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Abstract

Decentralized distributed systems such as peer-to-peer
systems are particularly vulnerable to sybil attacks, where a
malicious user pretends to have multiple identities (called
sybil nodes). Without a trusted central authority, defending
against sybil attacks is quite challenging. Among the small
number of decentralized approaches, our recent SybilGuard
protocol [42] leverages a key insight on social networks to
bound the number of sybil nodes accepted. Although its
direction is promising, SybilGuard can allow a large number
of sybil nodes to be accepted. Furthermore, SybilGuard
assumes that social networks are fast mixing, which has
never been confirmed in the real world.

This paper presents the novel SybilLimit protocol that
leverages the same insight as SybilGuard but offers dramati-
cally improved and near-optimal guarantees. The number
of sybil nodes accepted is reduced by a factor of ©(\/n),
or around 200 times in our experiments for a million-node
system. We further prove that SybilLimit’s guarantee is at
most a logn factor away from optimal, when considering
approaches based on fast-mixing social networks. Finally,
based on three large-scale real-world social networks, we
provide the first evidence that real-world social networks are
indeed fast mixing. This validates the fundamental assump-
tion behind SybilLimit’s and SybilGuard’s approach.

1. Introduction

Decentralized distributed systems (such as peer-to-peer
systems) are particularly vulnerable to sybil attacks [11],
where a malicious user pretends to have multiple identities
(called sybil identities or sybil nodes). In fact, such sybil
attacks have already been observed in the real world [18, 39]
in the Maze peer-to-peer system. Researchers have also
demonstrated [34] that it is surprisingly easy to launch sybil
attacks in the widely-used eMule system [12].
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When a malicious user’s sybil nodes comprise a large
fraction of the nodes in the system, that one user is able to
“out vote” the honest users in a wide scope of collaborative
tasks. Examples of such collaborative tasks range from
Byzantine consensus [17] and voting schemes for email
spam [30] to implicit collaboration in redundant routing and
data replication in Distributed Hash Tables (DHTs) [7]. The
exact form of such collaboration and the exact fraction of
sybil nodes these collaborative tasks can tolerate may differ
from case to case. However, a generic requirement is that the
number of sybil nodes (compared to the number of honest
users) needs to be properly bounded.

To defend against sybil attacks, simply monitoring each
node’s historical behavior is often insufficient because sybil
nodes can behave nicely initially, and then launch an attack.
Although a trusted central authority can thwart such attacks
by issuing credentials to actual human beings or requiring
payment [21], finding such a single entity that every user
worldwide is willing to trust can be difficult or impossible
(especially if that entity requires users to provide sensitive
information).

Without a trusted central authority, defending against
sybil attacks is much harder. Among the small number of
approaches, the simplest one perhaps is to bind identities to
IP addresses or IP prefixes. Another approach is to require
every identity to solve puzzles that require human effort,
such as CAPTCHAs [35]. Both approaches can provide only
limited protection—the adversary can readily steal IP ad-
dresses with different prefixes in today’s Internet [31], while
CAPTCHA s can be re-posted on an adversary’s website to
be solved by users seeking access to that site.

The SybilGuard approach. Recently, we proposed Sybil-
Guard [42], a new protocol for defending against sybil at-
tacks without relying on a trusted central authority. Sybil-
Guard leverages a key insight regarding social networks
(Figure 1). In a social network, the vertices (nodes) are iden-
tities in the distributed system and the (undirected) edges
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Figure 1. The social network.

correspond to human-established trust relations in the real
world. The edges connecting the honest region (i.e., the
region containing all the honest nodes) and the sybil region
(i.e., the region containing all the sybil identities created
by malicious users) are called attack edges. SybilGuard en-
sures that the number of attack edges is independent of the
number of sybil identities, and is limited by the number of
trust relation pairs between malicious users and honest users.
SybilGuard observes that if malicious users create too many
sybil identities, the graph will have a small quotient cur—
i.e., a small set of edges (the attack edges) whose removal
disconnects a large number of nodes (all the sybil identities).
On the other hand, “fast mixing” [25] social networks do
not tend to have such cuts. SybilGuard leverages the small
quotient cut to limit the size of sybil attacks.

SybilGuard is a completely decentralized protocol and
enables any honest node V' (called the verifier) to decide
whether or not to accept another node S (called the suspect).
“Accepting” means that V' is willing to do collaborative tasks
with S. SybilGuard’s provable (probabilistic) guarantees
hold for (1 — €)n verifiers out of the n honest nodes, where €
is some small constant close to 0. (The remaining nodes get
degraded, not provable, protection.) Assuming fast-mixing
social networks and assuming the number of attack edges is
o(y/n/logn), SybilGuard guarantees that any such verifier,
with probability at least 1 — & (0 being a small constant close
to 0), will accept at most O(y/n log n) sybil nodes per attack
edge and at least (1 — €)n honest nodes.

While its direction is promising, SybilGuard suffers from
two major limitations. First, although the end guarantees
of SybilGuard are stronger than previous decentralized ap-
proaches, they are still rather weak in the absolute sense:
Each attack edge allows O(y/nlogn) sybil nodes to be
accepted. In a million-node synthetic social network, the
number of sybil nodes accepted per attack edge is nearly
2000 [42]. The situation can get worse: When the num-
ber of attack edges g = Q(y/n/logn) (or g > 15,000 in
the million-node synthetic social network), SybilGuard can
no longer bound the number of accepted sybil nodes at all.
Second, SybilGuard critically relies on the assumption that
social networks are fast mixing, an assumption that had never
not been validated in the real world.

Number of attack edges ¢ SybilGuard SybilLimit
(unknown to protocol) accepts accepts
o(yv/n/logn) O(y/nlogn) O(logn)
Q(y/n/logn) to o

o(n, log n) unlimited O(logn)
below ~ 15,000 ~ 2000 ~ 10
above ~ 15,000 and unlimited ~10

below ~ 100, 000

Table 1. Number of sybil nodes accepted per
attack edge (out of an unlimited number of
sybil nodes), both asymptotically for n hon-
est nodes and experimentally for a million
honest nodes. Smaller is better.

SybilLimit: A near-optimal protocol for real-world so-
cial networks. In this paper, we present a new protocol that
leverages the same insight as SybilGuard but offers dramat-
ically improved and near-optimal guarantees. We call the
protocol SybilLimit, because 1) it limits the number of sybil
nodes accepted and ii) it is near-optimal and thus pushes the
approach to the limit. For any g = o(n/logn), SybilLimit
can bound the number of accepted sybil nodes per attack
edge within O(logn) (see Table 1). This is a ©(y/n) fac-
tor reduction from SybilGuard’s O(y/n logn) guarantee. In
our experiments on the million-node synthetic social net-
work used in [42], SybilLimit accepts on average around
10 sybil nodes per attack edge, yielding nearly 200 times
improvement over SybilGuard. Putting it another way, with
SybilLimit, the adversary needs to establish nearly 100,000
real-world social trust relations with honest users in order
for the sybil nodes to out-number honest nodes, as compared
to 500 trust relations in SybilGuard. We further prove that
SybilLimit is at most a log n factor from optimal in the fol-
lowing sense: for any protocol based on the mixing time
of a social network, there is a lower bound of (1) on the
number of sybil nodes accepted per attack edge. Finally,
SybilLimit continues to provide the same guarantee even
when g grows to o(n/logn), while SybilGuard’s guaran-
tee is voided once g = Q(y/n/logn). Achieving these
near-optimal improvements in SybilLimit is far from trivial
and requires the combination of multiple novel techniques.
SybilLimit achieves these improvements without compro-
mising on other properties as compared to SybilGuard (e.g.,
guarantees on the fraction of honest nodes accepted).

