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Ch. 4: Voting Procedures

Abstract

Voting procedures focus on the aggregation of individuals' preferences to produce
collective decisions. In practice, a voting procedure is characterized by ballot responses
and the way ballots are tallied to determine winners. Voters are assumed to have
clear preferences over candidates and attempt to maximize satisfaction with the
election outcome by their ballot responses. Such responses can include strategic
misrepresentation of preferences.

Voting procedures are formalized by social choice functions, which map ballot
response profiles into election outcomes. We discuss broad classes of social choice
functions as well as special cases such as plurality rule, approval voting, and
Borda's point-count method. The simplest class is voting procedures for two-candidate
elections. Conditions for social choice functions are presented for simple majority
rule, the class of weighted majority rules, and for what are referred to as hierarchical
representative systems.

The second main class, which predominates in the literature, embraces all proce-
dures for electing one candidate from three or more contenders. The multicandidate
elect-one social choice functions in this broad class are divided into nonranked
one-stage procedures, nonranked multistage procedures, ranked voting methods, and
positional scoring rules. Nonranked methods include plurality check-one voting and
approval voting, where each voter casts either no vote or a full vote for each
candidate. On ballots for positional scoring methods, voters rank candidates from
most preferred to least preferred. Topics for multicandidate methods include axiomatic
characterizations, susceptibility to strategic manipulation, and voting paradoxes that
expose questionable aspects of particular procedures.

Other social choice functions are designed to elect two or more candidates for
committee memberships from a slate of contenders. Proportional representation
methods, including systems that elect members sequentially from a single ranked ballot
with vote transfers in successive counting stages, are primary examples of this class.

Keywords

voting systems, voting paradoxes, social choice, Condorcet candidate, proportional
representation

JEL classification: D7
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1. Introduction

Voting procedures describe the manner in which the preferences of individuals are
aggregated to produce a collective decision. The individuals, whom we refer to as
voters, might be registered voters, legislators, trustees, committee members, jurors,
or members of some other body whose decisions not only are binding on their
members but often a larger community that the body represents. The alternatives
among which the voters choose will be referred to as candidates. Depending on the
context, candidates might be people running for office, passage or defeat of a bill,
alternative budgets, applicants for a faculty position, or jury verdicts that a judge
permits. Although we refer throughout the chapter to voters and candidates, it should
be clear that voting procedures cover a multitude of voting situations that are often
described in other ways.

As the term is used in this chapter, a voting procedure is defined by two
characteristics. The first is the type of vote, or ballot, that is recognized as admissible
by the procedure. This could range from an open show of hands in an assembly to an
anonymous best-to-worst ranking of all the candidates by the voters (a secret ballot).
We denote by (A) the set of admissible ballots for a given procedure in which A
is the set of feasible candidates. Given A, it is assumed that every voter selects a
member of B(A) as his or her vote, or ballot. When there are n > 2 voters indexed
by i = 1, 2, ... , n, and voter i selects di E (A), the n-tuple d = (dl,d 2, ... , d,) is
the ballot response profile. If there are no restrictions on voting patterns, any n-tuple
in B(A)" might occur as the ballot response profile. If each voter can vote for only
one candidate, for example, a ballot response profile would indicate the candidate for
whom each of the n voters voted.

The second defining characteristic of a voting procedure is how votes are counted
to determine a winner or winners. For this purpose, we need a concrete rule that
aggregates the individual responses in a ballot response profile into a collective
choice or measure (possibly numerical). The criterion by which an outcome is chosen
depends on the collective measure. The rule that whichever of two candidates obtains
a simple majority is a familiar voting procedure. Less familiar is a procedure that
involves successive elimination of lowest-vote candidates and transfers of their votes
to candidates that remain in contention, but it is one that is used in both public and
private elections.

Several important topics are not discussed in this chapter. One is the determination
of eligible voters, which may involve registration, committee membership, or random
choice, as in some jury-selection procedures. Another is the determination of feasible
candidates or official nominees. We will also not discuss agenda formation, use
of polls, campaign finance, or ballot-stuffing and other forms of election fraud. In
addition, strategizing by candidates in campaigns, which can be influenced by the
voting procedure, will not be treated here; it is discussed in Brams and Davis (1973,
1974, 1982), Lake (1979), Enelow and Hinich (1984, 1990), Cox (1984, 1987a,b,
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Ch. 4: Voting Procedures

1997), Snyder (1989), Riker (1986, 1996), Coughlin (1992) and Myerson (1995a),
among other places.

On the other hand, we will pay attention to strategies that voters employ in making
ballot choices. Their strategic voting can substantially affect election outcomes and,
on occasion, subvert the intention of a voting procedure to treat voters and candidates
fairly. The topic of voter strategy, which is also discussed in Chapters 6, 10 and 11 in
this Volume, and Chapters 15, 23 and 25 in Volume 2 of this Handbook, is often tied
to voter preferences, and we will make that tie-in here.

In the next section, we present our basic assumptions about voter preferences over
the candidates. We define a voter preference profile as an n-tuple of voter preference
orders indexed in the same way as the ballots in a ballot response profile. Because
the structures of ballots and preference orders can be quite dissimilar, we presume no
obvious connection between them. This may even be true when the ballot set 13(A) is
the same as the set of preference orders on A, because some voters might cast ballots
different from their true preference orders in order to secure an outcome they prefer
to that produced by sincere or honest voting.

The theme of strategic voting is a theme of individual or subgroup choice within
a process of group choice. Roughly speaking, if a voting procedure sometimes
allows a voter to secure a preferred outcome by voting in a way that, in isolation,
clearly contradicts his or her true preferences, the procedure is said to be susceptible
to strategic manipulation. A voting procedure that is not susceptible to strategic
manipulation is said to be strategyproof: Common voting procedures used in selecting
between two candidates are essentially strategyproof, but most procedures involving
three or more candidates are not. The following example, which is motivated by Black
(1958) and Farquharson (1969), illustrates the latter point. The approach to strategic
voting discussed here was pioneered by Farquharson (1969).

Example 1.1. We consider a common legislative voting process in which m candidates,
ordered as ala2 ... am, are voted on in a succession of m - 1 pairwise simple majority
votes. The first vote is between al and a2. For j > 1, the j + 1st vote is between aj, I
and the winner of the jth vote. The winner of the final vote is the overall winner. It is
often true that a candidate's chances of being the overall winner increase the later it
enters the process, for it then has to defeat fewer other candidates to emerge victorious.
There are exceptions, however. Consider three candidates, a, b, and c, and three voters,
1, 2, and 3, who have the voter preference profile

(abc, cab, bca).

This signifies that 1 prefers a to b to c, 2 prefers c to a to b, and 3 prefers b to c to
a. Assume that all voters know one another's preferences and that successive majority
voting applies with voting order abc (or, equivalently, bac). The first vote is between
a and b:
(i) if a wins, then c wins the second vote because 2 and 3 will vote for c over a;
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(ii) if b wins, then b wins the second vote because 1 and 3 will vote for b over c.
Because b or c is the overall winner, and voters 1 and 3 prefer b to c, it is in their
interests to prevent (i) by ensuring that b defeats a on the first vote. Consequently, both
1 and 3 will vote for b on the first vote, even though 1 prefers a to b. In effect, voter 
manipulates the procedure by voting strategically - in apparent contradiction to his
or her true preferences - to secure a preferred outcome. The vote by 1 for b on the
first vote, and for his or her preferred candidate on the second vote, is an example of
what Farquharson (1969) calls a sophisticated strategy. Similar reasoning shows that a
wins if the voting order is cab (or acb), and c wins if the voting order is bca (or cba).
Whichever order is used, the last candidate is a sure loser under strategic voting. U

In Example 1. l with voting order abc, a ballot in B({a, b, c}) can be defined as a
triple (a, i3, y) in which a denotes a first vote (a, b, or 0, where 0 denotes abstention),
3 e {a, c, 0} for the second vote when a wins the first vote, and y C b, c, 0} when b
wins the first vote. The aggregation rule tallies the votes in each position and specifies
the winner by simple majority comparisons. We have ignored tied-vote outcomes,
which can be factored into the decision criterion if a tie-breaking rule is adopted.

After we discuss individual preferences in the next section, we formalize the notion
of an aggregation rule and its decision criterion by defining a social choice function
as a mapping from ballot response profiles to subsets of feasible candidates. Particular
types of social choice functions are examined in ensuing sections. Section 3 focuses on
binary or two-candidate voting procedures, Sections 5 through 9 discuss social choice
functions for elections of one candidate from among three or more contenders, and
Sections 10 and 11 consider procedures for electing two or more candidates.

Section 4 provides further introduction to elections among three or more candidates.
We will see that there are deep mathematical results behind the enduring fascination
with multiple-candidate voting procedures. Briefly put, while there are innumerable
voting procedures for such elections, all are flawed. The difficulties arise from two
observations. The first, due to Arrow (1950, 1951), is that no social choice function
for three or more candidates simultaneously satisfies a few conditions that can be
viewed as desirable properties of such functions. The second, due to Gibbard (1973)
and Satterthwaite (1975), says that all reasonable voting procedures for three or more
candidates are susceptible to strategic manipulation. More recently, Saari (2001b),
Chapter 25 in Volume 2 of this Handbook, argues that elections can be "chaotic."

The effects of these results on the theory of voting have parallels to the effects
on physics of Heisenberg's uncertainty principle and the effects on logic and the
foundations of mathematics of G6del's incompleteness and undecidability results. The
challenge is not to design a perfect voting system, which is impossible, but rather to
identify those procedures that reflect the desires of voters in as faithful a manner as
possible. Among other things, we would like a voting procedure to encourage sincere
balloting (based on true preferences), be relatively immune to strategic manipulation,
and avoid egregious anomalies or paradoxes, such as the negative responsiveness
paradox that occurs when increased support for a candidate turns it from a winner into
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a loser. Our analyses of voting procedures in later sections will pay close attention to
these matters.

In doing this, we follow a tradition that goes back to the development of procedures
for conducting democratic elections in ancient Greece and Rome [Stavely (1972)].
Among others, Aristotle, in his Politics, gave considerable attention to better and worse
forms of government, including representative democracies.

Many centuries later, two Frenchmen, Jean-Charles de Borda and the Marquis de
Condorcet, argued on a more modest level for rather different election rules that still
bear their names. Their differences are recounted by Young (1988, 1995), Moulin
(1988a) and Saari (1995a). Borda (1781) [translated by de Grazia (1953)], for example,
advocated the ranked voting procedure in which ballots are complete rankings of
the m candidates, and m - 1, m - 2, ... , 1,0 points are awarded to the best-to-worst
candidates on each ballot. The candidate with the greatest point total wins. When it was
pointed out to Borda that his procedure is quite susceptible to strategic manipulation,
he is said to have replied that his scheme was intended only for honest men [Black
(1958, p. 238)].

Condorcet (1785) took the position that if, based on ranked ballots, one candidate
would defeat every other candidate in pairwise simple majority comparisons, this
candidate, called the majority or Condorcet candidate, should be elected. He showed
not only that Borda's scheme can violate this rule but also that there are ballot response
profiles with a majority candidate who would not be elected by any point-assignment
method that awards more points to a top-ranked candidate than a second-ranked
candidate, more points to a second-ranked than a third-ranked candidate, and so forth
(Section 9.3). Indeed, Condorcet pointed out that there may be no majority candidate,
as in (abc, cab, bca) of Example 1.1, but he was unclear about how to proceed when this
occurs. The nonexistence of a majority candidate has come to be known as Condorcet's
paradox, the paradox of cyclical majorities, and the paradox of voting.

The writings of Borda and Condorcet initiated a huge literature on voting procedures
[McLean and Urken (1995)]. Prominent nineteenth century examples include Nanson's
(1883) extensive review of voting procedures and Hare's (1861) book on the election of
representative legislatures. Hare's system, which is more widely known as the method
of single transferable vote (STV) or instant runoff (in Australia, it is known as the
alternative vote), was proposed as a way to ensure the representation of significant
minorities. With various modifications, STV has been adopted throughout the world to
elect public officials and representative assemblies, but in some jurisdictions it has been
abandoned, including several cities in the USA. We discuss it further in Section 11.

Two of the most significant developments of the twentieth century are Arrow's (1950,
1951) celebrated "impossibility theorem" and the analysis of elections and voting
procedures by methods of game theory, as represented in Farquharson (1969), Peleg
(1984), Brams (1985), Moulin (1988a, 1994), Coughlin (1992), and chapters in this
Handbook that deal with strategic voting.

The discussion of voting procedures that follows is indebted to a host of
predecessors, including many cited above. We assume throughout that voters act to
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maximize the satisfaction of their preferences, subject to the rules of voting and
what voters believe about other voters' preferences and likely behaviors. In analyzing
voting procedures, we will pay special attention to both their successes and failures in
producing social choices that are responsive to the preferences of voters.

2. Voter preferences and social choice functions

We presume that there are n > 2 voters, indexed by i = 1,2, .. , n, and a set X
of two or more candidates. Unless we note otherwise, X is taken to be finite with
cardinality IXJ, and voter i is assumed to have a preference weak order ti on X,
i = 1,2, ... , n, so that i is transitive (x i y and y i z imply x ti z) and complete
(x ti y or y ti x for all x,y c X). The interpretation of x i y is that voter i prefers
x to y or is indifferent between x and y. We denote the asymmetric (strict preference)
part of ,i by >-i, and the symmetric (indifferent) part of i by i:

x >-i y if x i y and not (y ti x),
x i y if x i y and y i x.

It follows from weak order that x -i x, (x i , >-i z) = x >-i z,
(x >-i y,y i z) = x i z, and that exactly one of x i y, y >-i x, and x i y holds
when x y. Moreover, the indifference relation -i on X is an equivalence relation
(reflexive: x i x; symmetric: x i y = y -i x; transitive: x i y and y i z imply
x -i z) that partitions X into r indifference classes Xi, X2, ... , X,. such that -i holds
within each Xj and x >-i y or y >-i x whenever x and y are in different classes. The
classes can be ordered by preference as Xl -i X2 >-i ... -i XF, where A -i B means
that a >-i b for all (a, b) C A x B.

When x -i y 4> x = y, for all x,y C X, we refer to i or its asymmetric part >- as
a linear order or strict ranking and abbreviate xl -i x2 >-i . >-i x,, as xlx2 m

(with i implicit or explicit). The three-candidate set X = a, b, c} with IXI = 3 admits
13 weak orders, including a - b - c - a, of which six are linear orders, namely abc,
acb, bac, bca, cab and cba.

An n-tuple = ( , t2, .. , n,) of weak orders on X, one for each voter, is a voter
preference profile. We let V denote the nonempty set of voter preference profiles that
are considered as possible voter preference profiles in a particular situation. If IXI = 3
and there are no restrictions on V apart from weak order, then VI = 13f; if all voter
preference relations are assumed to be strict rankings, then IVI = 6". If X = {a, b, c},
if voter preference relations are strict rankings, and if preferences are single-peaked
in the order abc (so that b is never least preferred), then VI = 4".

Three inputs determine the domain of a social choice function. The first is the
number k > 1 of candidates to be chosen by a voting procedure. The second is a
nonempty set X of subsets of X, each of which might arise as the feasible set of
candidates or the official set of nominees. We require AI > k for every A C X. The
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third input is the set DA of ballot response profiles that can occur for each A C X.
Each member of DA is a ballot response profile d = (dl, d2, ... , d,), where di e 3(A)
for each voter and B(A) is the set of admissible ballots. The domain of a social choice
function is the set

D= U {(A,d): d DA}
AEX

of all ordered pairs (A, d) of a set A of feasible candidates and a ballot response profile
for that set.

A social choice function is a mapping F from a domain D into the family 2 of
subsets of X such that, for all (A, d) C D,

F(A, d) A and IF(A, d)l > k.

We interpret F(A, d) as the subset of feasible candidates chosen by the voting procedure
for situation (A, d). It is assumed to contain at least k candidates. When IF(A, d)l = k
for all (A, d) c D, we say that F is decisive. By not imposing decisiveness, we allow
for the possibility that a choice set contains more candidates than the precise number
to be elected, i.e., we admit the possibility of unresolved ties. This may be inimical
to practical necessity, but it has the technical advantage of sidestepping issues of tie-
breaking procedures.

