(“claim”, ct, π) to the simulator (on behalf of corrupted party
P), if the proof π verifies under the statement (ct,P), then
the simulator will call the NIZK’s extractor algorithm E to
extract a witness (r, skV). If the NIZK π verifies under the
statement (ct,P), and the extracted skV does not satisfy
match(pkV , skV) = 1, then abort the simulation.
Fact 4. Assume that the NIZK is simulation sound ex-

tractable, then the probability of aborting in Hybrid 6 is

negligible. Notice that from the environment E’s view,
Hybrid 6 would otherwise be identically distributed as
Hybrid 5 modulo aborting.

Finally, observe that Hybrid 6 is computationally indis-
tinguishable from the ideal simulation S unless one of the
following bad events happens:
• The skV decrypted by an honest contractor C is different

from that extracted by the simulator S. However, given
that the encryption scheme is perfectly correct, this
cannot happen.

• The honest public key generation algorithm results in
key collisions. Obviously, this happens with negligible
probability if the encryption and signature schemes are
secure.

Fact 5. Given that the encryption scheme is semantically se-
cure and perfectly correct, and that the signature scheme
is secure, then Hybrid 6 is computationally indistin-
guishable from the ideal simulation to any polynomial-
time environment E .

C.4. Extension to Incentive Compatible Key Theft
Contract

Ideal program. The ideal program for an incentive com-
patible key theft contract is given in Figure 15.

Contract. The incentive compatible key theft contract is
given in Figure 16 (a repeat of Figure 5 for the readers’
convenience).

Protocol. The user-side programs for the incentive compat-
ible key theft contract are supplied in Figure 17.
Theorem 3 (Incentive compatible key theft contract). As-

sume that the encryption scheme (Enc,Dec) is per-
fectly correct and semantically secure, the NIZK scheme
is perfectly complete, computationally zero-knowledge
and simulation sound extractable, then the protocol
described in Figures 16 and 17 securely emulates
F(Ideal-NaiveKeyTheft).

Proof: A trivial extension of the proof of Theorem 2, the
naive key theft case.



Appendix D.
Formal Protocols for Public Document Leakage

D.1. Formal Description

Ideal program for public document leakage. We formally
describe the ideal program for public document leakage in
Figure 18.

Contract. The contract program for public leakage is for-
mally described in Figure 19, which is a repeat of Figure 3
for the readers’ convenience.

Protocol. The protocols for public leakage are formally
described in Figure 20.
Theorem 4 (Public leakage). Assume that the encryption

scheme (Enc,Dec) is perfectly correct and semanti-
cally secure, the NIZK scheme is perfectly complete
and computationally zero-knowledge, then the proto-
col described in Figures 3 and 20 securely emulates
F(Ideal-PublicLeaks).

Proof: The formal proofs are supplied in Appendix D.2.

D.2. Proofs for Public Document Leakage

D.2.1. Ideal World Simulator. The wrapper part of
S(simP) was described earlier , we now describe the user-
defined simulator simP.

Init. The simulator simP runs crs ← NIZK.K(1λ), and
(pk, sk)← KeyGenenc(1

λ). The simulator gives (crs, pk) to
the environment E , and remembers sk.

The simulator S(simP) will also simulate the random
oracle (RO) queries. For now, we simply assume that a
separate RO instance is employed for each protocol instance
– or we can use the techniques by Canetti et al. [28] to have
a global RO for all protocol instances.

Simulation for an honest seller C.
• Create: Environment E sends input (“create”, M , C, Tend)

to an honest leaker C: simP receives (“create”, |M |, C)
from the ideal functionality F(Ideal-PublicLeaks) – and
this message is routed through S. simP now generates
an msk using the honest algorithm. For i ∈ [n], pick
cti

$←{0, 1}` where ` denotes the length of each document.
Pick c0 := Enc(pk, 0, r0) for some random r0.
Now, send (“create”, c0, Tend) to the internally simulated
G(Contract-PublicLeaks). Upon receiving a challenge set
Ω from the ideal functionality, use the same Ω for simu-
lating G(Contract-PublicLeaks).