Next, we consider whether real-world social networks are
sufficiently fast mixing for protocols like SybilGuard and
SybilLimit. Even though some simple synthetic social net-
work models [16] have been shown [6, 14] to be fast mixing
under specific parameters, whether real-world social net-
works are indeed fast mixing is controversial [2]. In fact, so-
cial networks are well-known [3, 15, 23, 37] to have groups



or communities where intra-group edges are much denser
than inter-group edges. Such characteristics, on the surface,
could very well prevent fast mixing. To resolve this question,
we experiment with three large-scale (up to nearly a mil-
lion nodes) real-world social network datasets crawled from
www.friendster.com, www.livejournal.com, and
dblp.uni-trier.de. We find that despite the existence
of social communities, even social networks of such large
scales tend to mix well within a rather small number of hops
(10 to 20 hops), and SybilLimit is quite effective at defend-
ing against sybil attacks based on such networks. These
results provide the first evidence that real-world social net-
works are indeed fast mixing. As such, they validate the
fundamental assumption behind the direction of leveraging
social networks to limit sybil attacks.

2. Related work

The negative results in Douceur’s initial paper on sybil
attacks [11] showed that sybil attacks cannot be prevented
unless special assumptions are made. Some researchers [9]
proposed exploiting the bootstrap graph of DHTs. Here, the
insight is that the large number of sybil nodes will all be
introduced (directly or indirectly) into the DHT by a small
number of malicious users. Bootstrap graphs may appear
similar to our approach, but they have the drawback that an
honest user may also indirectly introduce a large number
of other honest users. Such possibility makes it difficult to
distinguish malicious users from honest users. Instead of
simply counting the number of nodes introduced directly and
indirectly, SybilLimit distinguishes sybil nodes from honest
nodes based on graph mixing time. It was shown [9] that
the effectiveness of the bootstrap graph approach deterio-
rates as the adversary creates more and more sybil nodes,
whereas SybilLimit’s guarantees hold no matter how many
sybil nodes are created. Some researchers [5] assume that
the attacker has only one or small number of network posi-
tions in the Internet. If such assumption holds, then all sybil
nodes created by the attacker will have similar network coor-
dinates [28]. Unfortunately, once the attacker has more than
a handful of network positions, the attacker can fabricate
arbitrary network coordinates.

In reputation systems, colluding sybil nodes may artifi-
cially increase a (malicious) user’s rating (e.g., in Ebay).
Some systems such as Credence [36] rely on a trusted cen-
tral authority to prevent this. There are existing distributed
defenses [8, 13, 32] to prevent such artificial rating increases.
These defenses, however, cannot bound the number of sybil
nodes accepted, and in fact, all the sybil nodes can ob-
tain the same rating as the malicious user. Sybil attacks
and related problems have also been studied in sensor net-
works [27, 29], but the approaches and solutions usually rely
on the unique properties of sensor networks (e.g., key predis-

tribution). Margolin et al. [22] proposed using cash rewards
to motivate one sybil node to reveal other sybil nodes, which
is complimentary to bounding the number of sybil nodes
accepted in the first place.

Social networks are one type of trust networks. There
are other types of trust networks, e.g., based on historical
interactions/transactions between users [8, 13, 36]. As in
LOCKSS [20], Ostra [24], and SybilGuard [42], SybilLimit
assumes a social network with a much stronger associated
trust than these other types of trust networks [8, 13, 36].
LOCKSS uses social networks for digital library mainte-
nance, and not as a general defense against sybil attacks.
Ostra leverages social networks to prevent the adversary
from sending excessive unwanted communication. In com-
parison, SybilLimit’s functionality is more general: Because
SybilLimit already bounds the number of sybil nodes, it
can readily provide functionality equivalent to Ostra by al-
locating each node a communication quota. Furthermore,
different from Ostra, SybilLimit has strong, provable end
guarantees and has a complete design that is decentralized.
The relationship between SybilGuard and SybilLimit is dis-
cussed in more detail in Sections 4 and 5.3. Unlike many
other works [8, 13, 32, 36] on trust networks, SybilLimit
does not use trust propagation in the social network.

Mislove et al. [23] also studied the graph properties of
several online real-world social networks. But Mislove et
al. did not focus on mixing time properties or their appro-
priateness for defending against sybil attacks. Finally, a
preliminary version of this work appeared as [40].

3. System model and attack model

SybilLimit adopts a similar system model and attack
model as SybilGuard [42]. The system has n honest human
beings as honest users, each with one honest identity/node.
Honest nodes obey the protocol. The system also has one
or more malicious human beings as malicious users, each
with one or more identities/nodes. To unify terminology, we
call all identities created by malicious users as sybil iden-
tities/nodes. Sybil nodes are byzantine and may behave
arbitrarily. All sybil nodes are colluding and are controlled
by an adversary. A compromised honest node is completely
controlled by the adversary and hence is considered as a
sybil node and not as an honest node.

There is an undirected social network among all the
nodes, where each undirected edge corresponds to human-
established trust relations in the real world. The adversary
may create arbitrary edges among sybil nodes in the social
network. Each honest user knows her neighbors in the social
network, while the adversary has full knowledge of the entire
social network. The honest nodes have m undirected edges
among themselves in the social network. For expository pur-
poses, we sometimes also consider the m undirected edges



as 2m directed edges. The adversary may eavesdrop on any
messages sent in the protocol.

Every node is simultaneously a suspect and a verifier. As
in SybilGuard, we assume that each suspect S has a locally
generated public/private key pair, which serves to prevent
the adversary from “stealing” S’s identity after S is accepted.
When a verifier V' accepts a suspect S, V actually accepts
S’s public key, which can be used later to authenticate S. We
do not assume a public key infrastructure, and the protocol
does not need to solve the public key distribution problem
since the system is not concerned with binding public keys
to human beings or computers. A malicious user may create
multiple different key pairs for her different sybil nodes.

4. Background: SybilGuard

To better understand the improvements of SybilLimit
over SybilGuard and the challenges involved, this section
provides a concise review of SybilGuard.

Random walks and random routes. SybilGuard uses a
special kind of random walk, called random routes, in the
social network. In a random walk, at each hop, the current
node flips a coin on-the-fly to select a uniformly random
edge to direct the walk (the walk is allowed to turn back).
For random routes, each node uses a pre-computed random
permutation, “xqx2...x4” wWhere d is the degree of the node,
as a one-to-one mapping from incoming edges to outgoing
edges. A random route entering via edge ¢ will always exit
via edge x;. This pre-computed permutation, or routing ta-
ble, serves to introduce external correlation across multiple
random routes. Namely, once two random routes traverse the
same directed edge, they will merge and stay merged (i.e.,
they converge). Furthermore, the outgoing edge uniquely de-
termines the incoming edge as well; thus the random routes
can be back-traced. These two properties are key to Sybil-
Guard’s guarantees. As a side effect, such routing tables also
introduce internal correlation within a single random route.
Namely, if a random route visits the same node more than
once, the exiting edges will be correlated. We showed [42]
that such correlation tends to be negligible, and moreover,
in theory it can be removed entirely using a more complex
design. Thus, we ignore internal correlation from now on.
Without internal correlation, the behavior of a single ran-
dom route is exactly the same as a random walk. In con-
nected and non-bipartite graphs, as the length of a random
walk goes toward infinity, the distribution of the last node (or
edge) traversed becomes independent of the starting node of
the walk. Intuitively, this means when the walk is sufficiently
long, it “forgets” where it started. This final distribution
of the last node (or edge) traversed is called the node (or
edge) stationary distribution [25] of the graph. The edge
stationary distribution (of any graph) is always a uniform
distribution, while the node stationary distribution may not

be. Mixing time [25] describes how fast we approach the
stationary distribution as the length of the walk increases.
More precisely, mixing time is the walk length needed to
achieve a certain variation distance [25], A, to the stationary
distribution. Variation distance is a value in [0, 1] that de-
scribes the “distance” between two distributions—see [25]
for the precise definition. A small variation distance means
that the two distributions are similar. For a graph (family)
with n nodes, we say that it is fast mixing if its mixing
time is O(logn + log %) In this paper, we only care about
A = (1), and we will simply say that a fast mixing graph
has O(log n) mixing time. The following known result fol-
lows directly from the definition of mixing time and a useful
interpretation of variation distance (Theorem 5.2 in [19]).
This result is all we need in this paper about mixing time:

Theorem 1 Consider any fast mixing graph with n nodes. A
random walk of length © (log n) is sufficiently long such that
with probability at least 1 — %, the last node/edge traversed
is drawn from the node/edge stationary distribution of the
graph.