We now define several conditions for social choice functions that will be involved
in discussions of specific voting procedures. We begin with domain aspects and then
consider anonymity, neutrality, and Pareto-dominance properties.

Given k as defined above, we refer to F as a choose-k social choice function. We
focus on choose-1 procedures until the final two sections.

The cardinality of feasible candidate sets might also be fixed, and when AI = m for
all A X, we say that F is an m-ary social choice function. When F is m-ary, we
assume that m > k. A voting procedure designed to choose two of five nominees is a
5-ary choose-2 procedure.

Most procedures have the same ballot-set structure for all A X of the same
cardinality. When this is true, we say that the ballot sets are similar. More precisely,
given A,B E X for which IAI = IBI, a ballot do 3(A), and a one-to-one mapping a
from A onto B, we denote by o(do) the action of a on do caused, in effect, by replacing
every instance of a in do by (a), for all a A. For example, if A = {a, b, c},
B = {a, b,x}, (a) = b, (b) = x and (c) = a, and if do is the strict ranking bac
of A, we have (do) = xba. Then the ballot sets are similar if

B(B) = {o(do): do E B3(A)}

for all A,B C X for which AI = BI and all bijections a from A onto B. Note that this
definition is nonvacuous even when X contains only one set, say X = {A}. It says, for
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example, that if A = {a, b, c} and if abc is a ballot, then all permutations of abc are
ballots. A situation in which similarity fails occurs when all ballots are weak orders
or linear orders that are single-peaked with respect to a fixed left-to-right ordering of
the candidates.

Along with similar ballot sets, most voting procedures of practical interest allow
each voter independently to select any member of B(A) as his or her ballot, in which
case DA = B(A) ". We will assume this in all voting procedures discussed later, and in
the rest of the present section.

One implication of unrestricted ballot response profiles is that if d = (dl, .. , d) is
in B(A)" = DA, and if p is any one-to-one mapping from {1, ... , n} onto {1, ... , n},
then pd, defined as (dp(l), ... , dp(n)), is also in DA. We say that F is anonymous if

F(A, pd) = F(A, d)

for all (A, d) C D and all p from {1, ... , n} onto { 1, ... , n}. Anonymity says that the
social choice set is invariant to permutations of ballots among voters, and it therefore
embodies the notion that all voters are treated equally. It fails if there is a tie-breaking
chairperson or if some voters' ballots are weighted more heavily than others.

The term neutrality is used to convey the notion that all feasible candidates are
treated equally. Assume that ballot sets are similar. Given A,B X with A = lBI
and a mapping a from A onto B, let (d) = ((dl), ... , (d,,)) for d E DA, and let
r(A') = I{o(a): a A'} for every A' C A. Then (d) E DB and or(A') C B. We say

that F is locally neutral if

F(A, (d)) = o(F(A, d))

for all (A, d) ) and all permutations a on A, and that it is globally neutral, or simple
neutral, if

F(B, a(d)) = (F(A, d))

for all A,B E X for which IA = BI, all d E DA, and all from A onto B. Neutrality
says that if the ballot response profile for B is obtained from the ballot response profile
for A under the action of a, then a is in A's choice set if and only if a(a) is in B's
choice set. It fails for the binary voting procedure in which a challenger needs a two-
thirds majority to replace an incumbent. Because the challenger has a bigger hurdle
in replacing the incumbent than the incumbent has in staying in office, they are not
treated equally.

Pareto dominance is usually defined with respect to voters' true preferences. We
consider an alternative definition based on ballot response profiles. To do this, it is
necessary to have a sense in which a ballot reveals that a voter prefers a to b even
when, because of strategic voting, the voter may actually prefer b to a. For example, if
a voter votes for a but not b on a nonranked ballot, or ranks a ahead of b on a ranked
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ballot, we may say that the voter expresses a preference for a over b. We denote this
by adib for voter i, and for a, b E A and d E DA write adb if adib for i = 1, ... , n.
Because adb indicates unanimous preference for a over b, we consider the following
dominance condition for choose-i voting procedures:

{a, b E A, (A, d) E D, adb} = b F(A, d). (2.1)

A similar condition for k > 2 may be inconsistent with IF(A, d)l > k. We can, however,
require that a C F(A, d) when adb and b C F(A, d), so that if a dominated candidate is
in the choice set, then every feasible candidate that dominates it is also in the choice
set. This reduces to the former choose-1 condition for k = 1 when F is decisive. We
will see in Section 7.3 that it is violated by the type of multistage voting procedure
defined in Example 1.1.

3. Voting procedures for two candidates

We assume throughout this section that F is a binary choose-i voting procedure with
X = {a, b} and X = {X}. For algebraic convenience, we encode the nonempty subsets
of X as follows:

1 signifies {a}
0 signifies {a,b}

-1 signifies {b}.

We take 1 = {1, 0, -1} and D = {1, 0, -1}, where 1, 0 and - denote a vote for a, an
abstention (or a vote for both a and b), and a vote for b, respectively. The social choice
function F, with F(d) = F({a, b}, d), maps D into {1, 0, -1, where F(d) equals 1, 0,
and -1 according to whether a wins, a and b tie, and b wins, respectively.

The convenience of our encoding is seen in part by expressions of potential
properties for F. Using terms defined in the preceding section, F is decisive if F(d)
never equals 0, F is anonymous if F(d) = F(pd) for all d e D and mappings p from
{1, ... , n} onto {1, ... , n}, F is neutral if F(-d) = -F(d) for all d D, and F
satisfies the dominance condition (2.1) if F(j, ... , j) =j forj E {1,-1}.

Let d > d' mean that di > d for all i, and let d > d' mean that d > d' and not
(d' > d). We then say that F is monotonic if

d > d' F(d) > F(d') for all d,d' E D,

and that F is strongly monotonic if it is monotonic and, for all d > d' in D,

F(d') = 0 = F(d) = 1; F(d) = 0 = F(d') = -1.

Monotonicity conditions are often referred to as nonnegative orpositive responsiveness
conditions. They formalize the crucial idea for voting procedures that increased support
for a candidate never hurts, and may help it to win.
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The overwhelmingly most common binary choose-i voting procedure is simple
majority, with or without a tie-breaking rule. Let s: R { 1, 0, -1 } be the sign function
defined by

s(r)=l1 if r>0, s(O)=0, s(r)=-1 if r < 0.

The simple majority function is defined by

F(d) = s ( di) for all d ED.

If F is to be decisive and all tied votes are broken in a's favor, we can take

F(d) = s d + for all dD.

This violates neutrality because neutrality implies F(0, .. , 0) = 0 so long as
abstentions are allowed.

May (1952) axiomatized the simple majority function in one of the earliest
characterizations of a voting procedure by properties it possesses:

Theorem 3.1. F is the simple majority function if and only if it is anonymous, neutral,
and strongly monotonic.

We next consider other binary procedures that relax one or more of May's conditions.
Monotonicity, but not necessarily strong monotonicity, will apply throughout.

The most common voting procedures that violate anonymity are weighted majority
functions. Let wi > 0 denote a weight for voter i, let W = {w = (wl, ... , w, ): wi > 0
for all i and _ wi > 0}, and denote by (w, d) the inner product Z widi of w and d.
We say that F is a weighted majority function if there is a w E W such that

F(d) = s((w, d)) for all d E D.

Simple majority, with wl = w2 = w,, is the only anonymous weighted majority
function. Simple majority with a tie-breaking chairperson, voter 1, can be characterized
by w = (3, 2, 2, ... , 2).

The usual setting for weighted majority is a representative body in which voters have
different sized constituencies. A common concern for such bodies, which is intimately
connected to notions of voting power and fair representation [Banzhaf (1965), Shapley
and Shubik (1954), Dubey and Shapley (1979), Balinski and Young (1982, 2001),
Felsenthal and Machover (1998), Chapter 8 in this Volume, Chapter 26 in Volume 2
of this Handbook)] and has precipitated many court cases, is what weights to assign
voters.
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Neutrality says that if dl, d2 E D and d + d2 = (0, ... , 0), then F(d') =
1 X F(d2 ) = -1. We extend this for weighted majority by saying that F is strongly
neutral if for all m > 2 and d', ... , dm E D for which d1 + + d = (0, ... , 0),

F(d j ) = 1 for some j < m F(dk) =- for some k<m.

The following characterization is from Fishburn (1973):

Theorem 3.2. F is a weighted majority function if and only if it is monotonic, strongly
neutral, and satisfies condition (2.1).

The most common violators of neutrality are special majorities. An example is the
decisive two-thirds majority rule defined by

F(d) = s (I{i: di = 1} - 2n + 

where the challenger a wins if and only if more than two-thirds of the voters
vote for a.

A generalization of weighted majority functions was introduced by Murakami (1966,
1968) and further studied by Fishburn (1971, 1973, 1979b), Fine (1972) and Keiding
(1984). Fishburn refers to these procedures as representative systems. Beginning
from the projections pi(d) = d, the family of representative systems is defined
recursively by nested hierarchies of weighted majorities under the s operator. With
s(rl, r2 , ... , r) = s(Z rj), an example is

F(d) =s(s(dl, ... , d), s(dq+ ,..., d,), s(d+, ., dn))

This characterizes a tricameral legislature in which each house votes by simple
majority. The overall winner is determined by simple majority applied to the vote
outcomes of the houses.

To be more precise, let R0 = {dl, ... ., d, } and for each positive integer t let

Z, = {s(fi,...,fK):K E{1,2, ... } and fl,...,fK E t-1}.

It is easily checked that R1Z is the set of weighted majority functions and, because
s(f) = f, we have Ro C ZRI C 72 C ... We refer to R = URi as the set of
representative systems for n voters.

Complete characterizations of representative systems first appeared in Fishburn
(1971) and Fine (1972). A key aspect of their characterizations is a relaxation of strong
neutrality that we refer to as the dual partition condition. We say that voter i is essential
if there is some (dl, ... , d,_ . .. , d,) E {1,0, -1}n for which it is false that
F(dl, ...., d 1,x, d+ , ...., d) is the same for each x in {1, 0, -1}. Then F satisfies
the dualpartition condition if F(dk) = 1 for some k E {1, ... , m} whenever m is an
odd positive integer,

d > _d2, d2 > _d3 ., dm- l > -d, d > -d,

and Ek'= dk > for some essential i.
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Theorem 3.3. F is a representative system if and only if it is monotonic, neutral and
satisfies condition (2.1) and the dual partition condition.

A proof of Theorem 3.3 is included in Fishburn (1973, Chapter 4).
Further studies of representative systems have focused on the number of hierarchical

levels needed to express all F £ 1Z for n voters. Let Al(n) denote the smallest t for
n voters such that R, = 7R. Fishburn (1979b) notes that /l(n) = n - 1 for 1 < n < 4,
pU(5) = pu(6) = 4, u(n) < n - 2 for all n > 6, and p is unbounded. He also conjectured
that lu(n)/n - 0 as n gets large. Keiding (1984) confirmed the conjecture by proving
that p(n) < log2(n(n - 1)) + 5.

4. Introduction to voting procedures for three or more candidates

The monotonic binary voting procedures of the preceding section are strategyproof,
because a voter can never help elect a preferred candidate by voting contrary to his
or her true preferences. A very different picture of strategic voting emerges when
there are three or more feasible candidates. While virtually all voting procedures
for multicandidate elections are susceptible to strategic manipulation, we will see in
ensuing sections that some are more manipulable than others.

In this section we indicate why elections with three or more candidates can be
problematical. We begin with issues familiar to Borda and Condorcet and then consider
Arrow's impossibility theorem from the perspective of voting procedures.

Example 4.1. Suppose ranked ballots are used in a four-candidate election among a,
b, c, and x, and there are 13 voters with a ballot response profile in which

4 voters have axbc
3 voters have caxb
6 voters have bcax.

Majority comparisons of expressed preferences show that

a has a 7 to 6 majority over b
b has a 10 to 3 majority over c
c has a 9 to 4 majority over a,

so majorities cycle among a, b, and c: there is no candidate that beats the other two
in pairwise contests. (As for x, everyone prefers a to x, c has a 9 to 4 majority over x,
but x has a 7 to 6 majority over b.) Although there is no majority candidate, making
Condorcet's choice criterion inapplicable, if we count the number of majority wins for
each candidate, a and c come out on top with two apiece. Because c is preferred to
a by nearly 70% of the voters, c would appear to be the best social choice from a
Condorcet perspective.
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What about Borda? When 3, 2, 1 and 0 points are awarded to the candidates in best-
to-worst order for each voter, the Borda point totals for a, b, c, and x are 24, 22, 21,
and 11, respectively, so a is the top Borda candidate. While everyone prefers a to x,
however, one might reasonably suspect that a's supporters nominated x to inflate a's
Borda score.

Why? Suppose x is disqualified for any of the following reasons: x is certified as a
ringer or Doppelginger; the rules edit out all Pareto-dominated candidates before the
Borda count is taken; x drops dead before the votes are counted. With x deleted, the
Borda point totals for a, b, and c are 11, 16, and 12, respectively. Not only is b the
top Borda candidate, but a also comes in last. ·

Arrow's seminal contribution was to show that there is no way around the inherent
difficulties of situations like Example 4.1. His theorem has several formulations and
interpretations. The one that follows seems most congruent with our emphasis on
voting procedures.

Let X2 denote the family of two-candidate subsets of X with IX[ > 3, and assume
that every member of X2 is a potential feasible set, so X2 C X. For every {x,y} G X2,
assume D{x,,} = {{x}, {x,y}, {y}}n, as in the preceding section. We do not assume
that the restriction of F to any {x,y} x D{,y} is anonymous, neutral, or monotonic,
and we do not presume that the same voting procedure is used for every {x,y} E X2.
We do, however, require F on {A x DA: A G X2} to satisfy two conditions, (2.1) for
Pareto dominance and a minimal nondictatorship condition:
Al: For every {x,y} E X2, F({x,y}, (j, ... , j)) =jforj e {{x}, y}};
A2: For every i E {1, ... , n}, there is an {x,y} c X2 and a d e D{,y} such that

d = {x} and y E F({x,y}, d).
A2 says that for every voter there is at least one binary situation in which the voter
votes for x but x is not the sole member of the social choice set, as might be expected
if all the other voters voted for y.

Conditions Al and A2 are undemanding and accommodate a wide variety of
behaviors for F on {A x DA: A X2 }. The thrust of Arrow's theorem is that all
such behaviors are incompatible with a certain transitivity constraint on relationships
among binary choices.

To formulate his constraint, let {a, b, c} be a three-candidate subset of X, and let d1,
d2 , and d3 be binary ballot response profiles in D{a,b}, D{a,c}, and D{b,c}, respectively.
We say that the triple (dl,d 2,d 3 ) is consistent if, for every i {1, ... , n},

di = d2=( dia} or dd= b or di = {c}.

The sense of this definition can be seen by the fact that if, for example, di' = di2 = {a},
then voter i's ballots in the three binary cases are consistent with the hypothesis that his
or her true preferences on {a, b, c} are a -i b >-i c or a >-i c >-i b or a >-i b -i c, and
that he or she votes according to these preferences in each case. Arrow's transitivity
constraint can be expressed as follows:
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A3: For all three-candidate subsets a, b, c} of X, and all consistent (d', d2, d3 ) E

D{a,b} x D{a,c} x D{bc}, if

a E F({a,b},dl) and b E F({b,c},d3 ),

then a E F({a, c}, d2 ).
Given consistency, a E F({a, b}, d l) and b e F({b, c}, d3) say that a is socially as good
as b, and b is socially as good as c according to F: the conclusion, a E F({a, c}, d2),
completes the transitivity triad by asserting that a is socially as good as c.

Theorem 4.2. If IXI > 3 and X2 C X, then F cannot satisfy all three of Al, A2 and
A3.

Arrow's theorem has been interpreted in various ways, but the interpretation we
prefer in the voting context is that it is unrealistic to suppose that binary voting
outcomes should be transitive in the sense of A3. A corollary is that even when
voters have weak preference orders and vote nonstrategically, there is no obvious
or compelling way to ground social choices (from feasible sets of three or more
candidates) on binary comparisons, whether determined by simple majority or in other
ways.

Theorem 4.2, or rather the original versions of Arrow's theorem in Arrow (1950,
1951), have motivated a vast amount of research on multicandidate elections. There
are now several dozen Arrow-type impossibility theorems that address a wide array of
social choice situations, but all have the same theme of the collective incompatibility of
conditions which, taken separately, seem reasonable and appealing. The books by Kelly
(1978) and Fishburn (1987), and Chapters 1, 2 and 3 in this Volume and Chapter 17
in Volume 2 of this Handbook, focus on these theorems.

