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Olivier Lévêque, IC–LTHI, EPFL
with special thanks to Simon Guilloud for the figures

edited by Yanina Shkel, IC–MIL, EPFL

November 7, 2025

Contents

1 σ-fields and random variables 3

1.1 σ-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 σ-field generated by a collection of events . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Sub-σ-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 σ-field generated by a collection of random variables . . . . . . . . . . . . . . . . . . . . . 7

2 Probability measures and distributions 8

2.1 Probability measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Distribution of a random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Two important classes of random variables . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 The Cantor set and the devil’s staircase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Independence 16

3.1 Independence of two events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Independence of two random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Independence of two sub-σ-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Independence of more sub-σ-fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Do independent random variables really exist ??? . . . . . . . . . . . . . . . . . . . . . . . 19

4 Expectation 20

5 Probability couplings 23

1



5.1 Probability couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Total variation distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Stochastic dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Inequalities 27

7 Transform methods 30

7.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2 Characteristic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.3 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Random vectors and Gaussian random vectors 35

8.1 Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.2 Gaussian random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.3 Joint distribution of Gaussian random vectors . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Laws of large numbers 41

9.1 Preliminary: convergence of sequences of numbers . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Convergences of sequences of random variables . . . . . . . . . . . . . . . . . . . . . . . . 41

9.3 Relations between the three notions of convergence . . . . . . . . . . . . . . . . . . . . . . 41

9.4 The Borel-Cantelli lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.5 Laws of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.6 Application: convergence of the empirical distribution . . . . . . . . . . . . . . . . . . . . 46

9.7 Extension of the strong law: Kolmogorov’s 0-1 law . . . . . . . . . . . . . . . . . . . . . . 46

9.8 Extension of the weak law: an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 The central limit theorem 49

10.1 Convergence in distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2 Application: the Curie-Weiss model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.3 Equivalent criterion for convergence in distribution . . . . . . . . . . . . . . . . . . . . . . 52

10.4 The central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.5 An alternate proof of the central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . 56

10.6 Application: the coupon collector problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11 Conditional expectation 58

11.1 Conditioning with respect to an event B ∈ F . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.2 Conditioning with respect to a discrete random variable Y . . . . . . . . . . . . . . . . . . 59

11.3 Conditioning with respect to a continuous random variable Y ? . . . . . . . . . . . . . . . 59

11.4 Conditioning with respect to a sub-σ-field G . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2



11.5 Conditioning with respect to a random variable Y . . . . . . . . . . . . . . . . . . . . . . 61

11.6 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

12 Martingales 63

12.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

12.2 Stopping times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12.3 Doob’s optional stopping theorem, version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12.4 The reflection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12.5 Martingale transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

12.6 Doob’s decomposition theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

13 Martingale convergence theorems 70

13.1 Preliminary: Doob’s martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

13.2 The martingale convergence theorem: first version . . . . . . . . . . . . . . . . . . . . . . 71

13.3 Consequences of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

13.4 Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.5 The martingale convergence theorem: second version . . . . . . . . . . . . . . . . . . . . . 75

13.6 Generalization to sub- and supermartingales . . . . . . . . . . . . . . . . . . . . . . . . . . 76

13.7 Azuma’s and McDiarmid’s inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

14 Concentration inequalities 80

14.1 Hoeffding’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

14.2 Large deviations principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Appendix 84
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Basic terminology and conventions

- A discrete set means a set in bijection with a subset of N (so either finite or countable).

- Capital letters X,Y, Z refer to random variables, while small letters x, y, z refer to numbers.

- A number x ∈ R is said to be non-negative if x ≥ 0, and positive if x > 0.

- Likewise, a function f : R → R is said to be non-decreasing if f(x1) ≤ f(x2) as soon as x1 < x2, and
increasing if f(x1) < f(x2) as soon as x1 < x2.

- Closed intervals are denoted as [a, b]; open intervals are denoted as ]a, b[.

- For two sets A,B, “A ⊂ B” means “either A is a (strict) subset of B or A = B”.

- If x is an element of a set A, then {x} denotes the subset of A containing the only element x (=singleton).

- And an important remark: a necessary preliminary to Probability Theory is Measure Theory; likewise, a
necessary preliminary to Measure Theory is Topology, and it is probably fair to say also that a necessary
preliminary to Topology is Set Theory. As we cannot cover everything in these notes, some facts will be
stated without proof in order to avoid opening too many Pandora’s boxes. . . Readers interested in gaining
a deeper understanding of the field are of course encouraged to search for other more detailed references
on the subject.

4



1 σ-fields and random variables

1.1 σ-fields

In probability, the fundamental set Ω describes the set of all possible outcomes (or realizations) of a given
experiment. It might be any set, without any particular structure, such as for example Ω = {1, . . . , 6}
representing the outcomes of a die roll, or Ω = [0, 1] representing the outcomes of a concentration
measurement of some chemical product. Note moreover that the set Ω need not be composed of numbers
exclusively; it would be for example perfectly valid to consider the set Ω = {banana, apple, orange}.

Given a fundamental set Ω, it is important to describe what information does one have on the system,
namely on the outcomes of the experiment. This notion of information is well captured by the mathemat-
ical notion of σ-field, which is defined below. Note that in elementary probability courses, it is generally
assumed that the information one has about a system is complete, so that it becomes useless to introduce
the concept below.

Definition 1.1. Let Ω be a set. A σ-field (or σ-algebra) on Ω is a collection F of subsets of Ω (or events)
satisfying the following properties or axioms:

(i) ∅,Ω ∈ F .

(ii) If A ∈ F , then Ac ∈ F .

(iii) If (An, n ≥ 1) is a sequence of subsets of Ω and An ∈ F for every n ≥ 1, then
⋃∞

n=1An ∈ F .

Note that a finite version of (iii) also holds

(iii’) If A1, . . . , An ∈ F , then
⋃n

j=1Aj ∈ F .

Using De Morgan’s law:
⋂n

j=1Aj =
(⋃n

j=1A
c
j

)c
, the above properties imply that

(iv) If A1, . . . , An ∈ F , then
⋂n

j=1Aj ∈ F .

(iv’) If (An, n ≥ 1) is a sequence of subsets of Ω and An ∈ F for every n ≥ 1, then
⋂∞

n=1An ∈ F .

(v) Also, if A,B ∈ F , then B\A = B ∩Ac ∈ F .

Terminology. The pair (Ω,F) is called a measurable space and the events belonging to F are said to be
F-measurable, that is, they are the events that one can decide on whether they happened or not, given
the information F . In other words, if one knows the information F , then one is able to tell to which
events of F (= subsets of Ω) does the realization of the experiment ω belong.

Example 1.2. For a generic set Ω, the following are always σ-fields:

F0 = {∅,Ω} (= trivial σ-field).
P(Ω) = {all subsets of Ω} (= complete σ-field).

Example 1.3. Let Ω = {1, . . . , 6}. The following are σ-fields on Ω:

F1 = {∅, {1}, {2, . . . , 6},Ω}.
F2 = {∅, {1, 3, 5}, {2, 4, 6},Ω}.
F3 = {∅, {1, 2, 3}, {4, 5, 6},Ω}.

Example 1.4. Let Ω = [0, 1] and I1, . . . , In be a family of disjoint intervals in Ω such that I1∪. . .∪In = Ω
({I1, . . . , In} is also called a partition of Ω). The following is a σ-field on Ω:

F4 = {∅, I1, . . . , In, I1 ∪ I2, . . . , I1 ∪ I2 ∪ I3, . . . ,Ω} (NB: there are 2n events in total in F4)

In the discrete setting (that is, in a σ-field with a finite or countable number of elements), the smallest
elements contained in a σ-field are called the atoms of the σ-field. Formally, F ∈ F is an atom of F if for
any G ∈ F such that G ⊂ F , it holds that either G = ∅ or G = F . In the above example with Ω = [0, 1],
the atoms of F4 are therefore I1, . . . , In. Note moreover that a σ-field with n atoms has 2n elements, so
that the number of elements of a finite σ-field is always a power of 2.
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1.2 σ-field generated by a collection of events

An event carries in general more information than itself. As an example, if one knows whether the result
of a die roll is odd (corresponding to the event {1, 3, 5}), then one also knows of course whether the
result is even (corresponding to the event {2, 4, 6}). It is therefore convenient to have a mathematical
description of the information generated by a single event, or more generally by a family of events.

Definition 1.5. Let A = {Ai, i ∈ I} be a collection of subsets of Ω (where I need not be finite nor
countable). The σ-field generated by A is the smallest σ-field on Ω containing all the events Ai. It is
denoted as σ(A). Note that the σ-field σ(A) can equivalently be defined as the intersection of all σ-fields
that contain the collection A, as yes, any intersection of σ-fields is still a σ-field (exercise!).

Remark. A natural question is whether such a vague definition makes sense. Observe first that there is
always at least one σ-field containing A: it is P(Ω). Then, one can show that an arbitrary intersection
of σ-fields is still a σ-field. One can therefore provide the following alternative definition of σ(A): it is
the intersection of all σ-fields containing the collection A, which is certainly a well-defined object.

Example. Let Ω = {1, . . . , 6} (cf. Example 1.3).