In SybilGuard, a random walk starting from an honest
node in the social network is called escaping if it ever crosses
any attack edge.

Theorem 2 (from [42]) In any connected social network
with n nodes and g attack edges, the probability of a length-1
random walk starting from a uniformly random honest node
being escaping is at most gl /n.

Accepting honest nodes. In SybilGuard, each node per-
forms a random route of length | = ©(y/nlogn). A ver-
ifier V only accepts a suspect S if S’s random route in-
tersects with V’s. Theorem 2 tells us that V’s random
route will stay in the honest region with probability at least
1—gl/n =1-0(1) for g = o(y/n/logn). Theorem 1
further implies that with high probability, a random route
©(y/nlogn) long will include O(y/n) independent random
nodes drawn from the node stationary distribution. It then
follows from the generalized Birthday Paradox [1, 26] that
an honest suspect S will have a random route that intersects
with V’s random route with probability 1 — § for any given
(small) constant § > 0.

Bounding the number of sybil nodes accepted. To inter-
sect with V’s non-escaping random route, a sybil suspect’s
random route must traverse one of the attack edges. Consider
Figure 2 where there is only a single attack edge. Because
of the convergence property, all the random routes from all
sybil suspects must merge completely once they traverse the
attack edge. All these routes differ only in how many hops
of the route remain after crossing the attack edge (between 1
and [ — 1 hops for a length-/ route). Because the remaining
parts of these routes are entirely in the honest region, they
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Figure 2. Routes over the same edge merge.

are controlled by honest nodes. Thus, there will be fewer
than [ = O(y/nlogn) random routes that emerge from the
sybil region. In general, the number of such routes will be
O(g/nlogn) for g attack edges. SybilGuard is designed
such that only one public key can be registered at the nodes
on each random route. This means that the adversary can reg-
ister only O(g+/nlogn) public keys for all the sybil nodes
combined. In order to accept a suspect S, V' must find an
intersection between its random route and S’s random route
and then confirm that S is properly registered at the intersect-
ing node. As a result, only O(y/nlogn) sybil nodes will be
accepted per attack edge. For g = o(y/n/logn), the total
number of sybil nodes accepted is o(n).

Estimating the needed length of random routes. While
the length of the random routes is ©(y/nlogn), the value
of n is unknown. In SybilGuard, nodes locally determine
the needed length of the random routes via sampling. Each
node is assumed to know a rough upper bound Z on the
mixing time. To obtain a sample, a node A first performs a
random walk of length Z, ending at some node B. Next A
and B each perform random routes to determine how long
the routes need to be to intersect. A sample is bad (i.e.,
potentially influenced by the adversary) if any of the three
random walks/routes in the process is escaping. Applying
Theorem 2 shows that the probability of a sample being bad
is at most 3gl/n = o(1) for g = o(y/n/logn).

S. SybilLimit protocol

As summarized in Table 1, SybilGuard accepts
O(y/nlogn) sybil nodes per attack edge and further re-
quires g to be o(y/n/logn). SybilLimit, in contrast, aims
to reduce the number of sybil nodes accepted per attack
edge to O(logn) and further to allow for g = o(nlogn).
This is challenging, because SybilGuard’s requirement on
g = o(y/n/logn) is fundamental in its design and is simul-
taneously needed to ensure:

e Sybil nodes accepted by SybilGuard. The total num-
ber of sybil nodes accepted, O(g/nlogn), is o(n).

e Escaping probability in SybilGuard.  The es-
caping probability of the verifier’s random route,

O(gy/nlogn/n),is o(1).

e Bad sample probability in SybilGuard. When esti-
mating the random route length, the probability of a
bad sample, O(g+/nlogn/n),is o(1).

Thus to allow for larger g, SybilLimit needs to resolve all
three issues above. Being more “robust” in only one aspect
will not help.

SybilLimit has two component protocols, a secure ran-
dom route protocol (Section 5.1) and a verification protocol
(Section 5.2). The first protocol runs in the background and
maintains information used by the second protocol. Some
parts of these protocols are adopted from SybilGuard, and
we will indicate so when describing those parts. To highlight
the major novel ideas in SybilLimit (as compared to Sybil-
Guard), we will summarize these ideas in Section 5.3. Later,
Section 6 will present SybilLimit’s end-to-end guarantees.

5.1. Secure random route protocol

Protocol description. We first focus on all the suspects in
SybilLimit, i.e., nodes seeking to be accepted. Figure 3
presents the pseudo-code for how they perform random
routes—this protocol is adapted from SybilGuard with little
modification. In the protocol, each node has a public/private
key pair, and communicates only with its neighbors in the
social network. Every pair of neighbors share a unique sym-
metric secret key (the edge key, established out-of-band [42])
for authenticating each other. A sybil node M7 may disclose
its edge key with some honest node A to another sybil node
M>. But because all neighbors are authenticated via the edge
key, when M5 sends a message to A, A will still route the
message as if it comes from M;. In the protocol, every node
has a pre-computed random permutation x1xs...x4 (d being
the node’s degree) as its routing table. The routing table
never changes unless the node adds new neighbors or deletes
old neighbors. A random route entering via edge ¢ always
exits via edge x;. A suspect S starts a random route by
propagating along the route its public key K g together with
a counter initialized to 1. Every node along the route incre-
ments the counter and forwards the message until the counter
reaches w, the length of a random route. In SybilLimit, w is
chosen to be the mixing time of the social network; given a
fast-mixing social network, w = O(logn).

Let “A— B” be the last (directed) edge traversed by S’s
random route. We call this edge the fail of the random route.
Node B will see the counter having a value of w and thus
record K g under the name of that tail (more specifically, un-
der the name of “K 4— K" where K 4 and K5 are A’s and
B’s public key, respectively). Notice that B may potentially
overwrite any previously recorded key under the name of
that tail. When B records Kg, we say that S registers its
public key with that tail. Our verification protocol, described
later, requires that S know A’s and B’s public keys and IP



Executed by each suspect S:
1. S picks a uniformly random neighbor Y’;

else {

}

2. SsendstoY: (1, S’s public key Ks, MAC(1||Kg)) with the MAC generated using the edge key between .S and Y’;

Executed by each node B upon receiving a message (i, s, MAC) from some neighbor A:
1. discard the message if the MAC does not verify or ¢ < 1 or ¢ > w;
2. if (i = w) { record K g under the edge name “K 4—Kp” where K 4 and K g are A’s and B’s public key, respectively;}

3. look up the routing table and determine to which neighbor (C) the random route should be directed;
4. BsendstoC: (i+ 1, Kg,MAC((i + 1)||Kg)) with the MAC generated using the edge key between B and C;

Figure 3. Protocol for suspects to do random routes and register their public keys.
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Figure 4. (i) Suspect S propagates K for w
hops in an s-instance. (ii) K4 and Kg propa-
gated back to suspect S in an s-instance. (iii)
K¢ and K propagated back to a verifier V' in
a v-instance.

addresses. To do so, similar to SybilGuard, SybilLimit in-
vokes the protocol in Figure 3 a second time, where every
node uses a “reversed” routing table (i.e., a random route
entering via edge x; will exit via edge ). This enables A and
B to propagate their public keys and IP addresses backward
along the route, so that S can learn about them (Figure 4).
Different from SybilGuard, SybilLimit invokes r indepen-
dent instances (called s-instances) of the previous protocol
for the suspects. The value of r should be ©(,/m), and later
we will explain how nodes can automatically pick the appro-
priate r. In every s-instance, each suspect uses the protocol
in Figure 3 to perform one random route and to register its
public key with the tail. Across all s-instances, a suspect will
thus register its public key with r tails. Additionally in every
s-instance, SybilLimit invokes the protocol a second time
for each suspect using reversed routing tables, so that the
suspects know their tails. The routing tables used in differ-
ent s-instances are completely independent. Note, however,
that all suspects share the same r s-instances—this is criti-
cal to preserve the desirable convergence/back-traceability
property among their random routes in the same s-instance.
Similarly, every verifier performs r random routes. To
avoid undesirable correlation between the verifiers’ random
routes and the suspects’ random routes, SybilLimit uses
another r independent instances (called v-instances) for all

verifiers. Verifiers do not need to register their public keys—
they only need to know their tails. Thus in each v-instance,
SybilLimit invokes the protocol in Figure 3 once for each
verifier, with reversed routing tables (Figure 4).