We conclude our discussion of impossibility theorems by recalling the theorem of
Gibbard (1973) and Satterthwaite (1975) for strategyproof social choice functions. The
question they addressed is whether it is possible to design a decisive choose-1 social
choice function F on D = {X} x V that is nondictatorial and strategyproof when
XI > 3 and V is the set of all n-tuples of weak orders on X. Unlike Theorem 4.2, X

has only one member, namely X. We let

X* = {x E X: F(X, v) = {x} for some v V}

and say that F is nondictatorial if for every i {1, ... , n} there is a u = (L, .., , n)
in V and x,y X* such that x >-i y and F(X, v) = {y}. In addition, F is strategyproof
if for all v = (, ... , ) and v' = (,, .. , ,) in V and all i E {1, ... , n},

for all j i) > F(X, v) i F(X, v').

This implies that a voter can never unilaterally obtain a preferred outcome by voting
contrary to his or her true preferences:
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Theorem 4.3. Suppose F is a decisive social choice function on {X} x V, where V
is the set of all n-tuples of weak orders on X, and X* > 3. Then F cannot be both
nondictatorial and strategyproof

When Example 4.1 and Theorems 4.2 and 4.3 are compounded many times over by
related examples and theorems, it takes little imagination to conclude that there is no
such thing as a completely satisfactory voting procedure for elections among three or
more candidates.

In our ensuing discussion of specific multicandidate voting procedures, we make
several simplifying assumptions with no significant loss of generality. We assume that
F is an m-ary social choice function for m > 3, that all ballot sets B(A) for IAI = m
and A E X are similar, that DA = 13(A)n for each A E X, and that the same criterion
for membership in F(A, d) is used for all A C X.

We make a further concession to notation by taking X itself as the exemplary
m-candidate set for the purpose of defining each procedure, and use A, B, C, S, and
T to denote subsets of X. The ballot set will be denoted by 13 so that F is a mapping
from {X} x n3 into subsets of X with IF(X,d)l > k for every d = (d, ... , d,) in
13".

5. Nonranked voting and dominated strategies

We assume henceforth that XI > 3 and, until Section 10, that k = 1. This section and
Section 6 focus on the strategic analysis of nonranked voting procedures with a single
balloting stage. Section 7 will consider aspects of multistage nonranked voting, and
Sections 8 and 9 then treat procedures that use ranked ballots. The following definition
applies to this section and Section 6.

Definition 5.1. F on {X} x 13n with IXI = m is a nonranked voting procedure if there
is a nonempty subset M of {0, 1, . ., m - 1} that includes at least onej > 0 such that
B =ACX: AI E M}and, forall x E X and d Bn,

xEF(X,d)l{i: xE di}l >I{i:yEdi}l forall yX. (5.1)

Most M we consider include 0, which denotes abstention. We exclude m from M
(a vote for all candidates) because it has the same effect on Equation (5.1) as an
abstention. According to Equation (5.1), x is in the choice set if and only if as many
voters vote for x as for any other candidate. An example of a single-stage nonranked
procedure that does not adhere to Definition 5.1 is given at the end of Section 6.

5.1. Examples

Although nonranked voting procedures limit the ability of voters to express their
preferences by their votes, they are the most widely used procedures for multicandidate
elections. Some examples follow.
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Plurality voting has M = {0, 1 }, so each nonabstaining voter votes for exactly one
candidate. It is commonly used in single-winner elections and sometimes in multiple-
winner elections. The main criticisms of plurality voting concern its severe limitation
on the expression of voter preferences, the dispersion of votes that it produces across
ideologically similar candidates - rendering them vulnerable to other candidates,
particularly on the ideological extremes, who have no opposition - and the extent to
which it encourages voters to vote for candidates other than their favorites when their
favorites have no real chance of winning. Axioms for plurality voting are given by
Richelson (1978) and Roberts (1991).

Vote for no more than t has M = {0, 1,..., t}. This is sometimes used for choose-1
elections with 1 t < k, but it is more common for choose-k (often k = t) elections.
When k < t, it is called limited voting. M = {O, k} is a more restrictive procedure.

Approval voting has M = {O, 1, ... , in - 1}, so a voter can vote for any proper
subset of X. It was named by Weber (1977), axiomatized by Fishburn (1978a) and
Sertel (1978) with a variable-n formulation (see Section 9.2), and is extensively
analyzed with comparisons to other procedures, including plurality voting, in Brams
and Fishburn (1978, 1983) and Merrill (1988). The analysis in this section and the
next is adapted from Brams and Fishburn (1983) and Brams (1994). Approval voting
has been adopted by several professional societies for elections of their officers.

Negative voting, which allows each voter either to vote for one candidate or to vote
against one candidate, is tantamount to M = { 1, m - 1} or to M = {0, 1, m - 1 } when
abstentions are allowed. It was proposed by Boehm (1976) and is analyzed in Brams
(1977, 1978, 1983) and Felsenthal (1989).

5.2. Voter preferences

Additional definitions and assumptions for voter preferences are needed for our
ensuing analysis of strategic voting. We denote a voter's weak preference order on
X by A, with A t B for nonempty A,B C X if a t b for all (a, b) A x B. Strict
preference >- and indifference - are defined in the usual ways, and A >- B if a >- b
for all (a, b) E A x B. As in Section 2, the ordered indifference classes determined by

are X- X2 >- - >X,-.
We say that t is unconcerned if r = 1, dichotomous if r = 2, trichotomous if

r = 3, and multichotomous if r > 4. A voter is unconcerned if r = 1, and is otherwise
concerned. In the latter case, with r > 2, we say also that t is concerned.

A subset A C X is high for if

x E A nX Xi CA forall i<j,

and is low for t if

xEAnXjXiCA forall i>j.

Every subset of X is both high and low for an unconcerned voter, but only X and the
empty set 0 are both high and low for a concerned voter. It is easily seen that A is low
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for - if and only if its complement X \ A is high for t. The high sets for trichotomous
t on {xl, ... , xs} with

X = {xl}, X2 = {x2 ,x3 }, and X3 = {X4,Xs},

areX, 0, {xl}, {xl,x2}, {x l ,x 3}, {x 1,x 2 ,x 3}, {x,X 2,x 3,x4}, {x,x 2 ,x 3,x 5 }. These can
be interpreted as the voting strategies this voter would consider viable - they are not
dominated by any other strategies, as we will see in Section 5.3 and describe further
in Section 6.1.

Assumptions that go beyond weak order are used in our analysis. They concern
preferences between subsets viewed as vote outcomes or social choice sets. For a
voter with weak order Z on X, APB means that outcome A is strictly preferred to
outcome B, and ARB means that the voter considers A at least as good as B. We assume
without further notice that {a}P{b} = a >- b, {a}R{b} = a b, and that APB and
BRA cannot both hold. In addition, we assume the following for all a, b E X and all
A,B, CC X:

Assumption P. If a >- b, then {a}P{a, b}P{b}.

Assumption R. If A U B and B U C are not empty, and if a t b, b t c and a c for
all a E A, b c B and c C C, then (A U B)R(B U C).

Assumption P asserts that if candidate a is preferred to candidate b, then
outcome {a} is preferred to the tied outcome {a, b}, which is preferred in turn to {b}.
This is uncontroversial if the voter believes that, however a tie might be broken, each
of a and b has positive probability of winning when F(X, d) = {a, b}. Assumption R
asserts that outcome A U B is at least as good as B U C when A t B, B t C and
A - C for the nonempty pairs from {A,B, C}.

5.3. Dominance between strategies

A strategy in the present context is any A C X, and a voter chooses strategy A if he
or she votes for all a E A and no other candidate. We defer consideration of feasible
strategies in B to Section 6 and focus here on a notion of dominance that applies to
all strategies and is therefore applicable to all nonranked voting procedures.

Roughly speaking, strategy S dominates strategy T for a voter if he or she likes
the outcome of S as much as the outcome of T in every possible circumstance, and
strictly prefers S's outcome to T's outcome in at least one circumstance. To make this
precise, we define a contingency as a functionf that assigns a nonnegative integer to
each candidate. A contingency is interpreted as specifying the number of votes each
candidate receives from all voters other than the voter for whom dominance is being
defined.

Call the latter voter the focal voter. Given a contingencyf and a strategy S for the
focal voter, let F(S,f) denote the outcome of the vote when the focal voter chooses
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S, presuming that the votes in S count. Thus, with S(a) = 1 if a E S, and S(a) = 0
otherwise,

a E F(S,f) X f(a)+S(a) >f(b)+S(b) for all b X

Although different strategies may be preferred under different contingencies, some
strategies are uniformly as good as, or better than, other strategies, regardless of the
contingency. That is, one strategy may dominate another.

Definition 5.2. Given P and R for a voter with weak order t on X, strategy S
dominates strategy T for this voter, or SdomT for A, if F(S,f)RF(T,f) for all
possible contingencies f, and F(S,f) PF(T,f) for at least one contingency.

It may be noted that if n is very small, say n = 2, then a contingency which
demonstrates F(S,f)PF(T,f) might be unavailable because it presumes more than
one other voter. However, even modest values of n avoid this possibility, and we shall
ignore it in what follows.

Assumption R implies that an unconcerned voter will be indifferent between
all outcomes as well as all individual candidates. Because Definition 5.2 requires
F(S,f)PF(T,f) for some f to obtain S dom T, it follows that there is no dominance
for an unconcerned voter. The following theorem characterizes dominance between
strategies for all concerned voters.

Theorem 5.3: Dominance. Suppose is concerned and Assumptions P and R hold.
Then S dom T for t if and only if S # T, S \ T is high for a, T \ S is low for a,
and neither S \ T nor T \ S is the set of all candidates.

Proofs of Theorem 5.3 and results in the next section are given in Brams and
Fishbum (1978). The intuition behind Theorem 5.3 is that because dominance is based
on all contingencies, and the focal voter votes for all candidates in S n T when he or
she uses S or T, S dominates T for t if and only if S \ T dominates T \ S for A. That
is, dominance shows up in the nonoverlapping candidates.

Although the conclusion of Theorem 5.3 is predicated on Assumptions P and R, the
necessary and sufficient conditions for S dom T use only t and not P or R explicitly.
This greatly simplifies the identification of dominated strategies for a voter.

For example, if X = {a,b,c} and is the trichotomous linear order abc,
Theorem 5.3 says that strategy {a}, under which the voter votes only for his or her
most preferred candidate, dominates strategies {c}, {a, c}, {b, c}, {a, b, c}, and the
abstention strategy. Moreover, these are the only strategies that a} dominates, whereas
{a, b} dominates these strategies and {b} also.

Continuing with preference order abc, we illustrate the applicability of Theorem 5.3
to plurality and approval voting. Under approval voting, the theorem says that if the
voter considers voting for b (second choice), he or she should also vote for a (first
choice) because {a, b} dom {b}. That is, {a, b} is as good as, and sometimes better
than, {b}. However, under plurality voting, a vote for b alone could be the voter's
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best strategy since in this case {b} is not dominated by any other feasible strategy.
Exhaustive enumeration for approval voting shows that there is no contingency in
which {b} induces a better outcome than {a, b} [Brams (1978, pp. 199-202), Brams
(1983, pp. 38-41)]. Fortunately, Theorem 5.3 relieves one of the necessity of checking
all contingencies for which the focal voter's vote might affect the outcome.

6. Strategic analysis of nonranked voting

Let M C {0, 1, ... , m - 1 } denote the nonranked voting procedure characterized by M
in Definition 5.1. We say that strategy S is feasible for M if ISI e M, i.e., if S c B for
M. We assume that, when M is used, a ballot is counted if and only if it is a feasible
strategy. All other nonabstaining ballots are thrown out or treated like abstentions.

6.1. Admissible strategies

An admissible strategy is a feasible strategy that is not dominated by another feasible
strategy.

Definition 6.1. Strategy S is admissible for M and t if S is feasible for M and there
is no strategy T that is also feasible for M and has T dom S for .

As seen above, a strategy such as {b} with preference ranking abc that is feasible
for two or more nonranked voting procedures can be admissible for some procedures
and inadmissible for others. Because of this, and because our analysis of strategic
voting will be based on the assumption that nonabstaining voters use only admissible
strategies, it is useful to have a theorem that characterizes all admissible strategies
for every M and every concerned t. To facilitate the statement of the admissibility
theorem to follow, let

H(-) = X1, the subset of most preferred candidates under ,

L(>) = X,, the subset of least preferred candidates under .

The admissibility theorem may seem complex, but as later corollaries will make clear,
it is not difficult to apply to particular voting procedures. Moreover, comparisons
among procedures will show that they possess striking differences that bear on their
susceptibility to strategic manipulation.

Theorem 6.2: Admissibility. Suppose t is concerned and Assumptions P and R
hold. Then strategy S is admissible for M and if and only if S is feasible for M
and either C1 or C2 (or both) holds:
C1. Every candidate in H(t) is in S, and it is impossible to partition S into nonempty

subsets SI and S2 such that S1 is feasible for M and S2 is low for .
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C2. No candidate in L(F) is in S, and there is no nonempty A C X disjoint from S
such that A U S is feasible for M and A is high for >-.

Because the abstention strategy satisfies neither Cl nor C2, it is never admissible
for a concerned voter. A vote for all m candidates, which was omitted from the formal
Definition 5.1, would likewise be inadmissible if it were permitted.

We now consider some corollaries of Theorem 6.2 for particular voting procedures,
beginning with approval voting:

Corollary 6.3. Strategy S is admissible for approval voting and concerned t if and
only if S contains all candidates in H(t) and none in L(F).

Hence, concerned voters use an admissible strategy under approval voting if and only
if they vote for every one of their most preferred candidates and never vote for a least
preferred candidate. If m = 4 and a voter has linear preference order abcx, then his or
her admissible strategies are {a}, {a, b}, a, c} and {a, b, c}.

Corollary 6.4. A voter has a unique admissible strategy under approval voting if and
only if his or her t is dichotomous. This unique strategy is the voter's subset of most
preferred candidates.

Thus, if a voter has dichotomous preferences with XI = {a, b, c} and X2 = {x,y}, then
{a, b, c} is his or her unique dominant and admissible strategy under approval voting.

It is instructive to compare approval voting with plurality voting and negative voting
with respect to feasible and admissible strategies. We assume that abstentions are
allowed in all cases, so negative voting is equivalent to approval voting when m = 3.
When in > 3, approval voting has 2"' - 1 feasible strategies, which is the number
of subsets of X, minus X itself. By contrast, plurality voting allows m + 1 different
choices (a vote for one of the m candidates or an abstention), and negative voting
allows 2m + 1 strategies (a vote for or against a candidate or an abstention). Other
nonranked voting procedures allow between m + 1 and 2

' - 1 different strategies.
The following corollaries of Theorem 6.2 identify the admissible strategies for

plurality and negative voting. In Corollary 6.6, ii denotes the strategy in which the voter
votes for all candidates other than candidate a or, equivalently, casts a vote against a.

Corollary 6.5. Strategy {a} is admissible for plurality voting and concerned t if and
only if a is not in L(F).

Corollary 6.6. Suppose m > 4 and t is concerned. Then:
(i) strategy {a} is admissible for negative voting if and only if the voter strictly prefers

a to at least two other candidates;
(ii) strategy a is admissible for negative voting if and only if the voter strictly prefers

at least two other candidates to a.

Corollaries 6.3, 6.5 and 6.6 can be used to identify and compare sets of admissible
strategies for various preference orders under approval, plurality, and negative voting.
Suppose, for example, that X = a, b, c, d} (where d is a candidate, not a ballot
response profile) and a - b > c - d, which we write as (ab)cd with parentheses
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Table 1
Numbers of admissible voting strategies for three procedures with four candidates

Concerned weak order Number of admissible strategies for

Approval voting Negative voting Plurality voting

Dichotomous a(bcd) 1 1 1

(abc)d 1 1 3

(ab)(cd) 1 4 2

Trichotomous (ab)cd 2 4 3

ab(cd) 2 4 2

a(bc)d 4 2 3

Multichotomous abcd 4 4 3

enclosing candidates between which the voter is indifferent. The admissible strategies
for weak order (ab)cd are:
(1) Approval voting: {a, b}, {a, b, c}. These are the only feasible strategies that contain

all the voter's most preferred, and none of his or her least preferred, candidates.
(2) Plurality voting: {a}, {b}, {c}. These are the only feasible nonabstention strategies

that do not contain the voter's least preferred candidate.
(3) Negative voting: {a}, {b}, c, d. These are the only feasible strategies in which the

voter strictly prefers the candidate to at least two others, or strictly prefers at least
two others to the barred candidate.