Let A1 = {{1}}. Then σ(A1) = F1.
Let A2 = {{1, 3, 5}}. Then σ(A2) = F2.
Let A2 = {{1, 2, 3}}. Then σ(A3) = F3.
Let A = {{1}, . . . , {6}}. Then σ(A) = P(Ω).

Exercise. Let A = {{1, 2, 3}, {1, 3, 5}}. Compute σ(A).

Example. Let Ω = [0, 1] and let A4 = {I1, . . . , In} (cf. Example 1.4). Then σ(A4) = F4. This is a
particular instance of the fact that in the discrete case, a σ-field is always generated by the collection of
its atoms.

Borel σ-field on [0, 1]. A very important example of generated σ-field on Ω = [0, 1] is the following:

B([0, 1]) = σ({{0}, {1}, ]a, b[ : a, b ∈ [0, 1], a < b})

is the Borel σ-field on [0, 1] and elements of B([0, 1]) are called the Borel subsets of [0, 1]. As surprising
as it may be, it turns out that B([0, 1]) ̸= P([0, 1]) [without proof], which generates some difficulties from
the theoretical point of view. Nevertheless, it is quite difficult to construct explicit examples of subsets
of [0, 1] which are not in B([0, 1]). Note indeed that

a) All singletons belong to B([0, 1]). Indeed, for any 0 < x < 1, {x} =
⋂

n≥1]x −
1
n , x + 1

n [ belongs
to B([0, 1]), by the property seen above and the fact that the Borel σ-field is by definition the smallest
σ-field containing all open intervals.

b) Therefore, all closed intervals, being unions of open intervals and singletons, also belong to B([0, 1]).

c) Likewise, all countable intersections of open intervals B([0, 1]), as well as all countable unions of closed
intervals belong to B([0, 1]).

d) The story goes on with countable unions of countable intersections of open intervals, etc. Even though
the list is quite long, not all the subsets of [0, 1] are part of B([0, 1]), as mentioned above.

Remark. In general, the σ-field generated by a collection of events contains many more elements than
the collection itself! The Borel σ-field is a good example. In the finite case, you will observe the same
phenomenon while computing σ({{1, 2, 3}, {1, 3, 5}}) on Ω = {1, . . . , 6}.

Remark. It can be easily checked that the atoms of B([0, 1]) are the singletons {x}, x ∈ [0, 1]. Never-
theless, one can check that B([0, 1]) is not generated by its atoms (as it is not a discrete σ-field). As a
proof of this (exercise), compute what σ({{x}, x ∈ [0, 1]}) is.
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Borel σ-field on R and R2.

Definition 1.6. On the set R, one defines

B(R) = σ({]a, b[ : a, b ∈ R, a < b})

The elements of B(R) are called Borel sets on R. Again, note that B(R) is strictly included in P(R).

Definition 1.7. On the set R2, one defines

B(R2) = σ({]a, b[×]c, d[ : a, b, c, d ∈ R, a < b, c < d})

Note that even though B(R2) is generated by rectangles only, it contains all kinds of shapes in R2,
including in particular discs and triangles (because every disc and triangle can be seen as a countable
union of rectangles). Here again, one sees that the σ-field generated by a collection of events is much
larger than the collection of events itself.

Finally, note that a straightforward generalization of the above definition allows to define B(Rn) for
arbitrary n. Even more generally, B(Ω) can be defined for Ω a Hilbert / metric / topological space.

1.3 Sub-σ-field

One may have more or less information about a system. In mathematical terms, this translates into
the fact that a σ-field contains more or less elements. It is therefore convenient to introduce a (partial)
ordering on the ensemble of existing σ-fields, in order to establish a hierarchy of information. This notion
of hierarchy is important and will come back when we will be studying stochastic processes that evolve
in time.

Definition 1.8. Let Ω be a set and F be a σ-field on Ω. A sub-σ-field of F is a collection G of events
such that:

(i) If A ∈ G, then A ∈ F .

(ii) G is itself a σ-field.

Notation. G ⊂ F .

Remark. Let Ω be a generic set. The trivial σ-field F0 = {∅,Ω} is a sub-σ-field of any other σ-field on
Ω. Likewise, any σ-field on Ω is a sub-σ-field of the complete σ-field P(Ω).

Example. Let Ω = {1, . . . , 6} (cf. Example 1.3). Note that F1 is not a sub-σ-field of F2 (even though
{1} ⊂ {1, 3, 5}), nor is F2 a sub-σ-field of F1. In general, note that

1) If A ∈ G and G ⊂ F , then it is true that A ∈ F .

but

2) A ⊂ B and B ∈ G together do not imply that A ∈ G.

Example. Let Ω = [0, 1] (cf. Example 1.4). Then F4 is a sub-σ-field of B([0, 1]). Also, if F5 =
σ(J1, . . . , Jm), where {J1, . . . , Jm} represents a finer partition of the interval [0, 1] (i.e., each interval I of
F4 is a disjoint union of intervals J), then F4 ⊂ F5.

1.4 Random variables

The notion of random variable is usually introduced in elementary probability courses as a vague concept,
essentially characterized by its distribution. In mathematical terms however, random variables do exist
prior to their distribution: they are functions from the fundamental set Ω to R satisfying a measurability
property.
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Definition 1.9. Let (Ω,F) be a measurable space. A random variable on (Ω,F) is a map X : Ω → R
satisfying

{ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(R) (1)

Notation. One often simply denotes the set {ω ∈ Ω : X(ω) ∈ B} = {X ∈ B} = X−1(B): it is called
the inverse image of the set B through the map X (watch out that X need not be a bijective function in
order for this set to be well defined).

Terminology. The above random variable X is sometimes called F-measurable, in order to emphasize
that if one knows the information F , then one knows the value of X.

Example. If F = P(Ω), then condition (1) is always satisfied, so every map X : Ω → R is an F-
measurable random variable. On the contrary, if F = {∅,Ω}, then the only random variables which are
F-measurable are the maps X : Ω→ R which are constant.

Remark. Condition (1) can be shown to be equivalent to the following condition: [without proof]

{ω ∈ Ω : X(ω) ≤ t} ∈ F , ∀t ∈ R

which is significantly easier to check.

Definition 1.10. Let (Ω,F) be a measurable space and A ∈ F be an event. Then the map Ω → R
defined as

ω 7→ 1A(ω) =

{
1 if ω ∈ A
0 otherwise

is a random variable on (Ω,F). It is called the indicator function of the event A.

Example 1.11. Let Ω = {1, . . . , 6} and F = P(Ω) (cf. Example 1.3). Then X1(ω) = ω and X2(ω) =
1{1,3,5}(ω) are both random variables on (Ω,F). Moreover, X2 is F2-measurable, but note that X1 is
neither F1- nor F2-measurable.

Example 1.12. Let Ω = [0, 1] and F = B([0, 1]) (cf. Example 1.4). Then X3(ω) = ω and X4(ω) =∑n
j=1 xj1Ij (ω) are both random variables on (Ω,F). Note however that only X4 is F4-measurable.

We will need to consider not only random variables, but also functions of random variables. This is why
we introduce the following definition.

Definition 1.13. A map g : R→ R such that

{x ∈ R : g(x) ∈ B} ∈ B(R), ∀B ∈ B(R)

is called a Borel-measurable function on R.

Remark. A Borel-measurable function on R is therefore nothing but a random variable on the measurable
space (R,B(R)).

Notation. Again, one often uses the shorthand notations {x ∈ R : g(x) ∈ B} = {g ∈ B} = g−1(B),
but this does not mean that g is invertible!

As it is difficult to construct explicitly sets which are not Borel sets, it is equally difficult to construct
functions which are not Borel-measurable. Nevertheless, one often needs to check that a given function
is Borel-measurable. A useful criterion for this is the following [without proof].

Proposition 1.14. If g : R→ R is continuous, then it is Borel-measurable.

Finally, let us mention this useful property of functions of random variables.

Proposition 1.15. If X is an F-measurable random variable and g : R → R is Borel-measurable, then
Y = g(X) is also an F-measurable random variable.
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Proof. Let B ∈ B(R). Then

{Y ∈ B} = {g(X) ∈ B} = {X ∈ g−1(B)} ∈ F

since X is an F-measurable random variable and g−1(B) ∈ B(R) by assumption.

The above proposition is saying no more than the following: assume that knowing the information F
allows you to determine the value of X. Then knowing this same information F also gives you the value
of Y = g(X).

1.5 σ-field generated by a collection of random variables

The amount of information contained in a random variable, or more generally in a collection of random
variables, is given by the definition below.

Definition 1.16. Let (Ω,F) be a measurable space and {Xi, i ∈ I} be a collection of random variables
on (Ω,F). The σ-field generated by Xi, i ∈ I, denoted as σ(Xi, i ∈ I), is the smallest σ-field G on Ω such
that all the random variables Xi are G-measurable.

Remark. Note that
σ(Xi, i ∈ I) = σ({{Xi ∈ B}, i ∈ I, B ∈ B(R)})

where the right-hand side expression refers to Definition 1.5. It turns out that one also has [without
proof]

σ(Xi, i ∈ I) = σ({{Xi ≤ t}, i ∈ I, t ∈ R})
Another way to think of a σ-field generated by Xi, i ∈ I is by writing it as [without proof]

σ(Xi, i ∈ I) = σ (∪i∈Iσ(Xi))

In other words, it is the smallest σ-field containing all the σ-fields σ(Xi).