• Confirm: Upon receiving {mi}i∈Ω from the ideal func-
tionality: the simulator simP now computes3 κi :=
PRF(msk, i) for i ∈ Ω. The simulator programs the

3. If the hash function has short output, we can
compute the encryption of mi as follows: mi ⊕
[H(κi, 1, “enc”) ||H(κi, 2, “enc”) . . . , ||H(κi, z, “enc”)] for suitably
large z. Here we simply write H(κi)⊕mi for convenience.

random oracle such that H(κi) = mi⊕cti. Now, the sim-
ulator computes the NIZKs honestly, and send {κi, πi}i∈Ω

to the simulated G(Contract-PublicLeaks).
• Accept: Upon receiving (“accept”, P) from the ideal

functionality, upon receiving M from the ideal
functionality: send (“accept”, msk) to the simulated
G(Contract-PublicLeaks). Now, based on M , program
the random oracle such that H(PRF(msk, i))⊕ cti = mi

for i ∈ [n].

Simulation for an honest purchaser P .

• Donate: Environment sends (“donate”, $amt, P) to an
honest donor, simulator simP receives (“donate”, $amt,
P) from the ideal functionality (routed by the wrapper S),
and forwards it to the simulated G(Contract-PublicLeaks).

Simulation for a corrupted purchaser P .

• Donate: If the environment E sends (“donate”, $amt,
P) to simP on behalf of a corrupted purchaser P
(message routed through the wrapper S), simP passes
it onto the ideal functionality, and the simulated
G(Contract-PublicLeaks).

Simulation for a corrupted leaker C.

• Create: When the environment E sends (“create”, (ct0,
{(i, cti}i∈[n]), Tend, C) to simP, simP passes it to the inter-
nally simulated G(Contract-PublicLeaks). Further, simP
decrypts the msk from c0.
Now reconstruct M in the following manner: Compute
all κi’s from the msk. For every κi that was submitted
as an RO query, the simulator recovers the mi. Otherwise
if for some i, κi was an RO query earlier, the simulator
programs the RO randomly at κi, and computes the mi

accordingly – in this case mi would be randomly dis-
tributed.
Now, send (“create”, M , Tend) on behalf of C to the ideal
functionality where M is the document set reconstructed
as above.

• Challenge: When the environment E sends (“con-
firm”, {κi, πi}i∈Ω, C) to simP (message routed through
the wrapper S), pass the message to the simulated
G(Contract-PublicLeaks). If the NIZK proofs all verify,
then send “confirm” as C to the ideal functionality.

• Accept: When the environment E sends (“accept”, msk, r0,
C) to simP (message routed through the wrapper S), pass
the message to the simulated G(Contract-PublicLeaks).
If Enc(pk,msk, r0) = c0, then send “accept” as C to the
ideal functionality.

Indistinguishability of real and ideal worlds. Given the
above description of the ideal-world simulation, it is not hard
to proceed and show the computational indistinguishability
of the real and the ideal worlds from the perspective of the
environment E .



Appendix E.
Supplemental Details for Document Leakage

E.1. Background: Existing Darkleaks Protocol

In this appendix, we present an overview of the exist-
ing, broken Darkleaks protocol, as we are unaware of any
unified technical presentation elsewhere. (Specific details,
e.g., message formats, may be found in the Darkleaks
source code [3], and cryptographic primitives h1, h2, h2, and
(enc,dec) are specified below.)

The protocol steps are as follows:
• Create: The contractor C partitions the secret M =
m1 ‖ m2 ‖ . . . ‖ mn. For each segment mi in
M = {mi}ni=1, C computes:
– A Bitcoin (ECDSA) private key ski = h1(mi) and

the corresponding public key pki.
– The Bitcoin address ai = h2(pki) associated with

pki.
– A symmetric key κi = h3(pki), computed as a hash

of public key pki.
– The ciphertext ei = encκi

[mi].
C publishes: The parameter triple (n, k, Topen), cipher-
texts E = {ei}ni=1, and Bitcoin addresses A = {ai}ni=1.

• Challenge: At epoch (block height) Topen, the current
Bitcoin block hash Bt serves as a pseudorandom seed
for a challenge S∗ = {si}ki=1.

• Response: In epoch Topen, C publishes the subset of
public keys PK∗ = {pks}s∈S∗ corresponding to ad-
dresses A∗ = {as}s∈S∗ . (The sample of segments
M∗ = {ms}s∈S∗ can then be decrypted by the Dark-
leaks community.)

• Payment: To pay for M , buyers send Bitcoin to the
addresses A−A∗ corresponding to unopened segments.

• Disclosure: The leaker C claims the payments made
to addresses in A − A∗. As spending the Bitcoin in
address ai discloses pki., decryption of all unopened
segments M −M∗ is automatically made possible for
the Darkleaks community.