Table 1 shows the numbers of admissible strategies for all concerned t for four
candidates for the aforementioned three voting procedures. It is clear that the relative
numbers of admissible strategies for the three procedures are very sensitive to the
specific form of . For example, approval voting offers voters more admissible
strategies than the others when t is a(bc)d but fewer when t is (ab)cd. Hence,
although the number of feasible strategies increases exponentially in m for approval
voting but only linearly in m for plurality and negative voting, the number of admissible
strategies under approval voting is comparable to that of the other procedures and
should not overwhelm voters with a wealth of viable options.

6.2. Sincere voting and strategyproofness

We use the following notions of sincere voting and strategyproofness for nonranked
voting procedures to facilitate comparisons among procedures in terms of their ability
to elicit true preferences of voters.

Definition 6.7. Let t be a concerned preference order on X. Then strategy S is
sincere for t if S is high for A; voting procedure M is sincere for if all admissible
strategies for M and t are sincere; strategy S is strategyproof for M and t if it is the
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only admissible strategy for M and t (in which case it must be sincere); and voting
system M is strategyproof for t if S is strategyproof for M and Z.

Sincere strategies are essentially ballots that directly reflect the true preferences of
a voter. If t is abcd, then a, c} is not sincere because a and c are not the voter's two
most preferred candidates. Because it is desirable that democratic voting procedures
be based on true preferences, and sincere strategies foster the expression of such
preferences, voting procedures that encourage sincerity are important. They are also
important to individual voters, for if a procedure is sincere, voters will vote for all
candidates ranked above the lowest-ranked candidates they consider acceptable. Thus,
in our example, they would not vote for c without also voting for a and b, and they
would not vote for b without also voting for a.

For the seven preference orders on four candidates in Table 1, approval voting is
sincere in six cases (only abed is excluded), negative voting is sincere in four cases,
and plurality voting is sincere in only the first three cases. These results follow easily
from Corollaries 6.3, 6.5 and 6.6.

It is no accident that approval voting is "more sincere" than the others in Table 1.
The following theorem demonstrates that approval voting is the uniquely most sincere
nonranked voting procedure among those characterized in Definition 5.1.

Theorem 6.8. If - is dichotomous, then every voting procedure M is sincere for
A. If t is trichotomous, then approval voting is sincere for A, and this is the only
procedure that is sincere for every trichotomous 3>. If t is multichotomous, then no
M is sincere for >.

No procedure is sincere when > is multichotomous because, for every M and every
F with indifference classes X1 >- X2 >- · · · >- Xr, r > 4, there is an admissible strategy
that is not sincere. When there are relatively few candidates, however, it is reasonable
to expect that many voters will have dichotomous or trichotomous preference orders.
Indeed, Theorem 6.8 says that when voters do not (or cannot) make finer distinctions,
approval voting is the most sincere of all nonranked voting procedures, and this result
extends to voters with multichotomous preferences [Fishburn (1978b)].

Even if a voting procedure is sincere for A, it is not strategyproof for t if it allows
more than one admissible strategy. Like sincerity, strategyprooffess seems desirable
for voting procedures. If voters have a strategyproof strategy, they will never have an
incentive to deviate from it, even when they know the result of all other votes. Such a
strategy dominates all other feasible strategies, so whatever contingency arises, a voter
cannot be hurt, and may be helped, by choosing it.

Sincerity, on the other hand, does not imply such stability but asserts instead that
whatever admissible strategy is chosen, whenever it includes voting for some candidate,
it also includes voting for all candidates preferred to that one. In effect, a voting
procedure is sincere if it never induces voters, for strategic reasons, to "abandon" a
more preferred for a less preferred candidate.

Because the demands of strategyproofness are more stringent than those for sincere
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voting, strategyproofness is less likely to obtain than sincerity. Nevertheless, as with
sincerity, approval voting is the uniquely most strategyproof of the procedures covered
by Definition 5.1.

Theorem 6.9. If t is dichotomous, then approval voting is strategyproof for ,
and this is the only procedure that is strategyprooffor every dichotomous I. If is
trichotomous or multichotomous, then no M is strategyprooffor >.

Theorems 6.8 and 6.9 provide strong support for approval voting based on sincerity
and strategyproofness, which can be extended to k > 2 for the election of committees
[Fishbum (1981a)]. However, the limitations of these results also are important:
strategyproofness depends entirely on dichotomous preferences; sincerity extends to
trichotomous preferences, but it is a weaker criterion of nonmanipulability than
strategyproofness. We note also that the manipulability and stability of approval voting
(as measured by how sensitive outcomes, for a given voter preference profile, are to
different ballot response profiles of admissible strategies) have provoked exchanges
between Niemi (1984) and Brams and Fishburn (1985), between Saari and Van
Newenhizen (1988a,b) and Brams, Fishburn and Merrill (1988a,b), and between Brams
and Fishburn (2001) and Saari (2001a). The first paper in each pair is critical of
approval voting, saying that approval voting is too sensitive to where voters draw
the line between acceptable and unacceptable candidates, whereas the second paper
responds to this criticism, saying that this sensitivity is desirable because it makes
approval voting more responsive to voter preferences than voting procedures that allow
the voter less leeway, either by choosing or by ranking candidates.

6.3. Efficacy

Another criterion that has been used to compare voting procedures concerns the ability
of a voting strategy to change the outcome from what it would be if the voter in
question abstained. We refer to this as the efficacy of a voting strategy and define
it as the probability that a focal voter's ballot will affect the outcome, given that all
possible ways that other voters can vote are equiprobable and ties are broken randomly
[Fishburn and Brams (1981b,c), Brams and Fishbum (1983)].

In large electorates, the most efficacious approval voting strategies are for a focal
voter to vote for either the top one or two candidates in three-candidate contests, and
to vote for approximately the top half of all candidates when m > 4. When utilities
are associated with the voter's preferences according to the expected-utility model
[Fishburn (1970)], the voter's utility-maximizing strategy in large electorates is to vote
for all candidates whose utilities exceed the average utility over all candidates. Hoffman
(1982, 1983) and Merrill (1979, 1981, 1982, 1988) have independently derived similar
results; in doing so, they consider criteria other than expected-utility maximization.
A voter's utility-maximizing strategy can lead to substantially different expected-utility
gains, depending on his or her utilities for the candidates. However, it can be shown
that plurality voting gains are even more disparate [Fishburn and Brams (1981b,c,
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1983), Rapoport and Felsenthal (1990)], so approval voting is more equitable in the
sense of minimizing differences among voters.

As a case in point, plurality voting affords a dichotomous voter who equally likes
four candidates but despises a fifth in a five-candidate race little opportunity to express
his or her preferences, compared with a voter who greatly prefers one candidate to all
others. Approval voting, on the other hand, is equitable to both - allowing the first voter
to vote for his or her top four choices, the second to vote for his or her top choice -
despite the extreme differences in their utilities. In general, not only is a voter able to
be more efficacious under approval than plurality voting, but he or she cannot suffer
as severe utility losses under the former procedure.

6.4. Plurality ballots and the median outcome

We conclude our discussion of single-stage nonranked voting with an example that
does not fit Definition 5.1 because it has a continuum of candidates and uses a
different selection criterion. The example features single-peaked preferences, which
are discussed at greater length in Chapter 13 in Volume 2 of this Handbook..

Example 6.10. A nine-member committee is to decide how much of next year's budget
to devote to some activity. We assume that each member has an ideal amount, with
preference decreasing as one moves away from the ideal in either direction. Suppose
the committee decides as follows: each member writes down one amount on a slip of
paper, and the median of the ballot amounts becomes the collective choice. It is easily
seen that each member has a unique dominant strategy, namely to vote for his or her
ideal. The unique dominant strategies are sincere and the system itself is strategyproof
in this restricted context. A complete characterization of unique dominant strategies
for voting procedures in a general context is given in Dasgupta, Hammond and Maskin
(1979). U

7. Nonranked multistage voting: successive elimination

A multistage nonranked voting procedure is a procedure which, in a succession of
nonranked ballots, eliminates candidates at each stage, or after each ballot, until a
winner is determined. The number of ballots can be fixed or variable, depending on
the procedure's rules. While there are many such procedures in use today, most are
similar to one of the following three types.

7.1. Examples

Plurality with a runoff starts with a plurality-voting ballot; then it determines a
winner by a simple majority vote between the top two candidates from the first ballot.
The second ballot is often avoided if the top plurality candidate gets a sufficiently
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large percentage of the vote on the first ballot, say 40% or 50%, in which case that
candidate wins outright. Other nonranked procedures could be used on the first ballot,
but plurality voting is by far the most common. Requiring a maximum of two ballots,
plurality with a runoff is effective in reducing a large field of candidates quickly and
hence is popular in public elections, in which several ballots are impractical.

Plurality with successive elimination uses plurality voting on a succession of
ballots until one candidate, the winner, gets more than 50% of the vote. After each
ballot that requires a successor, some candidates may withdraw voluntarily from the
race or be eliminated by a low-vote rule such as "lowest-person out". But successive
votes are sometimes allowed without any reduction of the still-in-contention set, and
some procedures even allow new candidates to enter during the process. Plurality with
successive elimination often leads to fierce politicking during the balloting, with arm
twisting, backroom deals, and the like. Examples of the procedure are analyzed by
Brams and Fishburn (1981, 1983) and Fishburn, Fishburn and Hagy (1992). The latter
paper describes instances in which dozens of time-consuming votes were taken to elect
a candidate, leading some to refer to the procedure as "election by exhaustion"; such
contests were common in U.S. national party conventions in the 19th and early 20th
centuries [Brams (1978, Chapter 2)].

Successive majority voting uses a series of simple majority votes between
subsets of X. The first vote is between subsets A and B for which A U B = X and
both A \ B and B \ A are nonempty. If A wins the first vote, the candidates in B \ A
are eliminated and, if A > 2, a second vote is taken between Al and A2 for which
Al U A2 = A and both A \ A2 and A2 \ A are nonempty. If B wins the first vote, the
candidates in A \ B are eliminated; if B] > 2, a second vote is taken between B 1 and
B2 for which B1 U B2 = B and both B1 \ B2 and B2 \ B 1 are nonempty. At each vote, the
remaining candidates not in the winning subset are eliminated. The process continues
until a single candidate, the final winner, remains. Example 1.1 gives an example.
The first vote, between al and a2, is viewed as a vote between A = {al,a3 , .. ., am}
and B = {a2, a3, ... , am} since the winning subset remains in contention after this
vote. Succeeding votes can be interpreted similarly as votes between two subsets of
the candidates not yet eliminated.

7.2. Binary multistage voting

Farquharson (1969) discusses a generalization of successive majority voting that we
refer to as binary multistage voting. The votes proceed between subsets as described
in the preceding paragraph with the following modifications: abstentions are not
permitted, each vote is decisive, and, when m > 4, the decision rule in each
stage need not be simple majority. However, the decision rules must be monotonic,
nondictatorial, and responsive to every voter's vote: see Farquharson (1969, p. 14) for
precise definitions. To be satisfied, his conditions require at least three voters.

The two subsets and the decision rule used for each potential binary vote are
specified in advance. A strategy, or ballot in our previous terms, says which of the
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two subsets the voter votes for in each case that might arise. Our previous definitions
of sincere, admissible, and strategyproof strategies are patterned after Farquharson's
definitions. He assumes that voters have linear preference orders on X. A strategy is
sincere if, in any vote between subsets A and B, the voter votes for A if the top candidate
in A \ B is preferred to the top candidate in B \ A, and votes for B when the reverse
obtains. A strategy is admissible if it is not dominated by another strategy, where
dominance is based on contingencies, as in Section 5. And a strategy is straightforward
(strategyproof by our earlier definition) if it is the unique admissible strategy.

One further definition leads to Farquharson's main theorem for straightforwardness.
When A and B are nonempty subsets of X, A,B} separates a voter's preference
order t if either the least preferred candidate in A bears > to the most preferred
candidate in B, or the least preferred candidate in B bears > to the most preferred
candidate in A.

Theorem 7.1. A binary multistage voting procedure is straightforward for a voter
if and only if {A, B} separates his or her linear preference order for every potential
binary vote between subsets A and B that might arise during the voting.

For example, if m = 3 and the first vote is between a, b} and {c}, then abc, bac,
cab and cba have straightforward strategies (the separation in each case is shown by
the slash: ab/c, ba/c, c/ba, and c/ab), but acb and bca do not because c divides a from
b (no slash can separate these orders into a, b} and {c}). If the first vote is between
{a, b} and {b, c}, then only abc and cba have straightforward strategies (in these cases,
there is a common element on both sides of the slashes: ab/bc and cb/ba). Farquharson
notes that no binary multistage voting procedure can be straightforward for all linear
orders.

He also introduced the term sophisticated voting to characterize voting strategies
arrived at by recursive analysis when every voter knows the others' preferences and it is
assumed that every voter uses an admissible strategy. A strategy is primarily admissible
strategy if there is no other strategy which produces at least as good an outcome in
every contingency where other voters use admissible strategies, and produces a better
outcome in some such contingency. A strategy is secondarily admissible strategy if
it is primarily admissible when all other voters use primarily admissible strategies.
Continuation leads to ultimately admissible strategies, which are called sophisticated
strategies.

Theorem 7.2. When all voters have linear preference orders and know each others
preferences, every voter has a unique sophisticated strategy for every binary multistage
voting procedure.

The voting strategies described in Example 1.1 are sophisticated. As seen there,
sophisticated strategies need not be sincere. Indeed, insincere sophisticated strategies
are prime examples of a procedure's susceptibility to strategic manipulation.

Farquharson (1969, p. 43) notes that the conclusion of Theorem 7.2 does not extend
to multistage nomranked voting when votes are taken for three or more competing
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subsets in some stages. This does not, of course, mean that such systems are free from
strategic manipulation but only that voters need not have uniquely best strategies under
the type of calculation that produces sophisticated strategies. For example, plurality
with a runoff is rife with strategic possibilities: if one's favorite candidate cannot win,
there may be several ways to defeat one's worst candidate, either by helping to prevent
him or her from making the runoff, or by helping someone else win against him or
her in the runoff.

7.3. Paradoxes

Although multistage nonranked voting procedures are very popular and can serve a
group's practical needs, they are subject not only to strategic manipulation but also to
a variety of anomalies, or paradoxes, that are often not recognized by their proponents.
The paradoxes can arise under naive or sincere voting in the absence of strategic
calculations; indeed, they can subvert a procedure's purpose of electing a candidate,
in a democratic manner, that best serves the interests of a group.

An array of paradoxes for multicandidate voting procedures is described and
analyzed by Riker (1958), Fishburn (1974a, 1981b, 1982), Niemi and Riker (1976),
Doron and Kronick (1977), Doron (1979), Gehrlein (1983), Fishbum and Brams
(1983), Saari (1984, 1987, 1989, 1994), Moulin (1988a), Brams, Kilgour and Zwicker
(1998), Scarsini (1998) and Nurmi (1998a,b, 1999), among others. We illustrate five
of these for multistage nonranked procedures under sincere voting.

The dominated candidate paradox [Fishburn (1974a)] occurs when all voters prefer
another specific candidate to the winner. Suppose the 13-voter voter preference profile
of Example 4.1 holds and successive majority voting is used with voting order acbx.
The winners under sincere voting after the three votes are c, b, and x, respectively, so
x wins the election. However, all voters prefer a to x. It follows that, when m > 4,
successive majority voting does not satisfy the Pareto dominance condition (2.1).
Theorem 7.2 applies to this case and, if all voters use their sophisticated strategies, c
would be elected. Including sincere voting on the third vote, the sophisticated strategy
of the 4 voters with ranking axbc is to vote for a whenever possible, and to vote for b
if b faces c. The sophisticated strategies of the 9 voters with rankings caxb and bcax
are to vote for c whenever possible, and to vote for a if a faces b. Only the latter
voters, with ranking bcax, have insincere sophisticated strategies.