Example. Let (Ω,F) be a measurable space. If X0 is a constant random variable (i.e. X0(ω) = c ∈
R, ∀ω ∈ Ω), then σ(X0) = {∅,Ω}.

Example. Let Ω = {1, . . . , 6} and F = P(Ω) (cf. Examples 1.3 and 1.11). Then σ(X1) = P(Ω) and
σ(X2) = F2.

Example. Let Ω = [0, 1] and F = B([0, 1]) (cf. Examples 1.4 and 1.12). Then σ(X3) = B([0, 1]) and
σ(X4) = F4 (if all values xj are distinct).

The σ-field σ(X) can be seen as the information carried by the random variable X. By definition, a
random variable X is always σ(X)-measurable. Following the proof of Proposition 1.15, one can also
show the proposition below.

Proposition 1.17. If X is a random variable on a measurable space (Ω,F) and g : R → R is Borel-
measurable, then Y = g(X) is a σ(X)-measurable random variable, which is equivalent to saying that
σ(Y ) ⊂ σ(X): the information carried by Y is in general less than that carried by X.

Note that it can be strictly less: if you think e.g. about the case Y = X2, then the information about
the sign of X is lost in Y ; on the other hand, if the function g is invertible (meaning that one can write
X = g−1(Y )), then σ(Y ) = σ(X).

A further generalization of Proposition 1.17 is the following: if g : R2 → R is Borel-measurable and
Y = g(X1, X2), where X1, X2 are two random variables, then Y is a σ(X1, X2)-measurable random
variable, or put differently, σ(Y ) ⊂ σ(X1, X2). The other inclusion σ(X1, X2) ⊂ σ(Y ) is of course not
true in general, as the two random variables (X1, X2) carry potentially more information than the single
random variable Y .

Final remark. It turns out that the reciprocal statement of Proposition 1.17 is also true: if Y is a
σ(X)-measurable random variable, then there exists a Borel-measurable function g : R → R such that
Y = g(X) [without proof].
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2 Probability measures and distributions

2.1 Probability measures

Definition 2.1. Let (Ω,F) be a measurable space. A probability measure on (Ω,F) is a map P : F → [0, 1]
satisfying the following axioms:

(i) P(∅) = 0 and P(Ω) = 1.

(ii) If (An, n ≥ 1) is a collection of disjoint events in F , then P(∪∞n=1An) =
∑∞

n=1 P(An).

The following properties can be further deduced from the above axioms (proofs are left as exercise):

(iii) If (An, n ≥ 1) is a collection of events in F , then P(∪∞n=1An) ≤
∑∞

n=1 P(An).

(iv) If A,B ∈ F and A ⊂ B, then P(A) ≤ P(B) and P(B\A) = P(B)− P(A). Also, P(Ac) = 1− P(A).

(v) If A,B ∈ F , then P(A ∪ B) = P(A) + P(B) − P(A ∩ B). This formula generalizes to the countable
union of an arbitrary number of sets: it is called the inclusion-exclusion formula.

(vi) If (An, n ≥ 1) is a collection of events in F such that An ⊂ An+1, ∀n ≥ 1, then P(∪∞n=1An) =
limn→∞ P(An).

(vi’) If (An, n ≥ 1) is a collection of events in F such that An ⊃ An+1, ∀n ≥ 1, then P(∩∞n=1An) =
limn→∞ P(An).

Terminology. The triple (Ω,F ,P) is called a probability space. Properties (ii), resp. (ii’), are referred to
as the additivity, resp. σ-additivity, of probability measures. Properties (iii), resp. (iii’), are referred to
as the subadditivity, resp. sub-σ-addivity, of probabilty measures (or more prosaically as the union bound
sometimes).

Example. Let Ω = {1, . . . , 6} and F = P(Ω) be the measurable space associated to a die roll. The
probability measure associated to a balanced die is defined as

P1({i}) =
1

6
, ∀i ∈ {1, . . . , 6}

and is extended by additivity to all subsets of Ω. E.g.,

P1({1, 3, 5}) =
1

6
+

1

6
+

1

6
=

1

2

The probability measure associated to a loaded die is defined as

P2({6}) = 1 and P2({i}) = 0, ∀i ∈ {1, . . . , 5}

and is extended by additivity to all subsets of Ω, so that for A ⊂ Ω, P2(A) = 1 if 6 ∈ A and P2(A) = 0
otherwise.

In a discrete σ-field, once a probability measure is defined on the atoms of the σ-field, it is always possible
to extend it by (σ-)additivity to the whole σ-field. In the general case, a similar statement holds true,
but the extension procedure is much more complicated.

Example. Let Ω = [0, 1] and F = B([0, 1]). One defines the following probability measure on the
subintervals of [0, 1]:

P( ]a, b[ ) = b− a

Fact. [without proof] Carathéodory’s extension theorem (see Appendix A.1 at the end of this document)
states that P can be extended uniquely by σ-additivity to all Borel subsets of [0, 1]. It is called the
Lebesgue measure on [0, 1] and is sometimes denoted as P(B) = |B|. Note that it corresponds also to the
uniform distribution on [0, 1].
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Examples. - Let Ω = R and F = B(R). One can define the following probability measure on open
intervals:

P( ]a, b[ ) =
∫ b

a

dx
1√
2π

exp(−x2/2)

Such a measure can be uniquely extended to all Borel subsets of R: it is called the (normalized) Gaussian
measure on R.

- Let Ω = R2 and F = B(R2). One can define the following probability measure on open rectangles:

P( ]a, b[2) =
∫
]a,b[2

dxdy
1

2π
exp(−(x2 + y2)/2)

which can again be extended to all Borel subsets of R2.

Remarks. - One can also define the following measure on (R,B(R)), by setting on open intervals:

P( ]a, b[ ) = b− a

This measure can be again uniquely extended to all Borel subsets of R. It is however not a probability
measure, as with this definition, one sees (using the above properties) that

P(R) = lim
n→∞

P( ]− n,+n[ ) = lim
n→∞

2n = +∞

This measure is called the Lebesgue measure on R and is again denoted as P(B) = |B| for B ∈ B(R).

- We see here that defining first P on the singletons {x} (which are the atoms of B(R)) instead of the
open intervals ]a, b[ would not be a good idea, as we would have P({x}) = 0, ∀x ∈ R for both the Gaussian
measure and the Lebesgue measure on R, although these are clearly different.

Definition 2.2. Let (Ω,F ,P) be a probability space. An event A ∈ F is said to be negligible if P(A) = 0,
resp. almost sure (abbreviated a.s.) if P(A) = 1.

Remark. The wording “almost sure” is far from ideal, but has been commonly agreed upon (Jacob
Bernoulli would call such sets “morally certain” instead).

It should be emphasized that a negligible event need not be empty, nor need an almost sure event be
equal to the whole space Ω. Here are examples:

- In the probability space of a loaded die (see above), the set {1, 2, 3, 4, 5} is a negligible event, while the
singleton {6} is an almost sure event.

- In the probability space ([0, 1], B([0, 1]),P = Lebesgue measure), any singleton {x} is negligible.

Here is moreover a general statement that can be made about negligible and almost sure sets.

Proposition 2.3.
- Let (An, n ≥ 1) be a collection of negligible events in F . Then

⋃
n≥1An is also negligible.

- Let (Bn, n ≥ 1) be a collection of almost sure events in F . Then
⋂

n≥1Bn is also almost sure.

Proof. By the sub-σ-additivity property (property (iii’) above),

P
( ⋃

n≥1

An

)
≤
∑
n≥1

P(An) =
∑
n≥1

0 = 0

which proves the first claim. The second claim is a consequence of the first one: consider An = Bc
n; then

P(An) = P(Bc
n) = 0 by assumption and

P
( ⋂

n≥1

Bn

)
= 1− P

( ⋃
n≥1

An

)
≥ 1−

∑
n≥1

P(An) = 1− 0 = 1
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As a consequence, any countable set in [0, 1] is negligible with respect to the Lebesgue measure. In
particular, Q ∩ [0, 1] is negligible! Perhaps more surprisingly, there exist also uncountable sets in [0, 1]
which are negligible with respect to the Lebesgue measure (see below).

2.2 Distribution of a random variable

Definition 2.4. Let (Ω,F ,P) be a probability space and X be a random variable defined on this prob-
ability space. The distribution of X is the map µX : B(R)→ [0, 1] defined as

µX(B) = P({X ∈ B}), B ∈ B(R)

Remark. The fact that P is a probability measure on (Ω,F) implies that µX is a probability measure
on (R,B(R)). The triple (R,B(R), µX) forms therefore a new probability space.

Notation. If a random variable X has distribution µ, this is denoted as X ∼ µ. Likewise, if two random
variables X and Y share the same distribution µ, then they are said to be identically distributed and this
is denoted as X ∼ Y ∼ µ.