Here, h1 = SHA-256, h2 = RIPEMD-160(SHA-256()),
and h3 = SHA-256(SHA-256()). The pair (enc,dec) in
Darkleaks corresponds to AES-256-ECB.

As a byproduct of its release of PK∗ in response to chal-
lenge S∗, C proves (weakly) that undecrypted ciphertexts
are well-formed, i.e., that ei = encκi

[mi] for κi = h3(pki).
This cut-and-choose-type proof assures buyers that when C
claims its reward, M will be fully disclosed.

E.2. Public leakage implementation on Ethereum

The section illustrates an actual smart contract for public
leakage. This contract fixes two main drawbacks with the
existing Darkleaks protocol (Shortcomings 1 and 2 dis-
cussed in 4.1). The contract mainly enables better guarantees
through deposits and timeout procedures, while preventing

selective withholding. Figure 21 illustrates the contract code.
The main goal of providing this code is to illustrate how fast
it could be to write such contracts.

The contract in Figure 21 mainly considers a leaker who
announces the ownership of the leaked material (e-mails,
photos, secret documents, .. etc), and reveals a random
subset of the encryption keys at some point to convince
users of the ownership. Interested users can then deposit
donations. In order for the leaker to get the reward from the
contract, all the rest of the keys must be provided at the
same time, before a deadline.

To ensure incentive compatability, the leaker is re-
quired by the contract in the beginning to deposit an amount
of money, that is only retrievable if complied with the
protocol. Also, for users to feel safe to deposit money, a
timeout mechanism is used, such that if the leaker does
not provide a response in time, the users will be able to
withdraw the donations.

E.3. Private Secret-Leakage Contracts

In Section 4, we consider a public leakage model in
which C collects donations, and when satisfied with total
amount donated, leaks a secret to the public. In a variation
in this appendix, we can consider a private leakage model in
which C leaks a secret privately to a purchaser P . A simple
modification to the blackbox protocol supports this case. In
particular, if C accepts P’s bid, it computes the pair (ct, π)
as follows:
• ct := Enc(pkP ,msk, r), for random coins r and where
pkP denotes purchaser P’s (pseudonymous) public key.

• π is a NIZK proof for the following statement:

∃(msk, r0, r) s.t. (c0 = Enc(pk,msk, r0))
∧ (ct = Enc(pkP ,msk, r))

When C submits (ct, π) to the contract, the contract
verifies the NIZK proof π, and if it is correct, sends P’s
deposited bid to C. At this point, the purchaser P can decrypt
the master secret key msk and then the unopened segments.

The above private leakage protocol can be proven secure
in a similar manner as our public leakage contract.

A practical version for Ethereum. An efficient instan-
tiation of this protocol is possible using a verifiable ran-
dom function (VRF). and verifiable encryption (VE). We
sketch the construction informally here (without proof). We
then describe a specific pair of primitive choices (a VRF
by Chaum and Pedersen [30] and VE by Camenisch and
Shoup [25]) that can be efficiently realized in Ethereum.

Briefly, a VRF is a public-key primitive with private /
public key pair (skvrf, pkvrf) and an associated pseudorandom
function F . It takes as input a value i and outputs a pair
(σ, π), where σ = Fskvrf(i), and π is a NIZK proof of
correctness of σ. The NIZK π can be verified using pkvrf.

A VE scheme is also a public-key primitive, with private
/ public key pair (skve, pkve). It takes as input a message
m and outputs a ciphertext / proof pair (ct, π), where π is



a NIZK proof that ct = encpkve
[m] for a message m that

satisfies some publicly defined property θ.
Our proposed construction, then, uses a VRF to generate

(symmetric) encryption keys for segments of M such that
κi = Fskvrf

(i). That is, msk = skvrf . The corresponding
NIZK proof π is used in the Confirm step of the contract
to verify that revealed symmetric keys are correct. A VE,
then, is used to generate a ciphertext ct on msk = skvrf
under the public key pkP of the purchaser. The pair (ct, π),
is presented in the Accept step of the contract. The contract
can then verify the correctness of ct.

A simple and practical VRF due to Chaum and Ped-
ersen [30] is one that for a group G of order p with
generator g (and with some reasonable restrictions on p),
msk = skvrf = x, for x ∈R Zp and pkvrf = gx. Then
Fskvrf(i) = H(i)x for a hash function H : {0, 1}∗ → G,
while π is a Schnorr-signature-type NIZKP. (Security relies
on the DDH assumption on G and the ROM for H .)