The winner-turns-loser paradox [Doron and Kronick (1977)] illustrates the failure
of monotonicity that occurs under sincere voting when the winner would have been a
loser if some voters had ranked this candidate higher in their preference orders, all else
unchanged. An example for plurality with a runoff occurs with the 93-voter preference
profile in which

42 voters have cab;
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The first-vote plurality winners are a and c, with c beating a 66-to-27 in the runoff.
If 4 of the first 27 voters had raised c from third place to first, the profile would have
been

23 voters have abc
46 voters have cab
24 voters have bca.

Now the first-vote winners are b and c, with b beating c 47-to-46 in the runoff. Thus,
c changes from a winner to a loser when it gains support.

Another anomaly, which is closely related to the winner-turns-loser paradox, is
the no-show paradox [Fishburn and Brams (1983)]. It occurs when the addition of
identical preference orders with candidate x ranked last changes the winner from
another candidate to x. This occurs in the preceding example when we begin with
the second profile, where b wins under plurality with a runoff. If we then add from
two to 42 voters to the group with ranking abc who have c in last place, c wins.
Additional analyses of the paradox are in Ray (1986), Moulin (1988b) and Holzman
(1988-1989). The key to both this paradox and its predecessor is who gets scratched
after the first vote. It does not depend on the Condorcet paradox, wherein majorities
cycle, which happens to occur in these examples. The main three-candidate example
in Fishburn and Brains (1983) has a majority or Condorcet candidate (see Section 8),
but the no-show paradox still occurs when that candidate is scratched after the first
vote for one of the voter preference profiles.

Our fourth paradox, the multiple-districts paradox, occurs when one candidate would
win in each of a number of districts separately but loses the combined-districts election.
A two-districts example in Fishburn and Brams (1983) shows for a three-candidate
election conducted by plurality with a runoff, one candidate would win in each district
but lose the overall combined-districts election. Moreover, each of the other candidates
has a sizable majority over the candidate who would win in each separate district. We
return to this phenomenon in Section 9, where its proscription is noted to be a central
axiom of positional voting procedures like Borda's.

Our final paradox in this section (others will be discussed in Section 9.3) is
the multiple-election paradox [Brams, Kilgour and Zwicker (1998), Scarsini (1998),
Nurmi (1998b, 1999)]. Consider a referendum in which voters can vote either
yes (Y) or no (N) on each proposition on the ballot. The paradox occurs when
the set of propositions that wins, when votes are aggregated separately for each
proposition (proposition aggregation), receives the fewest votes when votes are
aggregated by combination (combination aggregation). As an example, suppose there
are 3 propositions, so there are 23 = 8 combinations because each voter can make
one of two choices (i.e., Y or N) on each proposition. Suppose further that there are
13 voters who cast the following numbers of votes for each of the eight combinations:

YYY:I YYN:1 YNY: NYY: YNN:3 NYN:3 NNY:3 NNN:0.

For example, YYN means a Y vote on the first and second propositions and an N vote
on the third.
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Notice that on each of the three propositions, N beats Y by 7 to 6 votes, so NNN
wins according to proposition aggregation. However, NNN is the only combination that
receives 0 votes, illustrating the dramatic difference that can arise between proposition
aggregation and combination aggregation (YNN, NYN, and NNY tie for first place
with 3 votes each). It turns out that the existence of this paradox implies that majorities
cycle, but not vice versa, and actually occurred in the 1990 California general election,
as did some variants of the paradox [Brams, Kilgour and Zwicker (1997)].

This paradox vividly illustrates the conflict that can occur between the two vote-
aggregation procedures. Like the other paradoxes, it does not depend on either sincere
or strategic voting: voters may be perfectly sincere in voting for their preferred position
on every proposition, or they may be strategic (in some sense). The paradox says only
that majority choices according to proposition aggregation may receive the fewest votes
according to combination aggregation.

8. Condorcet choices and ranked voting

We continue to assume that IXI > 3 and k = 1 so that F(d) = F(X, d) is a nonempty
subset ofX for every ballot response profile d e D. In addition, V with typical member
U = (i, . .. , ,,) is a set of voter preference profiles. The Condorcet set, or majority
set, for v C V is

Con(v)= {a C X: {i: a i b}l > {i: b ti a}l for all b X}

= {a EX: I{i: a >-i b}l > [{i: b >-i a}l for all b X},

and a candidate in Con(v) is a Condorcet candidate or majority candidate. Con(v) is
empty if and only if every candidate can be beaten by another candidate in a sincere
simple majority vote between the two, presuming a voter abstains if and only if he or
she is indifferent between the two. When n is odd and every >-i in v is a linear order,
ICon(v)l C {0, 1}. If all voters are indifferent among all candidates, Con(v) = X. We
also denote by >M the strict simple majority relation on X induced by a profile v, so
that a >M b if {i: a -i b} > {i: b >-i all, with Con(v) = {a C X: b >M a for no
b G X \ {a}}.

Our discussion of Con(v) is divided into three parts. The first considers combinato-
rial aspects of >M and Con(v). The second relates Con(v) to voting procedures defined
in preceding sections, and the third examines Condorcet social choice functions, which
are designed to elect a candidate which has a strict simple majority over every other
candidate when such a candidate exists.

8.1. Condorcet combinatorics

Under this heading we describe studies devoted to the structure of >M and Con(v).
As before, n is the number of voters and m is the number of candidates. In addition,
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VL will denote the set of all voter preference profiles for (m, n) in which every i is
a linear order or strict ranking.

Some time ago, McGarvey (1953) showed that if n is large enough compared to
m, then for every asymmetric binary relation on X there is a v G VL that has this
relation as its >M. The question then arose as to the smallest n, denoted by o(m),
for which this is true when IX = m. Stearns (1959) proved that (m) < m + 1 for
odd m, (m) < m + 2 for even m, and equality holds here when m E {3, 4, 5}. He
showed also that o(m) > [(log 3)/2]m/(log m), where log denotes the natural logarithm.
Erd6s and Moser (1964) then noted that o(m) < clm/(log m) for a fixed constant cl.
Precise values of o(m) are unknown beyond the first few m, and the question of whether
o(m)(log m)/m tends to a limit as m oc remains open.

Riker (1958, 1982) and Gehrlein (1983), among others, describe multicandidate
cases in practice that probably had no Condorcet candidate. One technical approach
to the likelihood of Condorcet's paradox focuses on the proportion p(m, n) of the
(m!)f profiles in VL that have a Condorcet candidate that bears >M to every other
candidate. If each voter independently chooses one of the m! rankings at random
(i.e., according to the uniform distribution), then p(m, n) is the probability that one
candidate has a strict majority over every other candidate. Early studies of p(m, n)
include Guilbaud (1952), Niemi and Weisberg (1968), and DeMeyer and Plott (1970),
with later refinements by Gehrlein and Fishburn (1976, 1979). It is easily seen that
p(3 , 3) = 17/18, but exact computations for m > 3 or n > 3 get complex very quickly.
The most efficient method for three candidates [Gehrlein and Fishburn (1976)] uses

n !2-( n2+ n3)
p(3, n) = 3+ E n !n2!n3!4!'

where E is a triple sum with limits {0 < nI < (n - 1)/2, 0 < n2 < (n - 1)/2 - n,
0 < n3 < (n - 1)/2 - n and n4 = n - nI - n2 - n3. The most efficient method known
for three voters [Gehrlein and Fishburn (1979)] uses

- Ii -m I l (m - 1 - ml)!(m - 1 - m2)!

' 0 m!(m - 1 -ml-m2)!(ml +m2 + 1)
rnll=0O 2=O

When m > 4 is even and n is odd, there is a nice recursion relation for p(m, n). The
simplest case [May (1971)] is

p(4, n) = 2p(3, n) - 1.

The recursion for m = 6 and n odd is

p(6, n) = 3p(5, n) - 5p( 3 , n) + 3,

and in general [Gehrlein and Fishburn (1976)]

m2/2

p(m, n) = , cjp(2j - 1, n),
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where the cim coefficients are independent of n. No similar relationship holds for odd m.
With limiting proportion

p(m) = lim p(m, n),
n o

Guilbaud (1952) showed that

p(3) = + 23 sin-' () - 0.91226,

and Niemi and Weisberg (1968) proved that p(m) equals m times the (m - 1)-
dimensional normal positive orthant probability with all correlations equal to . An
approximation accurate within one-half of one percent for odd m < 50 is

p(m) - 9 + (0.63)(_-3)/2
m + 9.53

A more complex but more accurate approximation appears in Gehrlein (1999). Many
additional results along this line appear in Kelly (1974), Fishburn, Gehrlein and Maskin
(1979) and the extensive reviews of Gehrlein (1983, 1997).

We now turn to restrictions on voter preferences which imply that >M is acyclic, or
that Con(v) is nonempty. Based on the approach taken by Ward (1965) and Sen and
Pattanaik (1969), let T denote a subset of the m! linear orders on X = {1,2, .. ., m},
and define T to be acyclic if there do not exist a, b, c G X and three orders in T whose
restrictions on {a, b, c} are abc, cab, and bca. Interest in T stems from the following
basic proposition, where V(T) denotes the set of all nonempty finite lists (any number
of voters) of linear orders in T and vA for A C X is the restriction to A of v G V(T).

Theorem 8.1. Con(vA) is nonempty for every v V(T) and every A C X with
3 < IAI < m if and only if T is acyclic.

Several people, including Kim and Roush (1980), Abello and Johnson (1984),
Abello (1991), Craven (1996) and Fishburn (1997), have considered how large T can
be while providing the guarantee of Condorcet candidates given by Theorem 8.1. We
let

f(m) = max{lTI: T is acyclic forX = {1, ... , m}},

and remark that T is acyclic if and only if, for all a < b < c in X, the restrictions
of T's orders to {a, b, c} must exclude at least one order in each of the cyclic triples
{abc, cab, bca} and {acb, bac, cba}. Thus f(3) = 4. In addition, f(4) = 9 [Abello
(1981), Raynaud (1982)] with acyclic

T = {1234, 1324, 1342,3124,3142,3412,3421,4312,4321},

f(5) = 20 [Fishburn (1997)] and, based on an example of Bernard Monjardet and a
construction procedure in Craven (1996) and Fishburn (1997),f(6) > 45,f(7) > 100,
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and f(8) > 222. It is known also that the optimal pattern for max T undergoes a
paradigm shift near m = 10, thatf(m) > (2.1708)" for all large m, and, as proved by
Raz (2000), thatf (m) < c for some constant c2 and all m.

Nonmaximum but natural restrictions on voters' preferences that guarantee Con-
dorcet candidates include single-peaked preferences [Galton (1907), Arrow (1951),
Black (1958), Fishburn (1973)]. A typical case occurs when the candidates can be
ordered along a line and each voter's preferences, left-to-right, increase up to a most
preferred candidate and then decrease. With no loss of generality we use the natural
order 12 ... m for X = {1,2 ... , m}. The following definition generalizes weak order
by allowing each ji to be a partial order, which means that its asymmetric part -i
is irreflexive and transitive.

Definition 8.2. A voter preference profile = (il,..., fi) of partial orders on
X = {1,2, ... , m} is single peaked in the order 12 . m if, for each i {1, ... , n},
there are unique ai, bi e X with a < bi such that, for all x,y,z G X:
(i) x < y ai y -ix x
(ii) bi < y < x y Fi x
(iii) ai < y < bi ~ y i x
(iv) (x < y < z,x i Y,Y -i z) X x i z.

The candidates in [ai, bi] are voter i's preference plateau. The following theorem
[Fishburn (1973, p. 108)] locates Con(v) as a nonempty interval of integers:

Theorem 8.3. Suppose v is a single-peaked voter preference profile of partial orders
as specified in Definition 8.2. Let cl, c2, ... , c2,, be a rearrangement of the sequence
a, ... , a,,bl,..., b with cl < c2 <... < C2. Then

Con(v) = {x E X: c < x Cn + }i

Strategyproofness for single-peaked preferences is discussed by Moulin (1980),
Berga (1998), and Ching and Serizawa (1998). Other restrictions on voter preferences
are discussed in Chapter 3 in this Volume, and Chapter 21 in Volume 2 of this
Handbook.

8.2. Nonranked voting and Condorcet candidates

This section considers the propensities of nonranked voting procedures to elect
Condorcet candidates when Con(v) is nonempty. As in Section 6, we let M denote the
single-stage nonranked voting procedure characterized by M in Definition 5.1. We also
let M+ denote the two-stage runoff procedure in which the first vote is a procedure-M
vote and the two candidates with the most votes on the first vote go against each other
in the runoff, whose outcome is determined by simple majority voting. Thus, 0,1 }+
is plurality with a runoff, and {0, 1, ... , m - 1 }+ is approval voting with a runoff.
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Inada (1964) proved that Con(v) is nonempty if all preference weak orders in profile
v are dichotomous. Using previous results, which presume Assumptions P and R
in Section 5.2, we can prove more than this, namely that the use of admissible
strategies under approval voting and dichotomous preferences always yields Con(v) as
the outcome. Moreover, for every other M procedure, the use of admissible strategies
may give an outcome that contains no Condorcet candidate. The following definition, in
which preference orders are mapped into admissible strategies, will be used to express
these results more precisely.

Definition 8.4. For any nonempty list v = ( ..., .,) of preference orders, and every
nonranked voting procedure M, let v(M) be the set of all d = (dl, ... , dn) in which
di is an admissible strategy for M and i. For every d C v(M), let F(d) = F(X, d),
the outcome for ballot response profile d under procedure M.

To illustrate, suppose v = (abc, abc, c(ab)): two voters prefer a to b to c; the other
is indifferent between a and b and prefers c to both. Assume that M is the plurality
procedure. By Corollary 6.5, each of the first two voters has two admissible strategies,
fa} and {b}, and the third voter has one. The outcomes of the 4 = 2 x 2 x 1 members
of v(M) are {a}, {a, b, c}, {a, b, c} and {b}.

Theorem 8.5. If all preference orders in v are dichotomous and M is the approval
voting procedure, then F(d) = Con(v) for all d E v(M).

In other words, if all voters have dichotomous preferences, their use of admissible
strategies under approval voting invariably yields Con(v) as the outcome.

To see how plurality voting differs with dichotomous preferences, suppose X =
{a, b, c} with 2n + 1 terms in v: one is a(bc), n are b(ac), and n are (ac)b. Then
Con(v) = {a}. However, if as few as two of the n with (ac)b vote for c (voting for
either a or for c is an admissible strategy under plurality voting), then the outcome is
{b}, which is disjoint from Con(v). The following theorem shows that a similar result
holds for every procedure other than approval voting:

Theorem 8.6. Suppose M is a nonranked voting procedure other than approval voting.
Then there is a v composed entirely of dichotomous preference orders and a d E v(M)
such that F(d) and Con(v) are disjoint.

In contrast to the definitive picture for dichotomous preferences, comparisons among
approval voting and other M procedures are less clear-cut when some voters partition
X into three or more indifference classes. Reviews by Merrill (1988) and Nurmi
(1987), based primarily on computer simulations [see also Bordley (1983), Chamberlin
and Featherston (1986), Fishburn and Gehrlein (1976, 1977, 1982), Nurmi (1988),
Regenwetter and Grofman (1998)], suggest that approval voting is generally as good
as or better than other M procedures, particularly plurality voting [Nurmi and Uusi-
Heikkila (1985), Felsenthal and Maoz (1988)], in electing Condorcet candidates.
Indeed, it compares favorably with most positional scoring procedures (Section 9) not
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only in terms of its Condorcet efficiency [Merrill (1985)] but also in terms of the
"social utility" of elected candidates [Weber (1977, 1995), Merrill (1984, 1988)].

We now integrate runoff procedures of type M+ into the picture. Generally speaking,
these procedures are less sincere than M procedures, and plurality with a runoff
is less sincere than approval voting with a runoff because the former is more
restrictive when preferences are dichotomous. Neither runoff approval nor plurality
is strategyproof, even when preferences are dichotomous. Runoff approval voting,
especially, is susceptible to severe manipulation effects and is even more manipulable
when preferences are not dichotomous. For example, if a sizable minority of voters
has preference order abc and is fairly sure that a would beat c but lose to b in a runoff,
these voters may well vote {a, c} on the first vote in an attempt to engineer a runoff
between a and c. Other examples, and more precise statements of results, are given in
Fishburn and Brams (1981a) and Brams and Fishburn (1983).