Example 2.5. The probability space describing two independent (and balanced) die rolls is Ω =
{1, . . . , 6} × {1, . . . , 6}, F = P(Ω) and

P({(i, j)}) = 1

36
, ∀(i, j) ∈ Ω

Let X1(i, j) = i be the result of the first die, and Y (i, j) = i+ j be the sum of the two dice. Then

µX1
({i}) = P({X1 = i}) = P({(i, 1), . . . , (i, 6)}) = 6

36
=

1

6
, ∀i ∈ {1, . . . , 6}

and

µY ({2}) = P({Y = 2}) = P({(1, 1)}) = 1

36
, µY ({3}) = P({Y = 3}) = P({(1, 2), (2, 1)}) = 1

18

More generally:

µY ({i}) =
6− |7− i|

36
, i ∈ {2, . . . , 12}

2.3 Cumulative distribution function

Definition 2.6. Let (Ω,F ,P) be a probability space and X be a random variable defined on this prob-
ability space. The cumulative distribution function (cdf) of X is the map FX : R→ [0, 1] defined as

FX(t) = µX( ]−∞, t]) = P({X ≤ t}), t ∈ R

Fact.[without proof] The knowledge of FX is equivalent to the knowledge of µX . This fact is of course
related to the fact that B(R) = σ({ ]−∞, t[, t ∈ R}), but this observation alone does not allow to conclude
this directly.

From the properties of probability measures, one deduces that the cdf of a random variable satisfies the
following properties:

(i) limt→−∞ FX(t) = 0, limt→+∞ FX(t) = 1.

(ii) FX is non-decreasing, i.e. FX(s) ≤ FX(t) for all s < t.

(iii) FX is right-continuous on R, i.e. limε↓0 FX(t+ ε) = FX(t), for all t ∈ R.

Indeed:
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(i) limt→∞ FX(t) = limn→∞ FX(n) = limn→∞ P({X ≤ n}) = 1, as the sequence of events {X ≤ n} is an
increasing sequence with ∪n≥1{X ≤ n} = Ω. The result then follows from the use of property (vi) listed
above for probability measures. A similar reasoning shows that limt→−∞ FX(t) = limn→∞ FX(−n) =
limn→∞ P({X ≤ −n}) = 0, by the fact that {X ≤ −n} is this time a decreasing sequence of events with
∩n≥1{X ≤ −n} = ∅ and the use of property (vi’) of probability measures.

(ii) If s ≤ t, then {X ≤ s} ⊂ {X ≤ t}, so FX(s) = P({X ≤ s}) ≤ P({X ≤ t}) = FX(t).

(iii) For any t ∈ R, we have limε↓0 FX(t + ε) = limn→∞ FX(t + 1
n ) = limn→∞ P({X ≤ t + 1

n}) =
P({X ≤ t}) = FX(t), as again the sequence {X ≤ t + 1

n} is a decreasing sequence of events with
∩n≥1{X ≤ t+ 1

n} = {X ≤ t}.

Important remarks.
- Any function F : R→ R satisfying the above properties (i), (ii) and (iii) is the cdf of a random variable
[without proof].

- One cannot show that the cdf of a random variable is left-continuous (and therefore continuous)
in general. Indeed, repeating the above argument, we obtain: for any t ∈ R, limε↓0 FX(t − ε) =
limn→∞ FX(t − 1

n ) = limn→∞ P({X ≤ t − 1
n}) = P({X < t}), as {X ≤ t − 1

n} is a increasing se-
quence of events with ∪n≥1{X ≤ t− 1

n} = {X < t}. But P({X < t}) ̸= FX(t) in general. It is wrong in
particular for discrete random variables (see below).

- Any cdf FX has at most a countable number of jumps on the real line [without proof]. If FX has a
jump of size p ∈ [0, 1] at t ∈ R, this actually means that P({X = t}) = FX(t) − limε↓0 FX(t − ε) = p.
This implies in particular that a discrete random variable cannot take more than a countable number of
values.

2.4 Two important classes of random variables

Discrete random variables.

Definition 2.7. X is a discrete random variable if it takes values in a discrete (i.e., finite or countable)
subset D of R, that is, X(ω) ∈ D for every ω ∈ Ω.

The distribution of a discrete random variable is entirely characterized by the numbers px = P({X = x}),
where x ∈ D. Note that 0 ≤ px ≤ 1 for all x ∈ D and that

∑
x∈D px = P({X ∈ D}) = 1. The sequence

of numbers (px, x ∈ D) is sometimes called the probability mass function (pmf) of the random variable
X. It should not be confused with the probability density function (pdf) defined below for continuous
random variables only. One further has:

µX(B) = P({X ∈ B}) =
∑

x∈D∩B

px, ∀B ∈ B(R)

and
FX(t) = P({X ≤ t}) =

∑
x∈D, x≤t

px, ∀t ∈ R

is a step function, as illustrated below:
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Example. A binomial random variable X with parameters n ≥ 1 and p ∈ [0, 1] (denoted as X ∼ Bi(n, p))
takes values in {0, . . . , n} and is characterized by the numbers

pk = P({X = k}) =
(
n
k

)
pk (1− p)n−k, k ∈ {0, . . . , n}

where

(
n
k

)
=

n!

k!(n− k)!
are the binomial coefficients.

Continuous random variables.

Definition 2.8. X is a continuous random variable if P({X ∈ B}) = 0 whenever B ∈ B(R) is such that
|B| = 0 (remember that |B| is the Lebesgue measure of B).

In particular, this implies that if X is a continuous random variable, then P({X = x}) = 0 ∀x ∈ R (as
|{x}| = 0 ∀x ∈ R). But please note that this last condition is not sufficient to guarantee that X is a
continuous random variable.

Fact. [without proof]1 If X is a continuous random variable according to the above definition, then there
exists a Borel-measurable function pX : R → R, called the probability density function (pdf) of X, such
that pX(x) ≥ 0 ∀x ∈ R,

∫
R pX(x) dx = 1 and

µX(B) = P({X ∈ B}) =
∫
B

pX(x) dx, ∀B ∈ B(R)

Moreover,

FX(t) = P({X ≤ t}) =
∫ t

−∞
pX(x) dx, ∀t ∈ R

is a continuous and “differentiable” function (whose “derivative” is F ′
X(t) = pX(t), but watch out that pX

need not be continuous in general, but only Borel-measurable, so FX is not differentiable in the classical
sense). This is illustrated below:

1This fact is known as the Radon-Nikodym theorem. It has many different formulations and important applications in
probability theory.
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Important remarks.
- pX(x) ̸= P({X = x}), simply because P({X = x}) = 0 for all x ∈ R.

- pX(x) ≥ 0, but as this quantity is not a probability, it is perfectly possible that pX(x) > 1 for some
values of x. The only requirement is that the integral of pX(x) over R is equal to 1.

Example. A Gaussian random variable X with mean µ and variance σ2 (denoted as X ∼ N (µ, σ2))
takes values in R and has pdf

pX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, x ∈ R

so in particular, pX(µ) = 1√
2πσ2

> 1 if σ < 1√
2π

.

Remark. One could think that the only existing distributions are either discrete or continuous, or a
combination of these. It turns out that life is more complicated than that! Some distributions are neither
discrete, nor continuous. A famous example is the distribution whose cdf is the devil’s staircase, as we
shall see below.

Change of variables. Let X be a generic random variable on a probability space (Ω,F ,P), f : R→ R
be a Borel-measurable function and Y = f(X). Assume we know FX the cdf of X; what can we say on
FY the cdf of Y ? Assume for example that f is increasing, i.e., that f(x1) < f(x2) as soon as x1 < x2.
Let also D = {y ∈ R : ∃x ∈ R such that f(x) = y} be the range of the function f . Then f : R → D is
(Borel-measurable and) invertible, so for each point t ∈ D, we have

FY (t) = P({Y ≤ t}) = P({f(X) ≤ t}) = P({X ≤ f−1(t)}) = FX(f−1(t))

If in addition X is a continuous random variable with pdf pX and f is differentiable (with f ′(x) > 0 for
all x ∈ R, as f is increasing), then Y is a continuous random variable also and

pY (t) =
dFY (t)

dt
=
dFX(f−1(t))

dt

df−1(t)

dt
=
pX(f−1(t))

f ′(f−1(t))

Setting x = f−1(t) in the above relation, we get the more natural formula pX(x) = pY (f(x)) f
′(x).

Similar reasonings allow to deal with f decreasing or more general cases.

Remark. In the case where X is a continuous random variable and f is assumed to be non-decreasing
only (i.e., f(x1) ≤ f(x2) if x1 < x2), note that f is not necessarily invertible in this case, so that the
above formulas do not hold. Also, Y = f(X) need not be a continuous random variable in this case
(consider for example the case where f(x) = 1{x≥0}; Y is a then discrete random variable taking values
in {0, 1} only).
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2.5 The Cantor set and the devil’s staircase

The Cantor set is a subset C of [0, 1] obtained by removing recursively “middle intervals” as follows:

Mathematically, for n ≥ 1, let

An =
⋃

a1,...,an−1∈{0,2}

]
n−1∑
k=1

ak
3k

+
1

3n
,

n−1∑
k=1

ak
3k

+
2

3n

[

be the set of (open) intervals removed at stage n. In particular, A1 = ] 13 ,
2
3 [, A2 = ]19 ,

2
9 [
⋃
] 79 ,

8
9 [, etc.