A corresponding, highly efficient VE scheme of Ca-
menisch and Shoup [25] permits encryption of a discrete
log over a group G; that is, it supports verifiable encryption
of a message x, where for a public value y, the property
θG(y) is x = dlog(y) over G. Thus, the scheme supports
verifiable encryption of msk = skvrf = x, where π is
a NIZK proof that x is the private key corresponding to
pkvrf = gx. (Security relies on Paillier’s decision composite
residuosity assumption.)

Serpent, the scripting language for Ethereum, offers
(beta) support for modular arithmetic. Thus, the Chaum-
Pedersen VRF and Camensich-Shoup VE can be efficiently
implemented in Ethereum, showing that private leakage
contracts are practical in Ethereum.

Ideal-KeyTheft

Init: Set state := INIT.
Create: Upon recipient of

(“create”, $reward, pkV , Tend,∆T ) from some
contractor C:
Same as Ideal-NaiveKeyTheft (Figure 12), and ad-
ditionally store ∆T .

Intent: Upon recipient of (“intent”, skV ) from some perpe-
trator P: Same as Ideal-NaiveKeyTheft.

Claim: Upon recipient of (“claim”) from perpetrator P:
Same as Ideal-NaiveKeyTheft except that the ledger
update ledger[P] := ledger[P] + $reward does not
happen.

Revoke: Upon receiving (“revoke”, Πrevoke) from some R:
Notify S of (“revoke”, Πrevoke)
Assert Πrevoke is valid, and state 6= ABORTED.
ledger[R] := ledger[R] + $smallreward.
If state = CLAIMED:
t := (time elapsed since successful Claim).
P := (successful claimer).
rewardP := f($reward, t).
ledger[P] := ledger[P] + rewardP .

Else, rewardP := 0
ledger[C] := ledger[C] + $reward− rewardP

−$smallreward
Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed
since successful Claim:
ledger[P] := ledger[P] + $reward;
Set state := ABORTED.

Else if current time T > Tend and state 6=
ABORTED:
ledger[C] := ledger[C] + $reward.
Set state := ABORTED.

Figure 15: Thwarting revoke-and-claim attacks in the key
theft ideal program.



Contract-KeyTheft
Init: Set state := INIT. Let crs := KeyGennizk(1λ) de-

note a hard-coded NIZK common reference string
generated during a trusted setup process.

Create: Same as in Contract-NaiveKeyTheft (Figure 13),
except that an additional parameter ∆T is addition-
ally submitted by C.

Intent: Same as Contract-NaiveKeyTheft.
Claim: Same as Contract-NaiveKeyTheft, except that the

ledger update ledger[P] := ledger[P] + $reward
does not take place immediately.

Revoke: On receive (“revoke”, Πrevoke) from some R:
Assert Πrevoke is valid, and state 6= ABORTED.
ledger[R] := ledger[R] + $smallreward.
If state = CLAIMED:
t := (time elapsed since successful Claim).
P := (successful claimer)
rewardP := f($reward, t).
ledger[P] := ledger[P] + rewardP .

Else, rewardP := 0
ledger[C] := ledger[C] + $reward− $smallreward

−rewardP
Set state := ABORTED.

Timer: If state = CLAIMED and at least ∆T time elapsed
since successful Claim:
ledger[P] := ledger[P] + $reward where P is
successful claimer;
Set state := ABORTED.

Else if current time T > Tend and state 6=
ABORTED:
ledger[C] := ledger[C] + $reward.
Set state := ABORTED.

// P should not submit claims after time Tend−∆T .

Figure 16: Key compromise CSC that thwarts revoke-and-
claim attacks. Although supercially written in a slightly
different manner, this figure is essentially equivalent to
Figure 5 in the main body. We repeat it here and write the
contract with respect to the differences from Figure 13 for
the readers’ convenience.

Prot-KeyTheft

Contractor C:
Create: Upon receiving input (“create”, $reward, pkV , Tend,

∆T , C):
Send (“create”, $reward, pkV , Tend, ∆T ) to
G(Contract-KeyTheft).

Claim: Upon receiving a message (“claim”, ct) from
G(Contract-KeyTheft):

Decrypt and output m := Dec(skC , ct).