Our next theorem considers Condorcet candidates under sincere voting. A sincere
strategy for M+ is a strategy whose M vote is sincere according to Definition 6.7 and
whose vote in the runoff is sincere.

Theorem 8.7. For both M and M+ procedures, there exist sincere strategies that
will elect a Condorcet candidate under approval voting but not necessarily under any
other procedure.

This is not to say, however, that all sincere strategies guarantee the election of a
Condorcet candidate when one exists and approval voting is used. But it is possible to
make this guarantee in some cases.

Example 8.8. Suppose m = n = 3 and v = (xab, (ax)b, (bx)a). Then Con(v) = {x}.
Under approval voting, the only admissible strategies for voters 2 and 3 are {a,x}
and {b,x}, respectively. The first voter has two sincere admissible strategies, {x} and
{x, a}, and x wins for both. Hence, approval voting must elect x when voters use sincere
admissible strategies.

Consider plurality, runoff plurality, and runoff approval voting. The following
strategies are admissible and sincere for all three procedures on the first or only vote:
1 votes for x, 2 for a, and 3 for b. These do not guarantee the election of x under
plurality, nor under a runoff procedure where the runoff pair could be {a, b}. U

A second example demonstrates that when all voters use admissible but not
necessarily sincere strategies, a Condorcet candidate's election may again be ensured
only under approval voting.

Example 8.9. Suppose m = 3, n = 4, and

v = ((xa)b, (xa)b, xba, bxa),

so Con(v) = {x}. All admissible strategies for approval voting are sincere
(Theorem 6.8) and will elect x. But if the last two voters vote for b under plurality
voting, x's election would not be ensured. Moreover, if in a runoff the first two voters
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vote for a on the first vote and the other two vote for b, neither runoff plurality nor
runoff approval voting would elect x. Thus, not only may approval voting be the only
procedure to guarantee the election of a Condorcet candidate when voters are restricted
to sincere admissible strategies, but it also may be the only procedure to provide this
guarantee when voters are less constrained and can use any admissible strategy. ·

We generalize these examples in the following theorem for plurality and approval
voting, with or without a runoff. When x beats all other candidates by simple majority
comparisons, x is a strict Condorcet candidate.

Theorem 8.10. Suppose all voters use admissible strategies on the first vote (if there
is a runoff) or only vote (if there is not) and, if there is a runoff vote on the runoff
if and only if they are not indifferent between its two candidates. Then, for all m > 3
and all voter preference profiles for m candidates,

[x must be elected under runoff plurality voting]
= [x must be elected under runoff approval voting]
= [x must be elected under plurality voting]

I [x must be elected under approval voting]
X [x must be a strict Condorcet candidate].

Because examples can be constructed to show that the converse implications are
false, the ability of a procedure to guarantee the election of a strict Condorcet candidate
is highest for approval voting, next highest for plurality voting, third highest for
runoff approval voting, and lowest (essentially nonexistent) for runoff plurality voting.
Moreover, approval voting also encourages the use of sincere strategies. Because
procedures with more complex choice criteria do not [Merrill and Nagel (1987),
Merrill (1988)], voters need not resort to insincere strategies to elect Condorcet
candidates, if they exist, under the approval voting procedure.

The primary mathematical analyses of the likelihood that a rule of type M or M+ will
choose a Condorcet candidate, given that one exists, appear in Gehrlein and Fishburn
(1978a) and Gehrlein (1981, 1982, 1993, 1995), with a review in Gehrlein (1997,
pp. 190-194). Under random choices of voter rankings for VL and the presumption
of sincere voting, the limiting conditional probabilities in n that plurality and runoff
plurality will elect a Condorcet candidate for m = 3 are 0.7572 and 0.9629, respectively
[Gehrlein and Fishburn (1978a), Gehrlein (1993)]. Given m = 3 with n = 3j,
j E {1,3, 5, ... }, Gehrlein (1982) obtained closed-form expressions for the conditional
probability of electing the Condorcet candidate (given that one exists) under a different
probabilistic preference order assignment called "impartial anonymous culture". The
expression for plurality voting is

119n4 + 1348n 3 + 5486n2 + 10812n + 10395 119 .
= 0.8815,

135(n + 1)(n + 3)2(n + 5) 135
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and for runoff plurality is

523n4 + 6191n3 + 25117n2 + 40749n +22140 523 .
- = 0.9685.

540(n + l)(n + 3)2(n + 5) 540
Gehrlein (1995, 1997) includes tables which show how such Condorcet likelihoods
change as social homogeneity, measured by a parameter in a contagion model of
choices of preferences, varies. As one would expect, for most voting procedures social
homogeneity increases the likelihood that Condorcet candidates will be elected.

8.3. Condorcet voting procedures

A number of voting procedures have been proposed whose aim, in part, is to elect
a strict Condorcet candidate x (x >M y for all y x in X) when one exists
[Condorcet (1785), Fishbum (1977), Richelson (1979), Straffin (1980), Riker (1982),
Dummett (1984), Schwartz (1986), Tideman (1987), Nurmi (1987, 1998a), Merrill
(1988), Levin and Nalebuff (1995), Le Breton and Truchon (1997)]. Apart from the
highly manipulable successive majority procedure of Section 7.1, none is widely used
in practice. We therefore merely outline various procedures and leave most details of
their axiomatic and strategic analysis to the references.

We simplify matters considerably by assuming that voters have linear preference
orders and vote sincerely. In some cases, the ballot response profile d is taken to be
equal to the voter preference profile v, whereas other cases only require d to reveal
certain aspects of v, such as >M on X. We say that a procedure is a Condorcet voting
procedure if F(X, d) = {x} whenever x is a strict Condorcet candidate. We define an
even dozen such procedures, which are partitioned into three groups according to the
information needed to determine the social choice set F(X, d), which we denote simply
by F. The names of most procedures are explained more fully in Fishburn (1977).

A Condorcet voting procedure is a C1 procedure if >M is sufficient to determine
F. We note six C1 procedures
(1) Copeland' procedure [Copeland (1951), Goodman (1954), Henriet (1985)] has

x F if x maximizes I{y: x >M y} - I{y: y >M x}l. It always chooses a strict
Condorcet candidate when one exists, but its F can be disjoint from a nonempty
Con(v). The four-voter profile v = (xyabc,xybac, cbaxy, yacbx) has Con(v) = {x}
but F = {y}.

(2) Miller's procedure [Miller (1980, 1995), Shepsle and Weingast (1984), Epstein
(1998)] takes x E F if x is in the uncovered subset of (X, >,M), i.e., if whenever
y >M x there is a z E X such that z >M y and x >M z, where x >M z means that
not (z >M x) or that x beats or ties z.

(3) Fishburn procedure [Fishbum (1977)] defines >M by a >' b if z >M a =} z >M b
for all z E X, and for some z, a >M z >M b. Then x E F if no y has y > x. The
relation >M is a strict partial order (asymmetric and transitive), so (X, >M) always
has maximal candidates when X is finite. Fishburn's choice set is always included
in Miller's choice set, and the inclusion can be proper. Another Condorcet voting
procedure with this property is described by Dutta (1988).
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(4) Schwartzs procedure [Good (1971), Schwartz (1972, 1974)] defines > as the
asymmetric part of the transitive closure of >M, and takes x E F if no y has
y >M x. Like >, > is a strict partial order.

The next two definitions assume that x >M y ory >M x for all distinct x, y E X, i.e.,
that (X, >M) is a tournament. This is always true under preceding assumptions when
n is odd.
(5) Banks s procedure [Banks (1985), Miller, Grofman and Feld (1990)] takes x e F

if x is the maximum candidate of a maximal transitive subtournament of (X, >M).
In other words, if (Y, >M) is a >M-linearly ordered subset of (X, >M) and no other
linearly ordered subset (Z, >M) has Y c Z, then the candidate in Y that beats all
others in Y is in F.

(6) Slater procedure [Slater (1961), Laffond and Laslier (1991), Laslier (1997)] takes
x E F if x is the maximum candidate in a linear ordering of X which requires the
minimum number of reversals of pairs in >M to achieve linearity. Charon, Hudry
and Woirgard (1997) define a 16-vertex tournament for which the choice sets of
the Banks and Slater procedures are disjoint.

For v E VL and distinct x,y E X, let v(x,y) denote the number of voters who prefer
x to y, so v(x,y) + v(y,x) = n when there are n voters. We refer to a Condorcet voting
procedure as a C2 procedure if it is not a Cl procedure and the v(x,y) counts suffice
to determine F. We consider four C2 procedures:
(7) Blacks procedure [Black (1958)] takes F = Con(v) if Con(v) is nonempty;

otherwise, F is the set of Borda winners, so that x E F if Yz v(x, z) > jz v(y, z)
for ally eX.

(8) Nansons procedure [Nanson (1907), Hoag and Hallett (1926), Black (1958),
Nurmi (1989), McLean (1996)] is a Borda-elimination procedure that is a
Condorcet voting procedure. Let v(x,A) = >yCA (x,y). Let Al = X and for
each j > 1 let Aj+ = A \ x Aj: v(x,Aj) < v(y,Aj) for all y E Aj, and
v(x, A) < v(y,Aj) for some y C A}). The Aj decrease to a nonempty limit set A*,
which is F for Nanson's procedure.

(9) Condorcets procedure [Condorcet (1785), Black (1958)] is a maximin procedure.
Let v.(x) = min{v(x,y): y E X \ {x}}. Then x c F if x maximizes v(x) over X.

Young (1988) argues that the next procedure is more in keeping with Condorcet's
intentions when there is no Condorcet candidate.
(10) Kemeny procedure [Kemeny (1959)] takes x C F if x is the maximum candidate

in a linear ordering L of X that maximizes ,{v(a, b)L(a, b): a, b E X}, where
L(a, b) = 1 if aLb and L(a, b) = 0 otherwise. This procedure is axiomatized by
Young and Levenglick (1978); also see Young (1988, p. 1242).

Finally, we define a Condorcet voting procedure as a C3 procedure if it is neither a
C1 nor C2 procedure. We note two C3 procedures:
(11) Dodgson s procedure [Dodgson (1876), Black (1958), Fishburn (1973)], named

after the Rev. Charles Lutwidge Dodgson, a.k.a. Lewis Carroll, is based on the
minimum number of reversals in the linear orders in v by which a candidate beats
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or ties every other candidate under simple majority comparisons. Denote this
minimum reversals number for x by r(x, v), and let r*(x, v) = limNo r(x, Nv)/N,
where Nv is v replicated N times (so Nv has Nn voters). Dodgson's procedure
takes F as the set of candidates that minimize r*(x, v).

(12) Youngs procedure [Young (1975b)] is based on the largest number of terms
(voters) in a sublist of v for which a candidate beats or ties every other candidate
under simple majority applied to the sublist. Denote this largest number for x
by l(x, v) and, if no sublist has the noted property for x, let l(x, v) = 0. Then let
l* (x, v) = limN -, l(x, Nv)/N. Young's procedure takes F as the set of candidates
that maximize l*(x, v).

Along with the strict Condorcet property, all 12 procedures are anonymous, neutral,
and homogeneous in the sense that F remains invariant to replications No of v. All were
intended to yield a "good" choice set in the absence of a strict Condorcet candidate,
but some seem better than others in this regard. Apart from the Miller, Banks, and
Slater procedures, a comparative analysis of other properties these procedures do and
do not satisfy is given in Fishburn (1977). For example, all except Schwartz's procedure
satisfy the Pareto condition (2.1), and all except Nanson's and Dodgson's procedures
are monotonic. Another appealing property is Smith s Condorcet principle Smith
(1973)], which says that if X can be partitioned into nonempty A and B such that
a >M b for all (a, b) E A x B, then F contains no candidate in B. This is violated by
procedures 7, 9, 11 and 12, but it holds for the others.

9. Positional scoring procedures and Borda choices

Along with XI = m > 3 and k = 1, we assume throughout this section that the ballot
set B is a set of linear orders or strict rankings of X, except when noted otherwise. We
take D = 3n when n is fixed. It is convenient, however, in the present setting to extend
our prior definition of a social choice function by letting n range over the positive
integers with

D+ =31 U B 2 U 33 U ...

and with F+ defined on {X} x DT. The extended form is used in axiomatizations of
positional scoring procedures, which we will consider shortly.

9.1. Positional scoring procedures

Positional scoring procedures include Borda's method and those in which the
differences between the points awarded to candidates in successive positions on a
voter's ballot are not equal. We denote by sj the points awarded to a candidate in
position and refer to s = (sls 2, . .. , s,,) as a positional scoring vector. It is assumed
that sl > 2 > .-- > s,, and s > s,. Borda's method as described in Section 1 has
s = (m- ,m-2, ... , 1,0).
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For every x E X, every j E 1, ... , m}, and every ballot response profile
d = (dl, ... , dn) in B", let d(x,j) denote the number of voters who rank candidate x
injth position. Clearly, d(x, 1) + d(x, 2) + -.. + d(x, m) = n. The score of candidate x
for ballot response profile d with respect to positional scoring vector s is

m

s(x, d) = sjd(x,j).
j=l

The positional scoring procedure for s takes F(X, d) or F+(X, d) as the subset of
candidates that maximize s(x, d) over X for each d in D or D+.

The positional scoring procedures for s and s' are equivalent when there is a
positive number a > 0 and a real number fi such that s' = as + (, ... , /3); then
s'(x, d) = as(x, d) + /3n, and the maximizing subsets for s and s' are identical. Moreover,
if s and s' are not so related, then in the extended formulation there will be a d G D+

at which F+(X, d) differs for s and s'. Because of equivalence, we can set Sm = 0 with
no loss of generality. If, in addition, s were fixed at 1, then each different positional
scoring procedure in the extended formulation would be characterized by a unique s.

Plurality voting has s = (1,0,..., 0); the procedure which assigns 3 points to a
first-place candidate, 1 point to a second-place candidate, and zero points thereafter
has s = (3, 1, 0, ... , 0). Apart from plurality voting, positional scoring procedures are
seldom used in practice. The one exception is the use of Borda's method in elections
with small numbers of candidates and voters. We note for the Borda procedure with
s = (m - 1,m - 2, ... , 1,0) that s(x,d) is identical to the aggregate number of
candidates ranked lower than x on all ballots. We used this fact in describing Black's
procedure and Nanson's procedure in the preceding section.

9.2. Axioms

Positional scoring procedures have been axiomatized by Smith (1973) and Young
(1975a), and axiomatic characterizations of Borda's method are given in Young (1974),
Hansson and Sahlquist (1976), and Nitzan and Rubinstein (1981). We note versions
of these and then show how their extended formulation yields axioms for approval
voting.

Positional scoring procedures are not subject to the multiple-districts paradox of
Section 7.3. To express this axiomatically, we use Young's formulation in which H is
the set of all functions t that map the m! linear orders on X into nonnegative integers
with ot > 0 for some order. Each summary profile rt, which presumes anonymity, tells
how many voters have each linear order for a ballot response profile in the D+ setting.
For convenience we let C(Tr) = F+(X, d) when d generates T. Young's (1975a) axiom
that avoids the multiple-districts paradox is referred to as

consistency: C(r) n C(;r') 0 X C(rT + a') = C(t) n C(tr'),

where ( + Tr')(>-) = r(>-) + or'(>-). This says that if two disjoint groups of voters
have some candidate in common in their social choice sets, then the choice set of the
combined groups consists of the common choices of the separate groups.
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Young's other axioms for positional scoring procedures are neutrality, monotonicity
(to obtain sl > s2 > ... > s,,), the nonconstancy condition for C (which then gives

sl > Sm), and the following condition of

continuity: If C(Z) = {x} and AT' is any other member of H,
then C(Nat + aT') = {x} for all sufficiently large integers N.

Young shows that consistency, neutrality, and continuity characterize C as a scoring
procedure for some s = (sl ... s,,); then monotonicity and nonconstancy yield
s > ... > m with s > s,,.

Theorem 9.1. Suppose C maps H into the nonempty subsets of X. Then C is a
positional scoring procedure if and only if it is nonconstant, neutral, monotonic,
consistent, and continuous.