Performance overheads. While SybilLimit uses the same
technique as SybilGuard to do random routes, the overhead
incurred is different because SybilLimit uses multiple in-
stances of the protocol with a shorter route length. Interest-
ingly, using ©(y/m) instances of the random route protocol
does not incur extra storage or communication overhead by
itself. First, a node does not need to store ©(y/m) routing
tables, since it can keep a single random seed and then gener-
ate any routing table on the fly as needed. Second, messages
in different instances can be readily combined to reduce
the number of messages. Remember that in all ©(y/m) in-
stances, a node communicates only with its neighbors. Given
that the number of neighbors d is usually quite small on aver-
age (e.g., 20), a node needs to send only d messages instead
of O(y/m) messages. Finally, the total number of bits a
node needs to send in the protocol is linear with the number
of random routes times the length of the routes. Thus, the
total number of bits sent in the d messages in SybilLimit is
©(y/mlogn), as compared to ©(y/nlogn) in SybilGuard.

All these random routes need to be performed only one
time (until the social network changes) and the relevant in-
formation will be recorded. Further aggressive optimizations
are possible (e.g., propagating hashes of public keys instead
of public keys themselves). We showed [42] that in a million-
node system with average node degree being 10, an average
node using SybilGuard needs to send 400KBs of data every
few days. Under the same parameters, an average node using
SybilLimit would send around 400 x /10 ~ 1300KB of
data every few days, which is still quite acceptable. We refer
the reader to [42] for further details.

Basic security properties. The secure random route proto-
col provides some interesting basic security guarantees. We
first formalize some notions. An honest suspect .S has one
tail in every s-instance, defined as the tail of its random route
in that s-instance. We similarly define the r tails of a veri-
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Figure 5. Escaping and non-escaping tails.

fier. A random route starting from an honest node is called
escaping if it ever traverses any attack edge. The tail of an
escaping random route is called an escaping tail (Figure 5),
even if the escaping random route eventually comes back to
the honest region. By directing the random route in specific
ways, the adversary can control/influence to which directed
edge an escaping tail corresponds. But the adversary has no
influence over non-escaping tails.

In any given s-instance, for every attack edge connecting
honest node A and sybil node M, imagine that we perform
a random route starting from the edge “M— A”, until either
a subsequent hop traverses an attack edge or the length of
the route reaches w. Because the adversary can fake a series
of routes that each end on one of the edges on this route,
these edges are called fainted tails. Intuitively, the adversary
may register arbitrary public keys with these tails. In a
given s-instance, one can easily see that the set of tainted
tails is disjoint from the set of non-escaping tails from honest
suspects. The reason is that random routes are back-traceable
and starting from a non-escaping tail, one can always trace
back to the starting node of the random route, encountering
only honest nodes. This means that an honest suspect will
never need to compete with the sybil nodes for a tail, as long
as its random route is non-escaping.

After the secure random route protocol stabilizes (i.e., all
propagations have completed), the following properties are
guaranteed to hold:

e In every s-instance, each directed edge in the honest
region allows only one public key to be registered.

e In every s-instance, an honest suspect S can always
register its public key with its non-escaping tail (if any)
in that s-instance.

e In every s-instance, among all the directed edges in
the honest region, sybil nodes can register their public
keys only with tainted tails. This is because nodes
communicate with only their neighbors (together with
proper authentication) and also because the counter in
the registration message is incremented at each hop.

o In every s-instance (v-instance), if an honest suspect S
(an honest verifier V) has a non-escaping tail “A— B”,
then S (V') knows A’s and B’s public keys.

User and node dynamics. Most of our discussion so far
assumes that the social network is static and all nodes are
online. All techniques in SybilGuard to efficiently deal
with user/node dynamics, as well as techniques to properly
overwrite stale registration information for preventing certain
attacks [42], apply to SybilLimit without modification. We
do not elaborate on these due to space limitations.

5.2. Verification protocol

Protocol description. After the secure random route proto-
col stabilizes, a verifier V' can invoke the verification pro-
tocol in Figure 6 to determine whether to accept a suspect
S. S must satisfy both the intersection condition (Step 2—
4 in Figure 6) and the balance condition (Step 5-7) to be
accepted.

The intersection condition requires that S’s tails and V’s
tails must intersect (instance number is ignored when de-
termining intersection), with .S being registered at the in-
tersecting tail. In contrast, SybilGuard has an intersection
condition on nodes (instead of on edges or tails). For the
balance condition, V' maintains r counters corresponding
to its r tails (Figure 7). Every accepted suspect increments
the “load” of some tail. The balance condition requires that
accepting S should not result in a large “load spike” and
cause the load on any tail to exceed h - max(logr, a). Here
a is the current average load across all Vs tails and h > 11is
some universal constant that is not too small (we use h = 4
in our experiments). In comparison, SybilGuard does not
have any balance condition.

Performance overheads. The verification protocol can be
made highly efficient. Except for Steps 1 and 3, all steps
in the protocol involve only local computation. Instead of
directly sending O(r) public keys in Step 1, S can readily use
a Bloom Filter [25] to summarize the set of keys. In Step 3,
for every intersecting tail in X, V' needs to contact one node.
On average, the number of intersections between a verifier
V and an honest suspect S in the honest region is O(1) with
r = ©(y/m), resulting in O(1) messages. The adversary
may intentionally introduce additional intersections in the
sybil region between V’s and S’s escaping tails. However, if
those extra intersecting nodes (introduced by the adversary)
do not reply, V' can blacklist them. If they do reply and if
V' is overwhelmed by the overhead of such replies, then the
adversary is effectively launching a DoS attack. Notice that
the adversary can launch such a DoS attack against V" even
if V' were not running SybilLimit. Thus such attacks are
orthogonal to SybilLimit.

5.3. Key ideas in SybilLimit, vis-a-vis SybilGuard

This section highlights the key novel ideas in SybilLimit
that eventually lead to the substantial end-to-end improve-



and K 4 (Kg)is A’s (B’s) public key};

If not, remove (i, K 4, Kp) from X;
4. If X is empty then reject S and return;

5. Leta=(1+Y;_,¢)/randb=h-max(logr,a);

(with tie-breaking favoring smaller 7);

1. S sends to V its public key Kg and S’s set of tails {(j, K4, Kp) | S’s tail in the jth s-instance is the edge “A— B”

/I Apply the intersection condition (the instance number is ignored when determining intersection)
2. V computes the set of intersecting tails X = {(i, Ka, Kp) | (i, Ka, Kp)is V’s tail and (j, K4, Kp) is S’s tail};
3. Forevery (i, K4, Kp) € X, V authenticates B using K and asks B whether S is registered under “K 4 —Kpg”

/I Apply the balance condition (c; is the counter for V'’s tail in the ith v-instance)
/I see text for description of h
6. Let ¢y, be the smallest counter among those ¢;’s corresponding to (i, K 4, K ) that still remain in X

7. If (¢nin + 1 > b) then reject S; otherwise, increment ¢;,;,, and accept S

Figure 6. Protocol for V to verify S. V has r counters c, ...c, initialized to zero at start-up time.