Note also that An and Am are disjoint for every n ̸= m. The Cantor set C is then defined as

C = [0, 1]\
⋃
n≥1

An

This set has strange properties: first observe that the Lebesgue measure of each An is given by

|An| =
2n−1

3n
(each set An is indeed made of 2n−1 disjoint intervals, each of length

1

3n
)

so that, using the fact that the An are disjoint as well as the formula for geometric series, we obtain:

|C| = 1−
∑
n≥1

2n−1

3n
= 1− 1

2

(
1

1− 2
3

− 1

)
= 1− 1

2
(3− 1) = 0

The Cantor set C has therefore Lebesgue measure 0. Surprisingly, C is also uncountable. This can be
seen as follows: any number x ∈ [0, 1] can be written using its binary decomposition:

x =
∑
n≥1

bn
2n
, where bn ∈ {0, 1} (2)

Likewise, any number x ∈ [0, 1] can also be written using its ternary decomposition:

x =
∑
n≥1

an
3n
, where an ∈ {0, 1, 2}

It is a fact [without proof] that any x ∈ C can be written as

x =
∑
n≥1

an
3n
, where an ∈ {0, 2} (3)

i.e., x ∈ C if and only if an ̸= 1 for every n ≥ 1. Comparing formulas (2) and (3), we see that the sets [0, 1]
and C are in bijection with each other (the bijection being bn = 0←→ an = 0 and bn = 1←→ an = 2),
proving that C is uncountable, because [0, 1] is (the proof that the set [0, 1] is uncountable is by the way
also due to Cantor and is called the diagonalization argument).
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Let us now turn to the devil’s staircase. This strange cdf has the following shape:

It can be defined recursively as follows: F (t) = 1
2 for t ∈ ] 13 ,

2
3 [, F (t) = 1

4 for t ∈ ] 19 ,
2
9 [, F (t) = 3

4 for
t ∈ ] 79 ,

8
9 [, etc. Formally, one can define F on the sets An as follows:

F (t) =

n−1∑
k=1

ak/2

2k
+

1

2n
for t ∈

]
n−1∑
k=1

ak
3k

+
1

3n
,

n−1∑
k=1

ak
3k

+
2

3n

[

It is then a fact that F can be extended by continuity to all t ∈ [0, 1] [without proof, but the picture
above should convince you, as well as the following argument: for t, s ∈ [0, 1], if |t − s| ≤ 1/3n, then
|F (t)−F (s)| ≤ 1/2n; this implies that F is not only continuous on [0, 1], but also uniformly continuous 2].

Note now its strange properties: F (0) = 0, F (1) = 1, F is non-decreasing on [0, 1], and on any set An, F
is flat, so that F ′(t) = 0 for all t ∈ ∪n≥1An, which is the complement of C on [0, 1]. This is saying more
precisely that the set where F is flat has full Lebesgue measure on the interval [0, 1], so that the function
F is almost flat. Moreover, we just said above that F is continuous on the interval [0, 1].

If you think for a while, all these properties seem to contradict each other, but actually, they don’t! At
the beginning of the 20th century, the work of Cantor led to a revolution in mathematics. . .

The next question is: where to classify the devil’s staircase, i.e., is it the cdf of a continuous or of a
discrete random variable?

Let us first try to see it as the cdf of a continuous variable. We have seen that F ′(t) = 0 for any t /∈ C.
Therefore, if F were to admit a pdf, this pdf would be equal to 0 almost everywhere on [0, 1]. But then,
such a function cannot integrate to 1 on the interval [0, 1]. F is therefore not the cdf of a continuous
random variable (even though it is itself a continuous function).

Let us now try to view F as the cdf of a discrete random variable and look for the corresponding pmf.
From the definition of F , it is clear that the pmf assigns no weight to elements t /∈ C. Using the symmetry
of the function F , one could then perhaps argue that the pmf should be the uniform distribution on C.
But as we have seen above, C is uncountable, so in particular infinite. Such a uniform discrete distribution
on C does therefore not exist!

One may still argue that F is the cdf of the uniform distribution on C, as well as F (t) = t is the cdf of the
uniform distribution on [0, 1]. This raises the question: what does that mean to pick a point uniformly
in C? The same question is equally valid with C replaced by [0, 1], actually. . .

2But please note that the function F is not absolutely continuous: this would actually mean that F admits a pdf.
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3 Independence

The notion of independence is a central notion in probability. It is usually defined for events and random
variables in elementary probability courses. Nevertheless, as it will become clear below, the independence
between σ-fields turns out to be the most natural concept (remembering that a σ-field is related to the
amount of information one has on a system).

In the following subsections, all events, random variables and sub-σ-fields are defined in a common
probability space (Ω,F ,P).

3.1 Independence of two events

Definition 3.1. Two events A1, A2 ∈ F are independent if P(A1 ∩A2) = P(A1)P(A2).

Remark. Although this definition is quite standard, a more explanatory definition of independence
of two events is given by using conditional probabilities: we say that A1 and A2 are independent if
P(A1|A2) = P(A1), which is saying that the realization of event A2 has no influence on the probability
that A1 happens. Using the formula for the conditional probability P(A1|A2) = P(A1 ∩ A2)/P(A2), we
then recover the above definition. We will come back later to conditional probability, which is a central
concept in probability theory.

Notation. A1 ⊥⊥ A2.

Proposition 3.2. If two events A1, A2 ∈ F are independent, then it also holds that

P(A1 ∩Ac
2) = P(A1)P(Ac

2), P(Ac
1 ∩A2) = P(Ac

1)P(A2) and P(Ac
1 ∩Ac

2) = P(Ac
1)P(Ac

2)

Proof. We show here the first equality (noticing that the other two can be proved in a similar way):

P(A1 ∩Ac
2) = P(A1\(A1 ∩A2)) = P(A1)− P(A1 ∩A2) = P(A1)− P(A1)P(A2)

= P(A1) (1− P(A2)) = P(A1)P(Ac
2)

Note that the above proposition says actually something very natural. Let us assume for example that
one rolls a balanced die with four faces. Then the events {the outcome is 1 or 2} and {the outcome is
even} are independent; more precisely, the different informations associated with these events are. So
the events {the outcome is 1 or 2} and {the outcome is odd} are also independent. This will motivate
the extension of the definition of independence to σ-fields below.

3.2 Independence of two random variables

Definition 3.3. Two F-measurable random variables X1, X2 are independent if

P({X1 ≤ t1, X2 ≤ t2}) = P({X1 ≤ t1})P({X2 ≤ t2}), ∀t1, t2 ∈ R

Notation. X1 ⊥⊥ X2.

Example. Let X0(ω) = c ∈ R, ∀ω ∈ Ω be a constant random variable. According to the above definition,
X0 is independent of any other random variable defined on (Ω,F ,P).

An immediate question following this definition is the following: let f1, f2 : R → R be two Borel-
measurable functions and Y1 = f1(X1), Y2 = f2(X2). Are Y1 and Y2 also independent? A priori,
answering this question requires computing the joint distribution of Y1 and Y2 (which might be difficult
depending on the functions f1 and f2), but the following proposition [given here without proof, but
connected to the fact that the knowledge of a distribution µX is equivalent to that of its cdf FX ] allows
for a much cleaner answer.
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Proposition 3.4. X1, X2 are independent if and only if

P({X1 ∈ B1, X2 ∈ B2}) = P({X1 ∈ B1})P({X2 ∈ B2}), ∀B1, B2 ∈ B(R)

From this, we deduce the following:

Proposition 3.5. Let f1, f2 : R → R be two Borel-measurable functions. If X1, X2 are independent
random variables, then Y1 = f1(X1) and Y2 = f2(X2) are also independent random variables.

Proof. From the assumption made, we have for every B1, B2 ∈ B(R):

P({Y1 ∈ B1, Y2 ∈ B2}) = P({f1(X1) ∈ B1, f2(X2) ∈ B2}) = P({X1 ∈ f−1
1 (B1), X2 ∈ f−1

2 (B2)})
= P({X1 ∈ f−1

1 (B1)})P({X2 ∈ f−1
2 (B2)}) = P({f1(X1) ∈ B1})P({f2(X2) ∈ B2})

= P({Y1 ∈ B1})P({Y2 ∈ B2})

Note that f1, f2 need not be invertible for the above equalities to hold: f−1
i (Bi) is just a notation for the

pre-image of Bi via the function fi.

Further simplifications of Definition 3.3 occur in the two following situations [again, without proof]:

- Assume X1, X2 are two discrete random variables, taking values in a common discrete set D 3. Then
X1, X2 are independent if and only if

P({X1 = x1, X2 = x2}) = P({X1 = x1})P({X2 = x2}), ∀x1, x2 ∈ D

Example. Let (Ω,F ,P) be the probability space describing two independent die rolls in Example 2.5
and let X1(i, j) = i and X2(i, j) = j. One verifies below that these two random variables are indeed
independent. It was already shown that P({X1 = i}) = 1

6 , ∀i ∈ {1, . . . , 6}. Likewise, P({X2 = j}) = 1
6 ,

∀j ∈ {1, . . . , 6} and

P({X1 = i,X2 = j}) = P({(i, j)}) = 1

36
= P({X1 = i})P({X2 = j}), ∀(i, j) ∈ Ω

so X1 and X2 are independent.