Myerson (1995b) generalizes this theorem by not requiring voters to have linear
preference orders. He refers to the preceding consistency and continuity conditions as
"reinforcement" and "overwhelming majority," respectively. Young (1974) specializes
the preceding theorem to Borda's procedure, which is characterized by neutrality,
consistency,faithfulness [if n = 1, C(d) contains only the voter's first place candidate],
and a "cancellation property" whose primary function is to ensure that

s s2 = S2 -3 = = Snm l - S-.

Other conditions on a C of Theorem 9.1 that imply this equal-successive-difference
property for s are noted in Section 9.4.

Young's approach motivated the axiomatization of approval voting in Fishburn
(1978a). For the nonranked context, let H'* be the set of functions at that map the
subsets of X (approval ballots) into nonnegative integers with at > 0 for some subset,
and let o[x] = Z{:(A): x E A}, the number of voters whose ballots contain
candidate x. The approval voting choice set for at E * is the subset of candidates
that maximize at[x] over X.

Theorem 9.2. Suppose C maps HI:' into the nonempty subsets of X. Then
C is the approval voting procedure if and only if it is neutral, consistent
[C(t) n C(a') = N0 • C(: + r) = C() + C(at ')], and satisfies the disjoint equality
property which says that if t consists of exactly two ballots A and B with A X B and
A B=0, then C(r)=A U B.

A different characterization of approval voting that features strategyproofness with
dichotomous preferences (see Theorem 6.9) is included in Fishburn (1979a).

9.3. Paradoxes

Paradoxes of positional voting arise from the algebraic structure of positional scoring
procedures and their sensitivity to perturbations in ballot response profiles and
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positional scoring vectors [Zwicker (1991)]. They include choice-set paradoxes, which
focus on F or C, and ranking paradoxes, which consider the ways in which positional
scoring procedures rank candidates according to values of s(x, d) over X. The most
thorough analyses of these and many other paradoxes are included in Saari (1987, 1989,
1992, 1994, 1995a,b, 2000a,b, 2001b), Chapter 25 in Volume 2 of this Handbook, and
references cited below. We begin with examples of choice-set paradoxes.

Condorcet's "other paradox" [Condorcet (1785), Fishburn (1974a)] occurs when
there is a strict Condorcet candidate and every positional scoring procedure would
choose another candidate when sl > s2 > s3 > ... > s,,. The seven-voter response
profile in which

3 voters have xab
2 voters have abx
1 voter has axb
1 voter has bxa

yields x as the strict Condorcet candidate. However, s(a, d) - s(x, d) = s2 - s3, so x is
never in the choice set of a positional scoring procedure when S2 > 3.

Another choice-set paradox occurs when a winner turns into a loser after candidates
other than the winner are removed from X. Fishburn (1974b) constructs a profile for
any m > 3 candidates with a unique Borda winner x such that, for every Y c X with
x C Y and YI > 2 (except for one such Y with YI = 2), x is a Borda loser when the
Borda scores are recomputed on the basis of Y.

Removal of a candidate from X can affect the s-order of the remaining candidates
in specific or in arbitrary ways [Davidson and Odeh (1972), Fishburn (1974a, 1981b),
Saari (1982)]. Consider Borda's procedure applied to the seven-voter profile in which

3 voters have cbax
2 voters have baxc
2 voters have axcb.

The Borda scores for a, b, c and x are 13, 12, 11 and 6, respectively, so the Borda
order is a > b > c > x. When x is removed and Borda scores are recomputed for the
reduced profile, the Borda order is c > b > a, a complete inversion from the original.
Fishburn (1981b) generalizes this for any m > 3 by considering any s = (s, s2, ... , s)
with sl > s2 > > > Sm, and any t = (tl,t 2 , ... , tn 2 ) with tl > t2 > ... > t 1.
Let X = {x,x2, .. , Xm}. Given s and t, there is a profile r E H whose best-to-
worst s-order for X is x lx 2 ... Xm, whose t-order for X \ {xl } is xx,,_l - " x2, and
whose t-order for X \ {x,m} is Xm, - 1 X2X. Other profiles give a complete inversion
of the remaining candidates when an intermediate member of the s-order is removed.
Saari (1982) generalizes this by allowing s and t to be any nonconstant vectors, and by
prespecifying an s-order, a candidate to be removed, and a t-order on the remainder.
Then there is a profile that produces the prespecified orders.
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Fishburn (1981b) also considers complete inversions without removals. Let s
and s' be any two nonequivalent positional scoring vectors for m candidates with
sl > .. > s, and s > ... > s, . Then there is a C 17 with s-order
xlx2 ... x,,, and s'-order x," " x2xl. Saari (1984) generalizes this by considering any

h > 2 nonconstant and not necessarily monotonic scoring vectors s ... , sh and any
prespecified linear orders 1, . . , h on X. He proves that if s ... , s and (1, ... , 1)
are linearly independent, then there is a zr e II whose sJ-order is lj forj = 1, . . ., h.

9.4. In praise of Borda, mostly

Borda's procedure occupies a unique place among all positional scoring procedures
by being less susceptible than all other procedures to many unsettling possibilities and
paradoxes. For example, all positional scoring procedures are susceptible to strategic
manipulation [Nitzan (1985)], but Borda's procedure is least susceptible [Saari (1990a,
2001b)]. The next several paragraphs note other results favorable to Borda.

We begin with deterministic results. Smith (1973) showed for m > 3 that if d D+

has a strict Condorcet candidate x then SB(X, d) > SB(y, d) for some y X \ {x},
where sB denotes Borda's procedure. However, if s is not Borda's procedure, then there
is a d D+ with a strict Condorcet candidate x such that s(y, d) > s(x, d) for every
y EX\ {x}.

Saari (1987) generalizes this as follows. Let S denote a function on {A C X: AI > 2}
that assigns a positional scoring procedure s(A) to each such A: if AI = j,
s(A) = (s(A)I, ... , s(A)j), with s(A) necessarily the plurality or simple majority
procedure when A = 2. Let R on {A C X: A > 2} assign a weak order R(A) to
every such A, and let SB denote the S composed entirely of Borda procedures. Suppose
m = 3. If S = SB, then there is an R such that, for every Jr E H, the s(A)-order for r
on A is not the same as R(A) for at least one A. However, if S is not equivalent to SB,
then for every R there is a JZ E H such that the s(A)-order for Jr on A equals R(A) for
all A C X with AI > 2.

Saari (1989) goes further. For m > 3, let R[S] denote the set of all R for which
there is a X E IH such that the s(A)-order for 7r on A equals R(A) for all A C X
with AI > 2. Then, for every S that is not equivalent to SB, R[SB] is a proper subset
of R[S]. In other words, if something can happen with the Borda assignment, then it
also happens to every other S assignment or, in Saari's words [Saari (1989, p. 454)],
"any fault or paradox admitted by Borda's method also must be admitted by all other
positional voting methods". For a characterization of R[SB], see Saari (1990b).

We now turn to probabilistic results under the assumption that every voter
independently selects a linear order for d or r at random. Gehrlein and Fishburn
(1978b) prove for m = 3 and n --+ oc that, among all positional scoring procedures, the
Borda procedure uniquely maximizes the probability that s elects a strict Condorcet
candidate, given that such a candidate exists. Van Newenhizen (1992) proves the same
thing for fixed n. Tataru and Merlin (1997) prove for m = 3 and n -- oc that,
among all positional scoring procedures, the Borda procedure uniquely minimizes the
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probability that the s-order has a strict Condorcet candidate in last place, given that
such a candidate exists.

We note two other results for the uniform-distribution probability model and n --* o.
First, if m E {3,4}, then the Borda procedure maximizes the probability that the
s-order between any two candidates is the same as the simple majority relation between
the two [Gehrlein and Fishbum (1980)]. For the other result, let P(s, t) be the
probability for n oc that the s-winner with s = (sl, ... , Sm) for X is also the
t-winner with t = (tl, ... , t- ) for X \ {y} after one y • x is randomly removed
from X. Then Pm(s, t) is uniquely maximized when both s and t are Borda procedures
[Gehrlein, Gopinath, Lagarias and Fishburn (1982)].

Despite Borda's pre-eminence among positional scoring procedures, it does have
defects illustrated by paradoxes described earlier. Moreover, it is almost certainly
more susceptible to manipulation than approval voting. Consider, for example, a
preference profile v = (abc, abc, abc, bca, bca). Recognizing the vulnerability of their
first choice a, the first three voters might rank the candidates insincerely as acb on
their ballots, maximizing the difference between a and its closest competitor b. This
would make a the Borda winner.

Recently, Sertel and Yilmaz (1999) and Brams and Kilgour (2001) independently
proposed a procedure in which, in the 5-voter example of the preceding paragraph, a
would be chosen by sincere voters if the decision rule, or quota q, were simple majority,
but b would be chosen if q were unanimity. The procedure works by having voters rank
candidates from best to worst. If at least q voters rank a candidate first, that candidate
is chosen; if not, then one next asks if there are at least q voters who rank a candidate
either first or second - and so on, descending to lower and lower levels in the rankings
until there is agreement by at least q voters on a candidate or candidates. Thus, if q = 3
(simple majority), there is agreement on a, based only on first choices, making a the
"majoritarian compromise" [Sertel and Yilmaz (1999)]. If q = 5 (unanimity), there is
no agreement without descending to second choices, at which level all 5 voters rank b
either first or second, making b the "fallback bargaining" choice [Brams and Kilgour
(2001)]. In a voting context, Sertel and Yilmaz (1999) argue that simple majority
is sensible, whereas in a bargaining context Brams and Kilgour (2001) argue that
unanimity is sensible. Whatever the decision rule, this procedure may not select a
Condorcet candidate, but the candidate or candidates chosen by it are always Pareto-
optimal - there are no other candidates that all voters prefer - and maximizes the
minimum "satisfaction" (based on rankings) of the q most satisfied voters.

Manipulation is quite difficult under this procedure [Brams and Kilgour (2001)], as
it is under many other voting procedures. But the Borda procedure is an exception:
voters can gain by ranking the most serious rival of their favorite candidate last, which
is a relatively easy strategy to effectuate, in order to lower the rival's point total [Ludwig
(1978), Dummett (1998)].
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10. Point distribution procedures

In this section and the next we consider choose-k social choice functions for k > 2.
Two common choose-k procedures for small k are the nonranked procedures that ask
voters to vote for exactly k candidates, or for no more than k candidates. The top k vote
getters, or more if there is a tie for kth place, are the winners. The same criterion can
be used with approval voting, positional scoring procedures, and other procedures used
primarily for choose-1 situations. A different criterion, referred to as a cutoff or quota,
does not specify k in advance but elects every candidate whose vote count exceeds
the cutoff. This is frequently used by groups to elect new members or to bestow an
honorific title on present members.

The literature for choose-k procedures is, apart from that for proportional repre-
sentation, comparatively sparse. Examples include Fishburn (1981a), Brams (1982,
1990), Gehrlein (1985), Staring (1986), Bock, Day and McMorris (1998), Barberr,
Sonnenschein and Zhou (1991), Debord (1992) and Brams and Fishburn (1992,
1993). Staring (1986) gives an example of voters with linear preference orders who
vote sincerely under the vote-for-exactly-k procedure, which illustrates an increasing-
committee-size paradox: the winners for k = 3 are disjoint from the winners for k = 2,
and the winners for k = 4 are disjoint from those for k E {2, 3}. Debord (1992) gives
an axiomatic choose-k generalization of Young's (1974) Borda axiomatization.

All voting procedures described previously use nonranked or ranked ballots that
do not allow voters to express intensities of preference in a more complete manner.
Point distribution procedures accommodate this possibility by asking each voter to
distribute a fixed number of points, say 100, to the candidates in any way he or she
please. The k candidates with the most points are the winners. The usual term for
such a procedure is cumulative voting [Glasser (1959), Brams (1975), Bolger (1983,
1985)]. It has been used by corporations to elect boards of directors, and may be
viewed as a method for proportional representation in which minorities can ensure
their approximate proportional representation by concentrating their votes on a subset
of candidates commensurate with their size in the electorate. Indeed, cumulative voting
is one of a class of voting procedures that encourage minority representation [Guinier
(1994)] and maximize majority welfare [Chwe (1999)].

To illustrate cumulative voting and the calculation of optimal strategies, suppose
there is a single minority position among the electorate favored by one-third of
the voters. The other two-thirds favor a majority position. Assume that n = 300,
six candidates are to be elected (k = 6), and each voter has six votes (points) to
distribute over the candidates. The minority controls 600 votes, and the majority
controls 1200 votes. Hence if the minority divides its votes equally between two
minority candidates (600/2 = 300 each), it can ensure their election no matter what the
majority does. If the two-thirds majority instructs its supporters to distribute their votes
equally among five candidates (1200/5 = 240), it will not match the vote totals of the
two minority candidates but can still ensure the election of four of its five candidates -
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and possibly get its fifth candidate elected if the minority splits its votes equally among
three minority candidates (600/3 = 200).

Against these majority (support five) and minority (support two) strategies, it is
easy to show that neither side can improve its position. To elect five rather than four
candidates with 301 votes each, the majority would need 1505 instead of 1200 votes;
similarly, to elect three rather than two candidates with 241 votes each, the minority
would need 723 instead of 600 votes.

It is evident that the optimal strategy for the leaders of both the majority and minority
is to instruct their members to allocate their votes as evenly as possible among a certain
number of candidates. The number to support should be proportionally about equal to
the number of their supporters in the electorate (if known).

Any deviation from this strategy - for example, by putting up a full slate of
candidates and not instructing supporters to vote for only some on this slate - offers the
other side an opportunity to capture more than its proportional "share" of the k seats.
Patently, good planning and disciplined supporters are needed to carry out an optimal
strategy.

Brams (1975) includes a systematic analysis of optimal strategies under cumulative
voting. These strategies are compared to strategies actually adopted by the Democratic
and Republican parties in elections for the Illinois General Assembly, where cumulative
voting was used until 1982. Cumulative voting was adopted by two cities in the United
States (Alamogordo, NM, and Peoria, IL) in 1987, and other small cities more recently,
to satisfy court requirements of minority representation in municipal elections.

Bolger (1983, 1985) formulates six procedures for cumulative voting in choose-k
elections and investigates their susceptibility to several paradoxes. Each procedure
allots k points to each of n voters to distribute over the candidates and uses an election
quota qo = (nk + 1)/(k + 1). Any candidate who receives at least q votes is elected
in an initial stage. The procedures differ in their vote distribution rules and in how
votes are processed after the initial stage if fewer than k are elected there. In some
procedures, a voter votes for h < k candidates, and each of the h gets k/h votes from
the voter; others allow the k points to be distributed in any way among h < k or among
any number of candidates. Vote processing after the initial stage may involve transfers
of surplus votes above qO from initial electees to others, or elimination of low-ranking
candidates. The paradoxes include violations of monotonicity and new voter and no-
show paradoxes. The new-voter paradox occurs when a new voter who votes only for
the original k electees causes one of these for whom he or she votes to become a
loser in the augmented profile. The no-show paradox occurs when an original electee
turns into a loser after a ballot involving only original losers is deleted from the ballot
response profile. All six procedures exhibit the latter two paradoxes when k > 4, and
all but two do this when k > 2.

11. Proportional representation

Unlike cumulative voting, most choose-k procedures use ballot types discussed earlier.
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We have already noted common nonranked procedures for electing committees, and in
this section we consider other procedures designed to elect representative legislatures
and governing bodies.

11.1. The Hare system of single transferable vote

First proposed by Thomas Hare in England and Carl George Andrae in Denmark in
the 1850s, single transferable vote (STV) procedures have been adopted throughout the
world. They are used in such countries as Australia, Malta, the Republic of Ireland, and
Northern Ireland; in local elections in Cambridge, MA, and formerly in other cities in
the United States [Tideman (1995)]. John Stuart Mill (1862) placed STV "among the
greatest improvements yet made in the theory and practice of government". Although
STV violates some desirable properties of voting procedures [Kelly (1987)], it has
strengths as a method of proportional representation. In particular, minorities can elect
a number of candidates roughly proportional to their numbers in the electorate. Also,
if one's vote does not help elect a first choice, it can still count for lower choices.