V’'s tails Load (c,'s)

1 S intersects with 3 of V’s

: tails: j, k and /. Tail j

j 10 —=11 has the sma}lest load, so V

: increments its load, checking

k 20 to make sure the load does
not exceed the threshold.

l 15

Figure 7. Balance condition example.

ments over SybilGuard.

Intersection condition. To help convey the intuition, we
will assume g = 1 in the following. In SybilLimit, each node
uses r = O(y/m) random routes of length w = ©(logn)
instead of a single random route of length [ = ©(y/nlogn)
as in SybilGuard."! In SybilGuard, each node along a random
route corresponds to a “slot” for registering the public key of
some node. The adversary can fake / distinct random routes
of length [ that cross the attack edge and enter the honest
region. This means that the adversary will have 1 + 2 4
.. + 1= 0O(1?) = ©(nlog?n) slots for the sybil nodes in
SybilGuard.

In SybilLimit, the tail of each random route corresponds
to a “slot” for registration. In any given s-instance, the
adversary can fake w distinct random routes of length w that
cross the attack edge and enter the honest region. Notice
that here SybilLimit reduces the number of such routes by
using a w that is much smaller than [. Further, because we
are concerned only with tails now, in the given s-instance,
the adversary will have only w slots. With 7 s-instances, the
adversary will have r - w = ©(y/mlogn) such slots total,
for all the sybil nodes. This reduction from ©(n log? n) slots
to ©(y/mlogn) slots is the first key step in SybilLimit.

But doing r random routes introduces two problems. The

!'As an engineering optimization, a degree-d node in SybilGuard can
perform d random routes of length ©(/n log n), but this does not improve
SybilGuard’s asymptotic guarantees.

first is that it is impossible for a degree-d node to have more
that d distinct random routes, if we directly use SybilGuard’s
approach. SybilLimit observes that one can use many inde-
pendent instances of the random route protocol, while still
preserving the desired convergence/back-traceability prop-
erty. The second problem is more serious. SybilGuard relies
on the simple fact that the number of distinct routes from
the adversary is [. All slots on the same route must have
the same public key registered. This ensures that the total
number of sybil nodes registered is [. In SybilLimit, there
are r - w distinct routes from the adversary. Thus, a naive
design may end up accepting r - w = O(y/mlogn) sybil
nodes, which is even worse than SybilGuard. SybilLimit’s
key idea here is to perform intersections on edges instead
of on nodes. Because the stationary distribution on edges
is always uniform in any graph, it ensures that the flip-side
of the Birthday Paradox holds. Namely, ©(/m) slots are
both sufficient and necessary for intersection to happen (with
high probability). Together with earlier arguments on the
number of slots in SybilLimit, this will eventually allow us
to prove that the number of sybil nodes with tails intersecting
with V’s non-escaping tails (more precisely, V’s uniform
non-escaping tails—see later) is O(log n) per attack edge.

Balance condition. In SybilGuard, the verifier’s random
route is either escaping or non-escaping, resulting in an
“all-or-nothing” effect. For SybilGuard to work, this sin-
gle random route must be non-escaping. Because of the
large [ of ©(y/n log n), the escaping probability will be (1)
once g reaches Q(y/n/ log n). Using much shorter random
routes of length w in SybilLimit decreases such escaping
probability. But on the other hand, because a verifier in
SybilLimit needs to do r such routes, it remains quite likely
that some of them are escaping. In fact, with r = O(y/m)
and w = O(logn), the probability of at least one of the
r routes being escaping in SybilLimit is even larger than
the probability of the single length-/ random route being
escaping in SybilGuard. Thus, so far we have only made the
“all-or-nothing” effect in SybilGuard fractional.



SybilLimit relies on its (new) balance condition to address
this fraction of escaping routes. To obtain some intuition, let
us imagine the verifier Vs tails as bins that can accommo-
date up to a certain load. When V" accepts a suspect S, out
of all of Vs tails that intersect with S’s tails, .S conceptually
increments the load of the least loaded tail/bin. Because of
the randomness in the system, one would conjecture that
all of Vs tails should have similar load. If this is indeed
true, then we can enforce a quota on the load of each tail,
which will in turn bound the number of sybil nodes accepted
by V’s escaping tails. Later, we will show that the balance
condition bounds the number within O(g logn).

Benchmarking technique. The SybilLimit protocol in Fig-
ures 3 and 6 assumes that r = ©(y/m) is known. Obviously,
without global knowledge, every node in SybilLimit needs
to estimate r locally. Recall that SybilGuard also needs to es-
timate some system parameter (more specifically, the length
of the walk). SybilGuard uses the sampling technique to do
so, which only works for ¢ = o(y/n/logn). To allow any
g = o(n/logn), SybilLimit avoids sampling completely.
Instead, it use a novel and perhaps counter-intuitive bench-
marking technique that mixes the real suspects with some
random benchmark suspects that are already known to be
mostly honest. The technique guarantees that a node will
never over-estimate r regardless of the adversary’s behavior.
If the adversary causes an under-estimation for r, somewhat
counter-intuitively, the technique can ensure that SybilLimit
still achieves its end guarantees despite the under-estimated
r. We will leave the detailed discussion to Section 7.

6. Provable guarantees of SybilLimit

While the intersection and balance conditions are simple
at the protocol/implementation level, it is far from obvious
why the designs provide the desired guarantees. We adopt the
philosophy that all guarantees of SybilLimit must be proved
mathematically, since experimental methods can cover only
a subset of the adversary’s strategies. Our proofs pay spe-
cial attention to the correlation among various events, which
turns out to be a key challenge. We cannot assume inde-
pendence for simplicity because after all, SybilLimit exactly
leverages external correlation among random routes. The
following is the main theorem on SybilLimit’s guarantee:

Theorem 3 Assume that the social network’s honest region
is fast mixing and g = o(n/logn). For any given constants
(potentially close to zero) € > 0 and § > 0, there is a set of
(1 — €)n honest verifiers and universal constants wq and o,
such that using w = wq logn and r = ro\/m in SybilLimit
will guarantee that for any given verifier V in the set, with
probability at least 1 — §, V accepts at most O(log n) sybil
nodes per attack edge and at least (1 — €)n honest nodes.

For the remaining small fraction of en honest verifiers, Sybil-
Limit provides a degraded guarantee that is not provable.
Because of space limitations, we will provide mostly intu-
itions in the following and leave formal/complete proofs to
our technical report [41].

6.1. Intersection condition

Preliminaries: Classifying tails and nodes. As prepara-
tion, we first carefully classify tails and nodes. Consider
a given verifier V' (or suspect S) and a given v-instance (or
s-instance). We classify its tail into 3 possibilities: i) the
tail is an escaping tail (recall Section 5.1), ii) the tail is not
escaping and is drawn from the (uniform) edge stationary
distribution (i.e., a uniform tail), or iii) the tail is not escaping
and is drawn from some unknown distribution on the edges
(i.e., a non-uniform tail).? In a given v-instance, the routing
tables of all honest nodes will entirely determine whether
Vs tail is escaping and in the case of a non-escaping tail,
which edge is the tail. Thus, the adversary has no influence
over non-escaping tails.

Because we do not know the distribution of the non-
uniform tails, few probabilistic properties can be derived
for them. Escaping tails are worse because their distribution
is controlled by the adversary. Assuming that the honest
region of the social network is fast mixing, our technical
report [41] proves the following:

Lemma 4 Consider any given constant (potentially close to
zero) € > 0. We can always find a universal constant wy > 0,
such that there exists a set H of at least (1 — €)n honest
nodes (called non-escaping nodes) satisfying the following
property: If we perform a length-w random walk starting
Jfrom any non-escaping node with w = wglogn, then the
tail is a uniform tail (i.e., a uniformly random directed edge
in the honest region) with probability at least 1 — O(glo%).