- Assume now X1, X2 are jointly continuous random variables, that is, there exists a Borel-measurable
function pX1,X2

: R2 → R+ (=joint pdf) such that

P({(X1, X2) ∈ B}) =
∫
B

pX1,X2
(x1, x2) dx1dx2, ∀B ∈ B(R2)

Then X1, X2 are independent if and only if the function pX1,X2
can be factorized as follows:

pX1,X2
(x1, x2) = pX1

(x1) pX2
(x2), ∀(x1, x2) ∈ R2

3.3 Independence of two sub-σ-fields

The above two definitions of independence for events and random variables can actually be seen as
particular instances of a more general definition, concerning the independence of sub-σ-fields, that is to
say, the independence of two different types of information one may have on a system.

Definition 3.6. Two sub-σ-fields G1,G2 of F are independent if

P(A1 ∩A2) = P(A1)P(A2), ∀A1 ∈ G1, A2 ∈ G2
3This can always be assumed for discrete random variables: indeed, if X1 ∈ D1 and X2 ∈ D2, then simply consider

D = D1 ∪D2, which is also discrete.
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Notation. G1 ⊥⊥ G2.

One can readily check (using in particular Proposition 3.2 for the first line) that

- A1, A2 are independent according to Definition 3.1 if and only if σ(A1), σ(A2) are independent according
to Definition 3.6.

-X1, X2 are independent according to Definition 3.3 if and only if σ(X1), σ(X2) are independent according
to Definition 3.6.

3.4 Independence of more sub-σ-fields

The notion of independence of more than two σ-fields generalizes easily as follows.

Definition 3.7. Let {G1, . . . ,Gn} be a finite collection of sub-σ-fields of F . This collection is independent
if

P(A1 ∩ . . . ∩An) = P(A1) · · ·P(An), ∀A1 ∈ G1, . . . , An ∈ Gn

A finite collection of events {A1, . . . , An} is declared to be independent if {σ(A1), . . . , σ(An)} is indepen-
dent, which is equivalent to saying that

P(A∗
1 ∩ . . . ∩A∗

n) = P(A∗
1) · · ·P(A∗

n)

where A∗
i = either Ai or A

c
i , i ∈ {1, . . . , n}. Note that for n > 2, verifying only that

P(A1 ∩ . . . ∩An) = P(A1) · · ·P(An)

does not suffice to guarantee independence of the whole collection of events (i.e., Proposition 3.2 does
not generalize to the case n > 2). One can actually show that independence of {A1, . . . , An} holds if and
only if

P

⋂
j∈J

Aj

 =
∏
j∈J

P(Aj), ∀J ⊂ {1, . . . , n} such that J ̸= ∅

Note also that pairwise independence (i.e., P(Aj ∩ Ak) = P(Aj)P(Ak) for every j ̸= k) is not enough to
ensure the independence of the whole collection.

A finite collection of random variables {X1, . . . , Xn} is similarly declared to be independent if
{σ(X1), . . . , σ(Xn)} is independent, which is equivalent to saying that

P({X1 ∈ B1, . . . , Xn ∈ Bn}) = P({X1 ∈ B1}) · · ·P({Xn ∈ Bn}), ∀B1, . . . , Bn ∈ B(R)

and all the simplifications seen above apply similarly.

Finally, one can further generalize independence to an arbitrary (i.e., not necessarily countable) collection
of sub-σ-fields of F .

Definition 3.8. Let {Gi, i ∈ I} be an arbitrary collection of sub-σ-fields of F . This collection is
independent if any finite sub-collection {Gi1 , . . . ,Gin} is independent.

Infinite collections of sub-σ-fields or random variables occur in various contexts, but most prominently
when dealing with stochastic processes, as we shall see during this course.

Remark. For a countable collection of events (An, n ∈ N), it would not be a good idea to define
independence directly as

P(∩n∈NA
∗
n) =

∏
n∈N

P(A∗
n)

as in many cases, this equality would simply read “0 = 0”.
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3.5 Do independent random variables really exist ???

An innocent sentence such as “Let X1, X2, X3, . . . be an infinite collection of independent random vari-
ables. . . ” immediately raises a question: does there exist a probability space (Ω,F ,P) on which these
random variables could be defined altogether? The answer is (fortunately for the remainder of this
course. . . ): yes, but as we will see, the set Ω needed to fit all these independent random variables is quite
large (to say the least!).

- Let us start by exploring what Ω is needed for only two independent random variables X1 ∼ µ1

and X2 ∼ µ2, with µ1, µ2 two distributions on R. In this case, the set Ω = R2 suffices. Indeed, for
ω = (ω1, ω2) ∈ R2, let us first define X1(ω) = ω1 and X2(ω) = ω2. Now, what about F and P? For F ,
we will consider the σ-field generated by the “rectangles” of the form

B1 ×B2, with B1, B2 ∈ B(R)

which is nothing but the already encountered Borel σ-field B(R2). As for P, we set it to be given by

P(B1 ×B2 ) = µ1(B1)µ2(B2)

on the “rectangles”. Carathéodory’s extension theorem then ensures (see Appendix A.1) that P can be
uniquely extended to B(R2). With these definitions in hand, one can check that for every B1, B2 ∈ B(R),
one has

P({X1 ∈ B1, X2 ∈ B2}) = P({(ω1, ω2) ∈ R2 : ω1 ∈ B1, ω2 ∈ B2}) = P(B1 ×B2) = µ1(B1) · µ2(B2)

while

P({X1 ∈ B1}) = P({(ω1, ω2) ∈ R2 : ω1 ∈ B1}) = P(B1 × R) = µ1(B1) · µ2(R) = µ1(B1)

and similarly, P({X2 ∈ B2}) = µ2(B2), proving the claim that X1 and X2 are independent.

- For an infinite (yet countable, but this can be further generalized) collection of random variables, things
are slightly more complicated, but the basic principle remains the same. First, the set Ω needed in this
case becomes

Ω = {ω = (ω1, ω2, ω3, . . . ) : ωn ∈ R, ∀n ≥ 1} = RN∗

which can be viewed either as the set of infinite sequences of real numbers, or equivalently as the set of
functions from N∗ to R. We then define

Xn(ω) = ωn, ∀n ≥ 1

Now comes the trouble: what about F and P? For F , we take as before the σ-field generated by the
“rectangles” in RN∗

, which are of the form:

B1 ×B2 × . . .×Bn × R× R× . . .

where n is now an arbitrary positive integer. Note that the σ-field F is quite large! Nevertheless, defining
P on the above rectangles remains simple:

P(B1 ×B2 × . . .×Bn × R× R× . . .) = µ1(B1) · µ2(B2) · · ·µn(Bn)

and Carathéodory’s extension theorem ensures again that P can be uniquely extended to F . It is then
quite easy to see that with all these definitions,

P({X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn}) = P({X1 ∈ B1}) · P({X2 ∈ B2}) · · ·P({Xn ∈ Bn})

for any fixed n ≥ 1, which was our aim.
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4 Expectation

Let (Ω,F ,P) be a probability space and X : Ω → R be an F-measurable random variable. We are
interested in defining the expectation E(X) of this random variable, also known as its theoretical average.
In the simple case where X is a Bernoulli random variable with parameter 0 < p < 1 (i.e., P({X = 1}) =
p = 1− P({X = 0}), the expectation of X is given by

E(X) = 1 · P({X = 1}) + 0 · P({X = 0}) = 1 · p+ 0 · (1− p) = p

Remark. What does it mean that p is the average value of X, when X actually never takes this precise
value p? We will need the law of large numbers to answer this question: this is coming later.

In order to define E(X), we will aim here for a more ambitious goal, which is to define directly E(g(X)),
where g : R→ R is a Borel-measurable function (recall from the first lecture that we know that Y = g(X)
is also an F-measurable random variable in this case).

Step 1. Assume first that g is a simple non-negative function, i.e., that

g(x) =
∑
i≥1

yi 1Bi(x)

where yi are non-negative numbers and Bi are disjoint Borel subsets of R (implying that g is a Borel-
measurable function). In this case, the expectation is defined as

E(g(X)) =
∑
i≥1

yi P({X ∈ Bi}) =
∑
i≥1

yi P({g(X) = yi})

Observe the following:

- As X is F-measurable and every Bi is a Borel set by assumption, the sets {X ∈ Bi} ∈ F .

- The above sum, being a sum of non-negative numbers, is non-negative. Being also a potentially infinite
sum, it might take the value +∞, which is OK.