Perpetrator P:
Intent: Same as Prot-NaiveKeyTheft (Figure 14), but send

messages to G(Contract-KeyTheft) rather than
G(Contract-NaiveKeyTheft).

Claim: Same as Prot-NaiveKeyTheft, but send
messages to G(Contract-KeyTheft) rather than
G(Contract-NaiveKeyTheft).

Revoker R:
Revoke: Upon receiving (“revoke”, Πrevoke) from

the environment E : forward the message to
G(Contract-KeyTheft).

Figure 17: User-side programs for incentive compatible key
theft.



Ideal-PublicLeaks

Init: Set state = INIT, and donations := {}.
Create: Upon receiving (“create”, M , Tend) from some

leaker C, where M is a document consisting of
n segments denoted M := {mi}i∈[n]:

Notify (“create”, |M |, C) to S.
Select a random subset Ω ⊂ [n] of size
k, and send Ω to the adversary S.
Set state := CREATED.

Confirm: Upon receiving (“confirm”) from leaker C:
Assert state = CREATED.
Send {mi}i∈Ω to the adversary S.
Set state := CONFIRMED.

Donate: Upon receiving (“donate”, $amt) from some pur-
chaser P:

Notify S of (“donate”, $amt, P)
Assert state = CONFIRMED
Assert ledger[P] ≥ $amt.
Set ledger[P] := ledger[P]− $amt.
donations := donations ∪ {($amt,P)}.

Accept: Upon receiving (“accept”) from C:
Notify (“accept”, C) to the ideal adversary S.
Assert state = CONFIRMED.
ledger[P] := ledger[P] + sum(donations)
Send M to the ideal adversary S.
Set state := ABORTED.

Timer: If state = CONFIRMED and T > Tend:
∀($amt,P) ∈ donations: let ledger[P] :=
ledger[P] + $amt. Set state := ABORTED.

Figure 18: Ideal program for public leaks.

Contract-PublicLeaks

Init: Set state := INIT, and donations := {}. Let
crs := KeyGennizk(1λ), pk := KeyGenenc(1

λ)
denote hardcoded public parameters generated
through a trusted setup.

Create: Upon receiving (“create”, c0, {cti}ni=1, Tend) from
some leaker C:

Set state := CREATED.
Select a random subset Ω ⊂ [n] of size k, and
send (“challenge”, Ω) to C.

Confirm: Upon receiving (“confirm”, {(κi, πi)}i∈Ω) from C:
Assert state = CREATED.
Assert that ∀i ∈ S: πi is a valid NIZK proof
(under crs) for the following statement:

∃(msk, r0), s.t. (c0 = Enc(pk,msk, r0))
∧ (κi = PRF(msk, i))

Set state := CONFIRMED.
Donate: Upon receiving (“donate”, $amt) from some pur-

chaser P:
Assert state = CONFIRMED.
Assert ledger[P] ≥ $amt.
Set ledger[P] := ledger[P]− $amt.
donations := donations ∪ {($amt,P)}.

Accept: Upon receiving (“accept”, msk, r0) from C:
Assert state = CONFIRMED
Assert c0 = Enc(pk,msk, r0)
ledger[C] := ledger[C] + sum(donations)
Send (“leak”,msk) to all parties.
Set state := ABORTED.

Timer: If state = CONFIRMED and T > Tend:
∀($amt,P) ∈ donations: let ledger[P] :=
ledger[P] + $amt. Set state := ABORTED.

Figure 19: A contract PublicLeaks that leaks a secret M to
the public in exchange for donations. This figure is a repeat
of Figure 3 for the readers’ convenience.



Prot-PublicLeaks

Init: Let crs := KeyGennizk(1λ) and pk :=
KeyGenenc(1

λ) denote hardcoded public param-
eters generated through a trusted setup.

As leaker C:
Create: Upon receiving (“create”,M :=

{mi}i∈[n], Tend, C) from the environment
E :
msk

$←{0, 1}λ
For i ∈ [n], compute κi := PRF(msk, i). Then,
compute cti := H(κi)⊕mi.
Pick random r0

$←{0, 1}λ and compute c0 :=
Enc(pk,msk, r0).
Send (“create”, c0, {cti}i∈[n], Tend). to
G(Contract-PublicLeaks).