As a reminder, the probability in the above lemma is de-
fined over the domain of all possible routing table states—
obviously, if all routing tables are already determined, the
tail will be some fixed edge.

It is still possible for the tail of a non-escaping node to
be escaping or non-uniform—it is just that such probabil-
ity is O(gk’%) = o(1) for g = o(n/logn). An honest
node that is not non-escaping is called an escaping node.
By Lemma 4, we have at most en escaping nodes; such
nodes are usually near the attack edges. Notice that given
the topology of the honest region and the location of the
attack edges, we can fully determine the probability of the
tail of a length-w random walk starting from a given node V'
being a uniform tail. In turn, this means whether a node V'

2A finite-length random walk can only approach but never reach the
stationary distribution. Thus a small fraction of tails will be non-uniform
(also see Theorem 1).



is escaping is not affected by the adversary. In the remainder
of this paper, unless specifically mentioned, when we say
“honest node/verifier/suspect”, we mean “non-escaping (hon-
est) node/verifier/suspect”. We will not, however, ignore
escaping nodes in the arguments since they may potentially
disrupt the guarantees for non-escaping nodes.

For each verifier V, define its tail set as:
{(i,e) | eis V’s tail in the ith v-instance}.  V’s uniform
tail set U(V') is defined as:

UWV) = {(i,e) | eis V’s tail in the ith v-instance and

e is a uniform tail}

Notice that the distribution of (V) is not affected by the
adversary’s strategy. We similarly define the tail set and
uniform tail set for every suspect S. We define the tainted
tail set V as: V = U;_; V;, where

V;={(i,e) | eis a tainted tail in the sth s-instance}

Again, the definition of V is not affected by the behavior
of the adversary, as all these tails are in the honest region.
Further notice that in a given s-instance for each attack edge,
we can have at most w tainted tails. Thus |V;| < g x w and
V| < rgw = O(rglogn).

With slight abuse of notation, we say that a tail set in-
tersects with a tail e as long as the tail set contains an ele-
ment (4, e) for some i. The number of intersections with e
is defined to be the number of elements of the form (i, e).
We double count e in different instances because for every
element (7, e), an arbitrary public key can be registered un-
der the name of e in the ¢th s-instance. For two tail sets
T and T5, we define the number of intersections between
them as: > (j.e)ETs (# intersections between e and 7T}). For
example, {(1,e1),(2,e1)} and {(2,e1), (3,€e1)} have 4 in-
tersections. 7 and T5 intersect if and only if the number of
intersection between them is larger than 0.

Tail intersection between the verifier and honest sus-
pects. The intersection condition requires that for a veri-
fier V' to accept a suspect S, Vs tail set and S’s tail set
must intersect with S being registered at some intersect-
ing tail. We claim that for any given constant § > 0, a
verifier V' and an honest suspect S will satisfy the inter-
section condition with probability 1 — § when r = ro+/m,
with 7o being an appropriately chosen constant. This is
true because with 1 — % probability, they will both have
(1- O(%)) -7 = (1 —o(1))r > 0.5r uniform tails
when g = o(n/logn). A straight-forward application of the
Birthday Paradox will then complete the argument. Notice
that we are not able to make arguments on the distribution
of non-uniform tails and escaping tails, but uniform tails by
themselves are sufficient for intersection to happen.

Tail intersection between the verifier and sybil suspects.

By definition, all uniform tails of V" are in the honest region.

From the secure random route property, the tainted tail set
V contains all tails that the sybil nodes can possibly have in
the honest region. We would like to bound the number of
sybil nodes with (tainted) tails intersecting with V’s uniform
tails. V’s non-uniform tails and escaping tails will be taken
care of later by the balance condition.

Each tail in V allows the adversary to potentially register
a public key for some sybil node. The adversary has com-
plete freedom on how to “allocate” these tails. For example,
in one extreme, it may create |V| sybil nodes each with one
tainted tail. In such a case, most likely not all these |V| sybil
nodes will be accepted because each has only one tainted
tail. In the other extreme, it can create one sybil node and
register its public key with all tails in V.

We need to understand what is the adversary’s optimal
strategy for such an allocation. Interestingly, we can prove
that regardless of what 2/ (V') is, to maximize the number of
sybil nodes with tails intersecting with U/ (V'), the adversary
should always create | V| sybil nodes and allocate one tail
for each sybil node. To understand why, let random variable
X be the number of intersections between V and U (V). It
is obviously impossible for more than X sybil nodes to have
tails intersecting with Z/(V'). On the other hand, with the
previous strategy, the adversary can always create X sybil
nodes with tails intersecting with (V).

With this optimal strategy (of the adversary), we know
that it suffices to focus on the probabilistic property of X.
A tricky part in reasoning about X is that those tails in V
are neither uniformly random nor independent. For exam-
ple, they are more likely to concentrate in the region near
the attack edges. However, each tail in ¢(V) is still uni-

formly random. From linearity of expectation, we know

v 1
[ = o(zelemn)

that each tail in &/ (V') has on expectation
intersections with V. This in turn means:

rglogn

EX] <

r- O ) = O(glogn), forany r = O(y/m)
A Markov inequality [25] can then show that for any given
constant § > 0, with probability at least 1 — §, X is
O(glogn).

6.2. Balance condition

In this section, for any verifier V', we treat all of its non-
uniform tails as escaping tails. Obviously, this only increases
the adversary’s power and makes our arguments pessimistic.
The goal of the balance condition is to bound the number of
sybil nodes accepted by V’s escaping tails, without signifi-
cantly hurting honest suspects (who are subject to the same
balance condition). While the condition is simple, rigorously
reasoning about it turns out to be quite tricky due to the
external correlation among random routes and also adversar-
ial disruption that may intentionally cause load imbalance.



This introduces challenges particularly for proving why most
honest suspects will satisfy the balance condition despite all
these disruptions.

Effects on sybil suspects. We first study how the bar of
b = h - max(logr, a) (Steps 5-7 in Figure 6) successfully
bounds the number of sybil nodes accepted by V’s escaping
tails. The argument is complicated by the fact that when
a > logr, the bar b is a floating one. Namely, as more
suspects are accepted, a and thus b will increase, allowing
further suspects to be accepted. If all n honest suspects are
accepted, the bar may rise to ©(%). We use such a floating
bar because n is unknown (otherwise we could directly set
the bar to be ©(%)).

But on the other hand, it may also appear that as the
escaping tails accept sybil nodes, the rising bar will allow
further sybil nodes to be accepted. The key observation here
is that, as shown by the previous section, the number of
sybil nodes accepted by V’s uniform tails is always properly
bounded (by the intersection condition). The fraction of
escaping tails is o(1) < % Thus, if the load on all these
escaping tails increases by some value x while the load on
all uniform tails remain unchanged, the bar will only rise
o(1) - z. Following such argument, we will see that the
amount by which the bar rises each time is upper bounded
by a geometric sequence with a ratio of o(1). The sum of
this geometric sequence obviously converges, and in fact
is dominated by the very first term in the sequence. This
prevents undesirable cascading/unbounded rising of the bar.
Our technical report [41] formally proves that under any
constant h, V’s escaping tails will accept only O(glogn)
sybil nodes despite the floating bar.

Effects on honest suspects. Next, we briefly sketch our
proof [41] that most non-escaping honest suspects will sat-
isfy the balance condition for a sufficiently large constant h.
We first consider the load on V’s uniform tails. By definition,
these tails are in the honest region. The load of a uniform
tail may increase when it intersects with:

1. Uniform tails of non-escaping honest suspects.

2. Non-uniform tails of non-escaping honest suspects.
For g = o(n/logn), a tail of a non-escaping node is
non-uniform with O(%) = o(1) probability. Thus,
with 7 s-instances and at most n non-escaping nodes,
the expected number of such tails is o(rn). By applying
a Markov’s inequality, we obtain that there are o(rn)
such tails with probability at least 1 — § for any given
constant § > 0.