- A simple example is the following: for a given t ∈ R, consider g(x) = 1{x≤t}. Then

E(g(X)) = E(1{X≤t}) = P({X ≤ t}) = FX(t)

Step 2. Assume now that g is a generic non-negative Borel-measurable function. For n ≥ 1, we define

gn(x) =
∑
i≥1

i− 1

2n
1] i−1

2n , i
2n ](g(x)), x ∈ R

Observe that these functions gn are simple non-negative functions. Also, for every value of x ∈ R and
n ≥ 1, it holds that

gn(x) ≤ gn+1(x) ≤ g(x)

For each n ≥ 1, the definition of E(gn(X)) is given in Step 1:

E(gn(X)) =
∑
i≥1

i− 1

2n
P
({

i− 1

2n
< g(X) ≤ i

2n

})
Because gn(x) ≤ gn+1(x) for every x ∈ R and n ≥ 1, one can also check that E(gn(X)) ≤ E(gn+1(X))
for every n ≥ 1. This allows us to define

E(g(X)) = lim
n→∞

E(gn(X))

Indeed, the above limit always exists (taking possibly the value +∞), as (E(gn(X)), n ≥ 1) is a non-
decreasing sequence of non-negative numbers.
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Step 3. Consider finally the case where g is a generic Borel-measurable function, taking possibly positive
and negative values. Define in this case the positive and negative parts of g;

g+(x) = max(g(x), 0) and g−(x) = max(−g(x), 0)

Observe that for every x ∈ R:

g+(x)− g−(x) = g(x) and g+(x) + g−(x) = |g(x)|

Also, g+ and g− are themselves non-negative Borel-measurable functions (as well as |g|), so according
to Step 2, both E(g+(X)) and E(g−(X)) are well defined, but take possibly the value +∞. In order to
avoid trouble when defining E(g(X)), we will assume that both E(g+(X)) < +∞ and E(g−(X)) < +∞
(which is equivalent to assuming E(|g(X)|) < +∞) and define in this case:

E(g(X)) = E(g+(X))− E(g−(X))

This completes the definition of E(g(X)) in the general case.

Remark. Please observe that E(g(X)) is also well defined when either E(g+(X)) = +∞ or E(g−(X)) =
+∞, but not both at the same time. In this case, we can write E(g(X)) = +∞ (resp., E(g(X)) = −∞).
The only case which is to be avoided is the case ∞−∞, which leads to an indetermination.

In the case of discrete and continuous random variables, we obtain the following:

Proposition 4.1. If X is a discrete random variable with values in a set D and pmf {px, x ∈ D}, then
E(|g(X)|) =

∑
x∈D |g(x)| px and when this quantity is finite, we have

E(g(X)) =
∑
x∈D

g(x) px

Proposition 4.2. If X is a continuous random variable with pdf pX , then E(|g(X)|) =
∫
R |g(x)| pX(x) dx

and when this quantity is finite, we have

E(g(X)) =

∫
R
g(x) pX(x) dx

Notation in the general case. What we have defined above is nothing but Lebesgue’s integral (in the
particular case where the underlying measure is a probability measure P). Because it occurs in many
different context, this integral has also many different (and of course, equivalent) notations that we list
below for completeness:

E(g(X)) =

∫
Ω

g(X(ω)) dP(ω) =
∫
Ω

g(X(ω))P(dω)

=

∫
R
g(x) dµX(x) =

∫
R
g(x)µX(dx) =

∫
R
g(x)FX(dx) =

∫
R
g(x) dFX(x)

In particular, the last notation is the one that we used for convolution before (note that the positioning
of g(x) and dFX(x) after the integral is also irrelevant).

Terminology. - If E(|X|) < +∞, then X is said to be an integrable random variable.
- If E(X2) < +∞, then X is said to be a square-integrable random variable.
- If there exists 0 ≤ C < +∞ such that |X(ω)| ≤ C, ∀ω ∈ Ω, then X is said to be a bounded random
variable4.
- If E(X) = 0, then X is said to be a centered random variable.
- If X ∼ −X, the X is said to be symmetrically distributed.

One has the following series of implications:
4This condition is not to be confused with the weaker condition sometimes encountered in the literature: X is finite if

P({|X| < +∞}) = 1; this last condition is actually satisfied by any real-valued random variable X.
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X is bounded ⇒ X is square-integrable ⇒ X is integrable
X is integrable and Y is bounded ⇒ XY is integrable
X,Y are both square-integrable ⇒ XY is integrable

X is symmetrically distributed (and integrable) ⇒ X is centered

Proof. The fact that any bounded random variable is integrable follows from the simple fact that E(|X|) ≤
C if |X(ω)| ≤ C for all ω ∈ Ω. Any bounded random random variableX is therefore also square-integrable
(as X2 is bounded if X is bounded). Likewise, if X is integrable and |Y (ω)| ≤ C for all ω ∈ Ω, then
|X(ω)Y (ω)| ≤ C |X(ω)|, so XY is also integrable.

Besides, any square-integrable random variable is also integrable, because |X| ≤ X2+1
2 . Likewise, the

product XY is integrable if both X and Y are square-integrable, because |XY | ≤ X2+Y 2

2 .

Finally, if X ∼ −X, then E(X) = −E(X), implying that E(X) = 0 and concluding the proof.

Basic properties. [whose proofs can de deduced more or less straightforwardly from the above definition]

Linearity. If c ∈ R is a constant and X, Y are integrable, then

E(cX) = cE(X) and E(X + Y ) = E(X) + E(Y )

Positivity. If X is integrable and non-negative, then E(X) ≥ 0.

“Strict” positivity. If X is integrable, non-negative and E(X) = 0, then P({X = 0}) = 1. One cannot
indeed guarantee in this case that X(ω) = 0 for all ω ∈ Ω, but just that the event {ω ∈ Ω : X(ω) = 0}
is almost sure. Another way to say this is: “X = 0 almost surely”, often abbreviated as “X = 0 a.s.”

Monotonicity. If X, Y are integrable and X(ω) ≥ Y (ω) for all ω ∈ Ω, then E(X) ≥ E(Y ).

Jensen’s inequality (baby version). If X is integrable, then |E(X)| ≤ E(|X|).

Variance, covariance and independence.

Definition 4.3. Let X,Y be two square-integrable random variables. The variance of X is defined as

Var(X) = E((X − E(X))2) = E(X2)− E(X)2 ≥ 0

and the covariance of X and Y is defined as

Cov(X,Y ) = E((X − E(X)) (Y − E(Y ))) = E(XY )− E(X)E(Y )

so that Cov(X,X) = Var(X).

Remark. Observe that Var(X) is also well defined when X is integrable but not square-integrable, in
which case Var(X) = +∞. If X is not integrable, then Var(X) is ill defined (∞−∞ indetermination).

Terminology. If Cov(X,Y ) = 0, then X and Y are said to be uncorrelated.

Facts. [without proofs] Let c ∈ R be a constant and X,Y be square-integrable random variables.

a) Var(cX) = c2 Var(X).

b) Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

In addition, if X,Y are independent, then

c) Cov(X,Y ) = 0, i.e. E(XY ) = E(X)E(Y ) (but the reciprocal statement is wrong).

d) Var(X + Y ) = Var(X) + Var(Y ) (also true if X and Y are only uncorrelated).
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5 Probability couplings

Probability coupling is a technique that could be used to prove any number of interesting facts in prob-
ability theory. It also builds very nicely on our discussion of σ-fields since it is very hard to talk about
coupling probability measures without some notion of measurable spaces. In these notes we introduce the
basic notion of probability coupling and apply them to prove the Poisson approximation. We also connect
probability couplings to fundamental notions like the total variation distance, and stochastic dominance.

5.1 Probability couplings

Given (Ω1,F1) and (Ω2,F2), the product measure space (Ω1 × Ω2,F1 ×F2) is

• Ω1 × Ω2 = {ω : ω1 ∈ Ω1, ω2 ∈ Ω2}

• F1 ×F2 = σ({A×A2, : A1 ∈ F1, A2 ∈ F2}).

In other words Ω1 × Ω2 is the normal product space of tuples, while F1 ×F2 is the σ-filed generated by
all the product sets from F1 and F2.

A coupling could be defined for probability measures or for random variables. We provide both definitions.

Definition 5.1. Let P1 and P2 be two probability measures on (Ω,F). A coupling of P1 and P2 is a
probability measure P on (Ω× Ω,F × F) such that

P(A× Ω) = P1(A) and P(Ω×A) = P2(A)

for all A ∈ F .

Recall that an F-measurable random variable X on some probability space (Ω,F ,P) is just a measurable
map. Such a random variable creates another measurable space (R,B(R), µX). Thus, a coupling of two
random variables could be viewed as just a coupling of their marginal distributions by constructing a new
joint distribution.

Definition 5.2. Given two random variables X ∼ µX and Y ∼ µY , a coupling of X,Y is two jointly
distributed random variables (X ′, Y ′) with distribution µ′

XY on (R2,B(R2) such that µ′
XY is a coupling

of µX and µY .

Note that in this second definition, X and Y could be defined on different probability spaces, but (X ′, Y ′)
should be defined on the same probability space. We could think of this coupling in two ways. We could
directly couple µX and µY on (R,B(R)). In this case, we do not need to specify which probability spaces
X and Y are defined on. Or, given that X is defined on (Ω1,F1,P1) and Y is defined on (Ω2,F2,P2), we
could construct the coupling on the product space (Ω1 × Ω2,F1 ×F2).

There are many ways to couple two probability measures or two random variables.

Example (independent coupling). Let X be a Bernouilli random variable with parameter q and Y
be a Bernouilli random variable with parameter r, 0 < q < r < 1. An independent coupling (X ′, Y ′) is
such that

P({X ′ = i, Y ′ = j}) =


(1− q)(1− r), i = 0, j = 0

(1− q)r, i = 0, j = 1

q(1− r), i = 1, j = 0

qr, i = 1, j = 1.