To define one version of STV with IX = m, suppose k of the m candidates are
to be elected by n ballots which rank from 1 to m candidates. (In practice, voters
are encouraged to rank as many candidates as possible.) The point quota needed for
election is

q Lk 2 +1,

where zj is the integer part of z. We denote bypi the points for ballot i. Initially, pi = 1,
but pi can change during the ballot-processing stages because (1) the top candidate not
yet removed from ballot i is elected, or (2) no candidate is left on ballot i, or (3) no
candidate is left on other ballots. The initial Pi sum is n; afterj candidates have been
elected, the revised Pi sum is n -jq. Whenever points are counted to determine if new
candidates reach q, the pi points of ballot i are awarded to the top-ranked candidate
remaining on ballot i.

Let e denote the number of candidates elected thus far, and let A denote the subset
of candidates still in contention. The following steps are used to move e from 0 to k.
Step 0: Set e = 0, A = X, andpi = 1 for all i. Go to step 1.
Step 1: If e + IA < k, declare all candidates in A as elected, and if e + A I < k, choose

k - (e + IA ) of the not yet elected m (e + IA ) candidates at random, declare
them elected also, and stop. If e + A[ > k, for each x E A compute p(x) as the
sum of the Pi for all ballots that rank x first, then let E = {x e A: p(x) > q},
and declare the candidates in E as elected. If e + IEI = k, stop. Otherwise,
change e to e + El, go to step 2 if EI > 1, and go to step 3 if El = 0.

Step 2: For each x E E, let , = q/p(x), and for each ballot with x ranked first, replace
Pi by (1 - ,x)pi. This removes q points from the process for each newly elected
candidate in E. Delete all x E E from all ballots, change A to A \ E, and go
to step 4.
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Step 3: Determine the candidate in A, say y, with the minimum p(x). (If two or more
in A have the min p(x) value, choose one at random for y.) Delete y from all
ballots, change A to A \ y}, and go to step 4.

Step 4: Let P be the sum of the Pi for ballots that, because of deletions, have no
remaining candidates, set pi = 0 for these ballots and, when n' nonempty
ballots remain, increase the Pi of each by adding P/n'. Go to step 1.

Step 4 is used to maintain the current point total when all candidates ranked on
a ballot have been elected or deleted. When y is ranked first on a ballot in step 3,
its Pi at that point is transferred to the second-ranked candidate if there is one. The
surplus p(x) - q of points needed for election of a newly elected candidate in step 1 is
retained by step 2 for the ballots that rank the elected candidate first, while q points are
removed from those ballots, but if the set E of newly elected candidates exhausts all
that remain on a ballot, its adjusted points get transferred to other ballots in step 4.

The paradoxes described in Section 7.3 for plurality with a runoff apply to STV
when there are three candidates and k = 1 [Doron and Kronick (1977), Fishburn and
Brams (1983)]. The following examples [Brams (1982), Brams and Fishburn (1984c)]
illustrate the mechanics of STV and phenomena associated with truncated rankings.

Example 11.1. Assume that two of four candidates are to be elected, and there are
three classes of voters who rank the candidates as follows:

I. 6 voters have xabc
II. 6 voters have xbca

III. 5 voters have xcab.

Then n = 17, so q = [17/3] + 1 = 6. The initial point totals are 17 for x and 0 for the
others, so x is elected. The surplus of 11 = 17 - 6 points for x are redistributed in the
proportions 6: 6 : 5 to the classes, so I and II are left with 66/17 - 3.9 points each,
and III is left with 55/17 - 3.2 points. Candidate x is deleted (step 2) and, since none
of the others has q revised points, c is deleted (lowest total, step 3) to give

I. 66/17 points, ab
II. 66/17 points, ba

III. 55/17 points, ab.

Then a (7.1 points) is elected along with x.
Now suppose that two of the six class II voters had ranked only their first choice x.

As before, x is elected on the first round. Its deletion, and points reductions of step 2,
give

I. 66/17 points, abc
II.1. 22/17 points, no remaining candidates
11.2. 44/17 points, bca
III. 55/17 points, cab.
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We now use step 4 with P = 22/17 and n' = 15:

I. 66/17 + (6/15)(22/17) = 4.4 points, abc
11.2. 44/17 + (4/15)(22/17) = 2.933 ... points, bca
III. 55/17 + (5/15)(22/17) = 3.666 ... points, cab.

Since none of a, b and c here makes q, the low candidate b is eliminated and c is
elected with 6.6 points.

Observe that the two class II voters who ranked only x induced a better second
choice (c instead of a) for themselves by submitting truncated ballots. Thus, it may
be advantageous not to rank all candidates on one's ballot, contrary to a claim made
by a professional society that "there is no tactical advantage to be gained by marking
few candidates" [Brams (1982)]. Put another way, one may do better under STV by
not expressing preferences - at least beyond first choices. U

Lest one think that an advantage gained by truncation requires allocation of surplus
votes, we give a truncation example for k = 1. Here STV is similar to plurality with
successive elimination (Section 7.1), but with the added feature of ranked ballots.

Example 11.2. Assume that one of four candidates is to be elected by 21 voters:

I. 7 voters have abcx
II. 6 voters have bacx

III. 5 voters have cbax
IV. 3 voters have xcba.

Here q = 11. No candidate makes q initially, so x is eliminated and a, b and c then
have 7, 6 and 8 votes, respectively. Because none of these makes q, b is eliminated and
a is elected with 13 = 7 + 6 votes even though b is the strict Condorcet candidate.

Now suppose the three class IV voters rank only x as their first choice. As before, x
is eliminated first, and since the ballots of IV have no other candidates, their 3 points
go to the others:

I. 7 + (7/18)3 = 49/6 points, abc
II. 6 + (6/18)3 = 7 points, bac

III. 5 + (5/18)3 = 35/6 points, cba.

Now c is eliminated and b is the winner with 7 + 35/6 - 12.8 votes. Because the
class IV voters prefer b to a, it is in their interest not to rank candidates below x. U

It is true under STV that a first choice can never be hurt by ranking a second choice,
a second choice by ranking a third choice, ... , because higher choices are eliminated
before the lower choices can affect them. However, lower choices can affect the order of
elimination and, hence, transfer of votes. Consequently, a higher choice can influence
whether a lower choice is elected.

222



Ch. 4: Voting Procedures

We do not suggest that voters would routinely make the strategic calculations in
Examples 11.1 and 11.2. Such calculations are not only complex but also might be
neutralized by counterstrategies of other voters. Rather, the point is that to rank all
candidates for whom one has preferences is not always rational under STV Additional
discussion of STV's manipulability in this regard, and its relationship to the election
of Condorcet candidates, is in Fishburn and Brams (1984).

11.2. Additional-member systems

In most parliamentary democracies, it is not candidates who run for office but political
parties that put up lists of candidates. Under party-list voting, voters vote for parties,
which receive seats in a parliament proportional to the total numbers of votes they
receive. There is often a threshold, such as 5% of the total vote, which a party must
exceed to gain any seats.

This is a rather straightforward procedure of ensuring proportional representa-
tion (PR) of parties that surpass the threshold, though it is not paradox-free with
respect to the distribution of seats that take account of the complete preference orders
of voters [Van Deemen (1993)]. More interesting are systems in which some legislators
are elected from districts, but new members may be added to ensure that parties
underrepresented on the basis of their national-vote proportions gain additional seats.

Denmark and Sweden, for example, use votes summed over each party's district
candidates as the basis for allocating additional seats. In elections to Germany's
Bundestag and Iceland's Parliament, voters vote twice, once for district representatives
and once for a party. Half of the Bundestag is chosen from party lists, on the basis
of the national party vote, with adjustments to the district results made to ensure
approximate PR of parties. Italy, New Zealand, and several Eastern European countries
and former Soviet republics have recently adopted similar systems. In Puerto Rico, if
the largest party in one house of its bicameral legislature wins more than two-thirds of
the seats in district elections, then that house can be increased by as much as one-third
to redress underrepresentation of minority parties.

We offer insight into an important strategic feature of additional-member systems
by assuming, as in Puerto Rico, that a variable number of additional members can be
added to a legislature to adjust for underrepresentation. We consider a procedure, called
adjusted district voting, or ADV [Brams and Fishburn (1984a,b)], that is characterized
by four assumptions:
(1) There is ajurisdiction divided into equal-size districts, each of which elects a single

representative to a legislature.
(2) The jurisdiction has two main factions, one majority and one minority, whose sizes

can be determined.
(3) The legislature consists of the district winners plus the largest vote-getters among

the losers - necessary to achieve PR - if PR is not realized by the district winners.
This addition would typically be minority-faction losers in district elections.
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(4) The legislature's size is variable, with a lower bound equal to the number of
districts (if no additions are needed to achieve PR), and an upper bound equal to
twice the number of districts (if a nearly 50% minority wins no district election).

To illustrate ADV, suppose the jurisdiction has eight districts with an 80% majority
faction and a 20% minority faction. If the minority wins no district election, then its
two biggest vote-getters could be given seats in a 10-member parliament that achieves
PR exactly.

Now suppose the minority wins one seat, so its initial representation is 8, or about
13%. If it were given an additional seat, its representation would rise to 9 (22%),
which is closer than 8 to its 20% proportion in the electorate. Assume, however, that
additions can never make its proportion in the legislature exceed its proportion in the
electorate, so the addition is not made.

Paradoxically, the minority would benefit by winning no district election. To prevent
a minority from benefiting by losing in district elections, assume the following no-
benefit constraint: the allocation of extra seats to the minority can never give it a greater
proportion in the legislature than it would obtain had it won more district elections.

1 1 2Because < < 2, this implies that if the minority wins in no district, then it can
be given only one rather than two seats for a representation of ~ (11%) rather than 2

(20%).
It can be proved in the general case that the no-benefit constraint may prevent

a minority from receiving up to about half of the extra seats it would be entitled
to otherwise [Brains and Fishburn (1984a)]. This constraint can be interpreted as
a sincere-voting promoter in ADV It makes it unprofitable for a minority party
deliberately to lose district elections in order to do better with extra-seat additions.
This comes at a price, however. As our example and its generalization demonstrate,
the constraint can severely restrict the ability of ADV to satisfy PR, giving rise to the
following dilemma: under ADV, one cannot assure a close correspondence between
a party's proportion in the electorate and its representation in the legislature if one
insists on the no-benefit constraint; dropping it allows one to approximate PR, but this
may give the minority party an incentive purposely to lose in certain district contests
in order to do better after the adjustment.

It is worth noting that the "second chance" for minority candidates afforded by ADV
would encourage them to run in the first place, because even if most or all lose their
district races, their biggest vote-getters would still have a chance at extra seats. But
these extra seats might be cut by up to a factor of two from the minority's proportion
in the electorate should one want to motivate district elections with the no-benefit
constraint. Indeed, [Spafford (1980, p. 393)], anticipating this dilemma, recommended
that only an (unspecified) fraction of seats that the minority is entitled to be alloted to
it in the adjustment phase to give it "some incentive to take the single-member contests
seriously, ... , though that of course would be giving up strict PR".
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11.3. Minimizing representational imbalance

We conclude our discussion of PR with a few comments occasioned by Monroe's
(1995) proposal to select winning candidates in an election for a legislature by
minimizing an aggregate measure of representational imbalance. Such a measure
would depend on the ballot type and how ballots are assessed with regard to
representativeness, but in any case it is a function of potential winning sets of
k candidates.

Let A = {A C X: A = k} and for A A letf map {1, ... , n} into A. If ballots are
approval ballots, the misrepresentation score for voter i underf is 0 iff(i) is in voter i's
approved set, and is 1 otherwise. If ballots are linear orders, the misrepresentation
score for voter i underf is j - 1 whenf(i) is jth-ranked in voter i's order. The total
misrepresentation of assignmentf is the sum over i of the voters' misrepresentation
scores.

Monroe (1995) suggests thatf be restricted so that approximately the same number
of voters are assigned to each candidate, or "represented" by each candidate, in A.
Subject to this restriction, one then determines the elected set to be an A A for which
the minimum total misrepresentation of an f for A is as small as possible. Potthoff
and Brams (1998) note that this is the same as a proposal of Chamberlin and Courant
(1983) when no restrictions are placed on f (a proposal rejected by Monroe), and
that if, in addition, k is unrestricted, a proposal of [Tullock (1967, Chapter 10)] is
obtained.

Potthoff and Brams (1998) demonstrate the efficiency of using integer programming
to compute a solution for Monroe's procedure as well as for a variety of related
procedures. One of these uses anf that maps {1, ... , n} into h-candidate subsets of
A with 1 < h < k, restricted so that each candidate is in the h-candidate subsets of
approximately hn/k voters. When h = k with approval ballots, the elected A consists of
the k candidates with the greatest approval votes. When h = k with fully ranked ballots,
the elected A is the set of k candidates with the most Borda points. Intermediate values
of h may be more faithful to the intention of electing a proportionately representative
legislature.

12. Conclusions

There is no perfect voting procedure [Niemi and Riker (1976), Fishburn (1984), Nurmi
(1986), Amy (2000)], but some procedures are clearly superior to others in satisfying
certain criteria.

Among nonranked voting procedures to elect one candidate, approval voting
distinguishes itself as more sincere, strategyproof, and likely to elect Condorcet
candidates than other procedures, including plurality voting and plurality with a runoff.
Its use in earlier centuries in Europe [Cox (1984, 1987a), Lines (1986)], and its recent
adoption by a number of professional societies - including the Institute of Management
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Sciences [Fishburn and Little (1988)], the Mathematical Association of America
[Brams (1988)], the American Statistical Association [Brams and Fishburn (1988)],
the Institute of Electrical and Electronics Engineers [Brams and Nagel (1991)], the
American Mathematical Society, and the Social Choice and Welfare Society [Brams
and Fishbum (2001), Saari (2001a)] - augurs well for its more widespread use,
including possible adoption in public elections [Brams (1993), Brams and Herschbach
(2001)]. Bills have been introduced in several U.S. state legislatures for its enactment
for state primaries, and its consideration has been urged in such countries as Finland
[Anckar (1984)] and New Zealand [Nagel (1987)]. Its probable effects in the U.S.
presidential elections of 1864 [Tabarrok and Spector (1999)], 1980 [Brams and
Fishburn (1983)], 1992 [Brams and Merrill (1994), Tabarrok (2001)], and 2000 [Saari
(2001b)], along with the likely effects of other voting procedures such as the Borda
count, have been assessed.

Among ranked positional scoring procedures to elect one candidate, Borda's
method is superior in many respects, including susceptibility to strategic manipulation,
propensity to elect Condorcet candidates, and ability to minimize paradoxical
possibilities [Smith (1973), Gehrlein and Fishburn (1978b), Saari (1989, 1990a, 1994,
1995a,b, 2000a,b, 2001b), Chapter 25 in Volume 2 of this Handbook, Van Newenhizen
(1992)]. Some Condorcet voting procedures, such as the Schwartz and Kemeny
procedures, have a number of attractive properties [Fishburn (1977), Young (1988)],
but they have witnessed more theoretical than practical interest. Despite Borda's
superiority in many respects, it is easier to manipulate than many other procedures.
For example, the strategy of ranking the most serious rival of one's favorite candidate
last is a transparent way of diminishing the rival's chances.

While plurality with a runoff, and STV for elections of one or more candidates, are
commonly used, they are subject to some of the more noxious paradoxes, including
violations of monotonicity which can turn a potential winner into a loser when it
rises in the ballot response profile. Additional-member systems, and specifically ADV
that results in a variable-size legislature, provide a mechanism for approximating
proportional representation in a legislature without the nonmonotonicity of STV or
the manipulability of Borda-type procedures. Cumulative voting also offers a means
for factions or parties to ensure their proportional representation, but it requires
considerable organizational effort on the part of parties. In the face of uncertainty
about their level of support in the electorate, party leaders may well make suboptimal
choices about how many candidates their supporters should concentrate their votes
on, which weakens the argument that cumulative voting can guarantee proportional
representation in practice. But the no-benefit constraint on allocation of additional seats
to underrepresented parties under ADV - in order to deny them the incentive to throw
district races - also vitiates fully satisfying proportional representation, underscoring
the difficulties of satisfying a number of desiderata.

An understanding of these difficulties, and possible trade-offs that must be made,
facilitates the selection of procedures to meet certain needs. Over the past half century
the explosion of results in social choice theory, and the burgeoning decision-theoretic
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and game-theoretic analyses of different voting procedures, not only enhance one's
theoretical understanding of the foundations of social choice but also contribute to
the better design of practical voting procedures that satisfy the criteria that one deems
important.
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