3. Uniform or non-uniform tails of escaping honest
suspects. By Lemma 4, there are at most ern such
tails, where € is a constant that can be made close to 0.

4. Tainted tails. As explained in Section 6.1, there are
O(rglogn) = o(rn) such tails for g = o(n/logn).

Considering first the load imposed by only the first type
of tails in this list, we are able to prove [41] that with 1 — §
probability, most non-escaping suspects will satisfy both the
intersection condition and the balance condition and thus
will be accepted. This proof is fairly tricky/involved due
to the external correlation among random routes. Harder
still is taking into account the load imposed by the last 3
types of tails. In particular, the adversary has many dif-
ferent strategies for when to increase the load of which of
Vs tail, and finding the optimal strategy of the adversary is
challenging. Fortunately, as argued above, the total number
of tails from suspects in the last 3 tail types is €’rn for some
small €. We can apply a similar argument as in Section 6.1
to show that with probability of 1 — §, the number of inter-
sections between these €'rn tails and U (V') is at most €'n
for some small ¢”. This means that the total load imposed
in the last 3 tail types is at most ¢”’n. Finally, we prove that
after doubling the constant /i obtained earlier, even if the
adversary completely controls where and when to impose the
€"'n load, the adversary can cause only €’n honest suspects
to be rejected. Because €” can be made small and close to
0, this ensures that most non-escaping honest suspects will
remain accepted.

7. Estimating the number of routes needed

We have shown that in SybilLimit, a verifier V' will accept
(1 — €)n honest suspects with probability 1 — ¢ if r = rgy/m.
The constant rg can be directly calculated from the Birthday
Paradox and the desired end probabilistic guarantees. On
the other hand, m is unknown to individual nodes.*> Adapt-
ing the sampling approach from SybilGuard (as reviewed in
Section 4) is not possible, because that approach is funda-
mentally limited to g = o(v/n/ logn).

Benchmarking technique. SybilLimit uses a novel and per-
haps counter-intuitive benchmarking technique to address the
previous problem, by mixing the real suspects with some ran-
dom benchmark nodes that are already known to be mostly
honest. Every verifier V' maintains two sets of suspects, the
benchmark set K and the test set T. The benchmark set
K is constructed by repeatedly performing random routes
of length w and then adding the ending node (called the
benchmark node) to K. Let K+ and K~ be the set of honest
and sybil suspects in K, respectively. SybilLimit does not
know which nodes in K belong to K. But a key property
here is that because the escaping probability of such random
routes is o(1), even without invoking SybilLimit, we are
assured that | K~ |/|K| = o(1). The test set T contains the

3SybilLimit also requires that the random route length w be the mixing
time of the graph, which is also unknown. However, as in SybilGuard [42],
SybilLimit assumes that the nodes know a rough upper bound on the graph’s
mixing time. Such an assumption is reasonable because the mixing time
should be O(log n), which is rather insensitive to n.



real suspects that V' wants to verify, which may or may not
happen to belong to K. We similarly define 7" and T~.
Our technique will hinge upon the adversary not knowing
K™ or T (see later for how to ensure this), even though it
may know K™ UT* and K~ UT™.

To estimate r, a verifier V' starts from » = 1 and then
repeatedly doubles 7. For every r value, V verifies all sus-
pects in K and 7. It stops doubling » when most of the
nodes in K (e.g., 95%) are accepted, and then makes a final
determination for each suspectin 7.

No over-estimation. Once r reaches rq/m, most of the
suspects in KT will indeed be accepted, regardless of the
behavior of the adversary. Further, because |[K*|/|K| =
1 — o(1), having an r of r9/m will enable us to reach the
threshold (e.g., 95%) and stop doubling r further. Thus, V'
will never over-estimate r (within a factor of 2).

Under-estimation will not compromise SybilLimit’s
guarantees. It is possible for the adversary to cause an
under-estimation of by introducing artificial intersections
between the escaping tails of V' and the escaping tails of
suspects in K +. This may cause the threshold to be reached
before r reaches ro+/m.

What if SybilLimit operates under an r < 79/m? Inter-
estingly, SybilLimit can bound the number of sybil nodes
accepted within O(logn) per attack edge not only when
r = r9+/m, but also for r < rgy/m (see [41] for proofs). To
obtain some intuition, first notice that the number of sybil
nodes with tails intersecting with V’s uniform tails (Sec-
tion 6.1) can only decrease when r is smaller. Second, the
arguments regarding the number of sybil nodes accepted by
V’s escaping tails and non-uniform tails (Section 6.2) hinges
only upon the fraction of those tails, and not the value of r.

Using r < rgy/m, however, will decrease the probability
of tail intersection between the verifier and an honest suspect.
Here, we leverage a second important property of the bench-
mark set. Namely, conditioned upon the random routes for
picking benchmark nodes being non-escaping, the adversary
will not know which nodes are picked as benchmark nodes.
(If the adversary may eavesdrop messages, we can readily
encrypt messages using edge keys.) As a result, given an
honest suspect, the adversary cannot tell whether it belongs
to KT or T". If most (e.g., 95%) of the suspects in K are
accepted, then most suspects in K+ must be accepted as
well, since |K|/|K| = 1 — o(1). If most suspects in KT
are accepted under r < rg+/m, the adversary must have
intentionally caused intersection between V' and the suspects
in K. Because the adversary cannot tell whether an honest
suspect belongs to K or T'", it cannot introduce intersec-
tions only for suspects in K T; it must introduce intersections
for suspects in T as well. Thus, most suspects in 7' will
be accepted as well under the given 7.

Further discussions. The benchmarking technique may
appear counter-intuitive in two aspects. First, if SybilLimit

uses an under-estimated r, it will be the adversary that helps
it to accept most of the honest nodes. While this is true,
SybilLimit is still needed to bound the number of sybil nodes
accepted and also to prevent r from growing beyond r+/m.
Second, the benchmark set K is itself a set with o(1) fraction
of sybil nodes. Thus, it may appear that an application can
just as well use the nodes in K directly, and avoid the full
SybilLimit protocol. However, the set K is constructed
randomly and may not contain some specific suspects that
V wants to verify.

We leave to [41] a more formal discussion on the guaran-
tees of the benchmarking technique and the needed size of
K. There, based on classical estimation theory [4], we will
show that the needed size of K is independent of the size
of T'. We also discuss [41] how to carefully implement the
technique to avoid leaking (probabilistic) information to the
adversary about K.

8. Lower bound

SybilLimit bounds the number of sybil nodes accepted
within O(logn) per attack edge. A natural question is
whether we can further improve the guarantees. For ex-
ample, it may appear that SybilLimit does not currently have
any mechanism to limit the routing behavior of sybil nodes.
One could imagine requiring nodes to commit (cryptograph-
ically) to their routing tables, so that sybil nodes could not
perform random routes in an inconsistent fashion. We will
show, however, that such techniques or similar techniques
can provide at most a log n factor of improvement, because
the total number of sybil nodes accepted is lower bounded
by Q(1) per attack edge.

SybilLimit entirely relies on the observation that if the
adversary creates too many sybil nodes, then the resulting
social network will no longer have O(logn) mixing time.
Our technical report [41] proves that for any given constant
¢, any g € [1,n], and any graph G with n honest nodes and
O(log n) mixing time, it is always possible for the adversary
to introduce c - g sybil nodes via g attack edges so that the
augmented graph’s mixing time is O(logn’) where n’ =
n + c - g. There are actually many ways to create such an
augmented graph. One way (as in our proof) is to pick g
nodes arbitrarily from G and attach to each of them (using
a single attack edge) a group of ¢ sybil nodes. It does not
matter how the c sybil nodes in a group are connected with
each other, as long as they are connected. Now because the
augmented graph has the same mixing time (i.e., O(logn'))
as a “normal” social network with n/ nodes, as long as the
protocol solely relies on mixing time, we cannot distinguish
these sybil nodes from honest nodes. In other words, all
protocols based on mixing time will end up accepting (1)
sybil nodes per attack edge.