Challenge: Upon receiving (“challenge”, Ω) from
G(Contract-PublicLeaks):

For i ∈ Ω: compute a NIZK proof πi for the
statement using witness (msk, r0):

∃(msk, r0), s.t. (c0 = Enc(pk,msk, r0))
∧ (κi = PRF(msk, i))

Send (“confirm”, {κi, πi}i∈Ω). to
G(Contract-PublicLeaks).

Accept: Upon receiving (“accept”, C) from the
environment: Send (“accept”, msk, r0). to
G(Contract-PublicLeaks).

As purchaser P:
Donate: Upon receiving (“donate”, $amt, P) from the

environment E : Send (“donate”, $amt). to
G(Contract-PublicLeaks).

Leak: Upon receiving (“leak”, msk) from
G(Contract-PublicLeaks):

Download {(i, cti)i∈[n]} from
G(Contract-PublicLeaks).
For i ∈ [n], output Dec(H(PRF(msk, i)), cti).

Figure 20: User-side programs for public leaks.



data leaker_address
data num_chunks
data revealed_set_size
data T_end
data deposit
data reveal_block_number
data selected_sample []
data key_hashes []
data donations []
data sum_donations
data num_donors
data finalized

def init():
self.leaker_address = msg.sender

# A leaker commits to the hashes of the
encryption keys , and sets the announcement
details

def commit( key_hashes:arr , revealed_set_size ,
reveal_block_number , T_end ,
distribution_address):

# Assuming a deposit of a high value from the
leaker to discourage aborting

if( msg.value >= 1000000 and msg.sender == self
.leaker_address and self.deposit == 0 and
revealed_set_size < len(key_hashes)):
self.deposit = msg.value
self.num_chunks = len(key_hashes)
self.revealed_set_size = revealed_set_size
self.T_end = T_end
self.reveal_block_number =
reveal_block_number
i = 0
while(i < len(key_hashes)):

self.key_hashes[i] = key_hashes[i]
i = i + 1

return (0)
else:

return (-1)

def revealSample(sampled_keys:arr):
# The contract computes and stores the random

indices based on the previous block hash.
The PRG is implemented using SHA3 here for
simplicity.

# The contract does not have to check for the
correctness of the sampled keys. This can be
done offline by the users.

if( msg.sender == self.leaker_address and len(
sampled_keys) == self.revealed_set_size and
block.number == self.reveal_block_number ):
seed = block.prevhash
c = 0
while(c < self.revealed_set_size):

if(seed < 0):
seed = 0 - seed

idx = seed % self.num_chunks
# make sure idx was not selected before
while(self.selected_sample[idx] == 1):

seed = sha3(seed)
if(seed < 0):

seed = 0 - seed
idx = seed % self.num_chunks

self.selected_sample[idx] = 1
seed = sha3(seed)
c = c + 1

return (0)
else:

return (-1)

def donate ():
# Users verify the shown sample offline , and

interested users donate money.
prev_donation = self.donations[msg.sender]
if( msg.value > 0 and block.timestamp <= self.

T_end and prev_donation == 0):
self.donations[msg.sender] = msg.value
self.num_donors = self.num_donors + 1
self.sum_donations = self.sum_donations + msg
.value
return (0)

else:
return (-1)

def revealRemaining(remaining_keys:arr):
# For the leaker to get the reward , the

remaining keys have to be all revealed at
once.

# The contract will check for the consistency
of the hashes and the remaining keys this
time.

if( msg.sender == self.leaker_address and block
.timestamp <= self.T_end and len(
remaining_keys)==self.num_chunks - self.
revealed_set_size and self.finalized == 0):
idx1 = 0
idx2 = 0
valid = 1
while(valid == 1 and idx1 < len(
remaining_keys)):
while(self.selected_sample[idx2] == 1):

idx2 = idx2+1
key = remaining_keys[idx1]
key_hash = self.key_hashes[idx2]
if(not(sha3(key) == key_hash)):

valid = 0
idx1 = idx1+1
idx2 = idx2+1

if(valid == 1):
send(self.leaker_address , self.

sum_donations + self.deposit)
self.finalized = 1
return (0)

else:
return (-1)

else:
return (-1)

def withdraw ():
## This is a useful module that enables users

to get their donations back if the leaker
aborted

v = self.donations[msg.sender]
if(block.timestamp > self.T_end and self.

finalized == 0 and v > 0):
send(msg.sender , v + self.deposit/self.
num_donors)
return (0)

else:
return (-1)

Figure 21: Public leakage contract implemented on top of Ethereum.
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