9. Experiments with online social networks

Goal of experiments. We have proved that SybilLimit can
bound the number of sybil nodes accepted within O(logn)
per attack edge, which improved upon SybilGuard’s guar-
antee of O(y/nlogn). However, these provable guarantees
of SybilLimit (and SybilGuard as well) critically rely on the
assumption that social networks have small (i.e., O(log n))
mixing time. Our experiments thus mainly serve to vali-
date such an assumption, based on real-world social net-
works. Such validation has a more general implication be-
yond SybilLimit—these results will tell us whether the ap-
proach of leveraging social networks to combat sybil attacks
is valid. A second goal of our experiments is to gain better un-
derstanding of the hidden constant in SybilLimit’s O(logn)
guarantee. Finally, we will also provide some example nu-
merical comparisons between SybilGuard and SybilLimit.
However, it is not our goal to perform a detailed experi-
mental comparison, because SybilLimit’s improvement over
SybilGuard is already rigorously proved.

Social network data sets. We use three crawled online
social network data sets in our experiments: Friendster, Live-
Journal, and DBLP (Table 2). They are crawls of http://

www.friendster.com, http://www.livejournal.

com, and http://dblp.uni-trier.de, respectively.
The DBLP data set is publicly available, but the other two are
not. We also experiment with Kleinberg’s synthetic social
network [16], which we used [42] to evaluate SybilGuard.

Strictly speaking, DBLP is a bibliography database and
not a social network. To derive the “social network” from
DBLP, we consider two people having an edge between them
if they have ever co-authored a paper. Because of the closely
clustered co-authoring relationships among researchers, we
expect such a social network to be more slowly mixing than
standard social networks. Thus, we use DBLP as a bound on
the worst-case scenario. Obviously, DBLP is guaranteed to
be free of sybil nodes. Although it is theoretically possible
for Friendster and LiveJournal to be polluted with sybil nodes
already, we expect such pollution to be limited because of
the lack of motivation to launch large-scale sybil attacks
in Friendster and LiveJournal. Table 2 presents the basic
statistics of the four social networks after appropriate prepro-
cessing (e.g., converting pairs of directed edges to undirected
edges, removing low (< 5) degree nodes, taking the largest
connected component—see [41]). We then randomly select
nodes to be sybil nodes, until the number of attack edges
reaches g, as in [42].4

Results: Mixing time of real-world social networks. In
SybilLimit, the only parameter affected by mixing time is
the length of the random routes (w). Namely, w should be at

4We also consider the “cluster” placement of attack edges from [42];
the results are qualitatively the same.

least as large as the mixing time. It is not possible to directly
show that our data sets have O(log n) mixing time, since
O(logn) is asymptotic behavior. It is not necessary to do
so either, since all we need to confirm is that rather small w
values are already sufficient for SybilLimit to work well.

For Friendster and LivedJournal, we use w = 10 (see
Table 2). Random routes do not seem to reach good enough
mixing for SybilLimit with w values much smaller than
10 (e.g., 5) in these two social networks. We use w = 15
for DBLP. As expected, DBLP has a worse mixing property
than the other social networks. Our results will show that
these small w values are already sufficient to enable good
enough mixing in our large-scale social networks (with 10°
to around 10 nodes) for SybilLimit to work well.

It is worth noting that social networks are well-known
to have groups or communities where intra-group edges
are much denser than inter-group edges [3, 15, 23, 37]. In
fact, there are explicitly-defined communities in LiveJournal
for users to join, while people in DBLP by definition form
research communities. Our results thus show that somewhat
counter-intuitively and despite such groups, the sparse inter-
group edges in these real-world social networks are sufficient
to provide good mixing properties.

Results: SybilLimit’s end guarantees. We use the w val-
ues from Table 2 to simulate SybilLimit and determine the
number of sybil nodes accepted. Our simulator does not
implement the estimation process for r. Rather, we directly
use the r values from Table 2, which are obtained based
on the value of m and the Birthday Paradox. We use 4 for
the universal constant / in all our experiments. We have
observed (results not included) that » = 2.5 is already suffi-
cient in most cases, while excessively large h (e.g., 10) can
unnecessarily weaken the guarantees (though not asymptoti-
cally). We always simulate the adversary’s optimal strategy
(i.e., worst-case for SybilLimit).

Figures 8 to 11 present the number of sybil nodes ac-
cepted by a randomly chosen verifier V' (as a fraction of
the number of honest nodes n), in each social network. We
present a fraction to allow comparison across social networks
with different n. We have repeated the experiments from a
number of verifiers, yielding similar results. For all cases,
we experiment with g up to the point where the number of
sybil nodes accepted reaches n. The figures further break
down the sybil nodes accepted into those accepted by Vs
non-escaping tails versus those accepted by V’s escaping
tails. The first component is bounded by the intersection
condition while the second is bounded by the balance con-
dition. In all figures, the number of sybil nodes accepted
grows roughly linearly with g. The asymptotic guarantee of
SybilLimit is O(log n) sybil nodes accepted per attack edge.
Figures 8 to 11 show that this O(logn) asymptotic term
translates to around between 10 (in Friendster, LiveJournal,
and Kleinberg) to 20 (in DBLP). As a concrete numerical
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comparison with SybilGuard, SybilGuard [42] uses random
routes of length { = 1906 in the million-node Kleinberg
graph. Because SybilGuard accepts [ sybil nodes per attack
edge, this translates to 1906 sybil nodes accepted per attack
edge for Kleinberg. Thus numerically in Kleinberg, Sybil-
Limit reduces the number of sybil nodes accepted by nearly
200-fold over SybilGuard.

One can also view Figures 8 to 11 from another per-
spective. The three data sets Friendster, LiveJournal, and
Kleinberg all have roughly one million nodes. Therefore, in
order for the number of sybil nodes accepted to reach n, the
number of attack edges needs to be around 100,000. Put it
another way, the adversary needs to establish 100,000 social
trust relationships with honest users in the system. As a quick
comparison under Kleinberg, SybilGuard will accept n sybil
nodes once g reaches around 500 (since [ = 1906). Some
simple experiments further show that with g > 15, 000, the
escaping probability of the random routes in SybilGuard
will be above 0.5 and SybilGuard can no longer provide
any guarantees at all. Finally, DBLP is much smaller (with
100,000 nodes) and because of the slightly larger w needed
for DBLP, the number of sybil nodes accepted will reach n
roughly when g is 5,000.

Finally, we have also performed experiments to inves-
tigate SybilLimit’s guarantees on much smaller social net-
works with only 100 nodes. To do so, we extract 100-node
subgraphs from our social network data sets. As a concise
summary, we observe that the number of sybil nodes ac-
cepted per attack edge is still around 10 to 20.

10. Conclusion

This paper presented SybilLimit, a near-optimal defense
against sybil attacks using social networks. Compared
to our previous SybilGuard protocol [42] that accepted
O(y/nlogn) sybil nodes per attack edge, SybilLimit ac-
cepts only O(logn) sybil nodes per attack edge. Further-
more, SybilLimit provides this guarantee even when the
number of attack edges grows to o(n/logn). SybilLimit’s
improvement derives from the combination of multiple novel
techniques: i) leveraging multiple independent instances of
the random route protocol to perform many short random
routes, ii) exploiting intersections on edges instead of nodes,
iii) using the novel balance condition to deal with escaping
tails of the verifier, and iv) using the novel benchmarking
technique to safely estimate r. Finally, our results on real-
world social networks confirmed their fast mixing property,
and thus validated the fundamental assumption behind Sybil-
Limit’s (and SybilGuard’s) approach. As future work, we
intend to implement SybilLimit within the context of some
real-world applications and demonstrate its utility.
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