This coupling is obtained by setting µ′
XY = µXµY .
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Example (monotone coupling). Let X and Y be as in the previous example. A monotone coupling
(X̂, Ŷ ) could be constructed in the following way. Pick U to be a uniform random variable on [0, 1]. Then
X̂ = 1{U≤q} and Ŷ = 1{U≤r} and

P({X̂ = i, Ŷ = j}) =


1− r, i = 0, j = 0

r − q, i = 0, j = 1

0, i = 1, j = 0

q, i = 1, j = 1.

Observe that in this coupling we have that Ŷ ≥ X̂ with probability one.

5.2 Total variation distance

The total variation distance is a common notion of distance between two probability measures or two
random variables. The total variation distance is intimately connected to one particular coupling of
random variables called maximal coupling.

Definition 5.3. Let P1 and P2 be two probability measures on (Ω,F). Total variation distance between
P1 and P2 is defined as

dTV (P1,P2) = sup
A∈F
|P1(A)− P2(A)|

The total variation distance between random variables is defined as the total variation distance between
their distributions.

Definition 5.4. Let X and Y be two random variables on (Ω,F ,P). Total variation distance between
X and Y is defined as

dTV (X,Y ) = sup
A∈B(R)

|P({X ∈ A})− P({Y ∈ A})|.

Observe that in this definition, the total variation distance depends only on the marginal distributions
of X and Y .

We now turn our attention to the special cases of continuous and discrete random variables.

Proposition 5.5. If X and Y are discrete random variables with probability mass functions pX and pY
then

dTV (X,Y ) =
1

2

∑
a∈D

|pX(a)− pY (a)|

Proposition 5.6. If X and Y are continuous random variables with probability density functions pX
and pY then

dTV (X,Y ) =
1

2

∫
R
|pX(x)− pY (x)|dx

We leave the proof of these proposition as an exercise for the reader.

The total variation distance is closely related to probability couplings. Namely, if we wanted to couple
X andY in a way that maximizes the probability of them being equal (called maximal coupling), total
variation distance tells us howe well we could do this.

Proposition 5.7 (Coupling inequality). Given two random variables X and Y with an arbitrary joint
distribution, it is always true that

dTV (X,Y ) ≤ P({X ̸= Y }).

The proof is left to the reader.

As it turns out, a probability coupling that exactly achieves this bound sometimes exists. Here, we give
the result for discrete random variables.
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Proposition 5.8 (Maximal coupling). Let X and Y be discrete random variables. Then

dTV (X,Y ) = inf{P(X̂ ̸= Ŷ ) : couplings (X̂, Ŷ ) of (X,Y )}

Proof. Define
A = {a : pX(a) > pY (a)} and B = {a : pY (a) ≥ pX(a)}.

Define also the following

p =
∑
a∈D

min{pX(a), pY (a)}, α =
∑
a∈A

(pX(a)− pY (a)), and β =
∑
a∈B

(pY (a)− pX(a))

Claim.

α = β = dTV (X,Y ) = 1− p

Indeed, it follow from the definition that α− β = 0 and so α = β. Likewise,

α+ β =
∑
a∈A

(pX(a)− pY (a)) +
∑
a∈B

(pY (a)− pX(a)) =
∑
a∈D

|pX(a)− pY (a)| = 2dTV (X,Y )

And finally,

1− p = 1−
∑
a∈D

min{pX(a), pY (a)}

=
∑
a∈A

(pX(a)−min{pX(a), pY (a)}) +
∑
a∈B

(pX(a)−min{pX(a), pY (a)})

=
∑
a∈A

(pX(a)− pY (a)) = α

Coupling construction. Finally, we construct the coupling p̂XY in the following way. Let γmin(a) =
min{pX(a), pY (a)}, γA(a) = pX(a)− pY (a) and γB(a) = pY (a)− pX(a).

For a ∈ D,
p̂XY (a, a) = γmin(a).

Let a ∈ A and b ∈ B, then

p̂XY (a, b) =
γA(a)γB(b)

1− p
.

All the other probabilities are set to zero.

We check that the marginal conditions are satisfied for pX̂ .

For a ∈ B we have that

pX̂(a) =
∑
b∈D

p̂XY (a, b) =
∑
b∈A

p̂XY (a, b) +
∑
b∈B

p̂XY (a, b)

(if a ∈ B) = γmin(a) = pX(a)

(if a ∈ A) = γmin(a) +
∑
b∈B

fracγA(a)γB(b)1− p

= pY (a) + γA(a) = pX(a).

Likewise, we can check that the marginal constraint pŶ = pY is also satisfied. Finally, we see that

P(X̂ ̸= Ŷ ) = 1− p = dTV (X,Y ).
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Application: Poisson approximation

Next we introduce an application of couplings. We have the following set up. Let Xi be Bernouilli
random variable with parameter pi for 1 ≤ i ≤ n and define

Sn =

n∑
i=1

Xi.

Likewise, let Wi be a Poisson random variable with parameter λi for 1 ≤ i ≤ n and define

Zn =

n∑
i=1

Wi.

We set λi = − log(1 − pi) and note that Zn is a Poisson random variable with parameter λ, where
λ =

∑n
i=1 λi.

We are interested in the case when pi are very small. In this case, the distribution of Sn is well approxi-
mated by a Poisson distribution as is shown in the following theorem.

Theorem 5.9.

dTV (Sn, Zn) ≤
1

2

n∑
i=1

λ2i

Proof. We couple each pair (Xi,Wi) independently in the following way. We let W ′
i ∼ Poi(λi) and

X ′
i = min(Wi, 1). Note that X ′

i is a Bernouilli random variable with parameter pi. We define

S′
n =

n∑
i=1

X ′
i and Z ′

n =

n∑
i=1

W ′
i .

Observe that in Sn ∼ S′
n and Zn ∼ Z ′

n and it follows that dTV (Sn, Zn) = dTV (S
′
n, Z

′
n). Finally, by the

coupling inequality

dTV (S
′
n, Z

′
n) ≤ P ({S′

n ̸= Z ′
n}) ≤

n∑
i=1

P ({X ′
i ̸=W ′

i}) ≤
n∑

i=1

P ({W ′
i ≥ 2}) ≤

n∑
i=1

∞∑
j=2

e−λi
λji
j!

≤
n∑

i=1

λ2i
2

∞∑
j=0

e−λi
λji
j!

=

n∑
i=1

λ2i
2

as desired.

5.3 Stochastic dominance

When does one probability measure (or random variable) dominate another probability measure (or
random variable)? Consider the following example. Define

S =

n∑
i=1

Xi,

where each Xi is supported on {1, 2, 3, . . . } and is such that P ({Xi ≥ 1}) ≥ p. Let S∗ ∼ Bin(n, p).
That is, S∗ is a Binomial random variable with parameters n and p. Intuitively, since S∗ is a sum of n
Bernouilli random variables with parameter p, S∗ should bound S from below. More precisely, we can
say

P ({S ≥ t}) ≥ P ({S∗ ≥ t})∀t ∈ R.
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Definition 5.10. A random variable X stochastically dominates Y if

1− FX(t) ≥ 1− FY (t)∀t ∈ R

or
P ({X > t}) ≥ P ({Y > t})∀t ∈ R.

We use the notation X ⪰ Y to denote stochastic dominance.

Example: Let X ∼ Poi(λ) and Y ∼ Bern(p). When is X ⪰ Y ?

For the stochastic dominance to hold we need P ({X > t}) ≥ P ({Y > t}) for all t ≥ 0. This is trivially
true for t ≥ 1. What about t = 0? In this case

1− e−λ = PP ({X > 0}) ≥ P ({Y > 0})

if and only if λ ≥ − log(1− p).

Theorem 5.11. X ⪰ Y if and only if there is a coupling (X̂, Ŷ ) of (X,Y ) such that

P
({
X̂ ≥ Ŷ

})
= 1.

Proof. First, suppose such a coupling (X̂, Ŷ ) exists. Then

P ({Y > t}) = P
({
Ŷ > t

})
= P

({
X̂ ≥ Ŷ > t

})
≤ P

({
X̂ > t

})
= P ({X > t})

and so X ⪰ Y .

On the other hand, suppose X ⪰ Y . Define the generalized inverse cdf as

F−1(u) = inf {t ∈ R : F (t) ≥ u} .

Let U be a uniform random variable on [0, 1]. We have shown on the midterm that F−1
X (U) ∼ X. We

construct the coupling (X̂, Ŷ ) in the following way: X̂ = F−1
X (U) and Ŷ = F−1

Y (U). By construction,

(X̂, Ŷ ) have the correct marginal distributions. Finally

P
({
X̂ ≥ Ŷ

})
= P

({
F−1
X (U) ≥ F−1

Y (U)
})

= 1

as desired.

6 Inequalities

We review below three important inequalities in probability.

Cauchy-Schwarz’s inequality. If X, Y are square-integrable random variables, then the product XY
is integrable and

|E(XY )| ≤ E(|XY |) ≤
√

E(X2)E(Y 2)

Remark. The first inequality follows from the simple fact mentioned above that |E(Z)| ≤ E(|Z|) for any
random variable Z.

Note that this inequality is a refinement of the inequality which is obtained using the pointwise inequality

|X(ω)Y (ω)| ≤ X2(ω)+Y 2(ω)
2 :

E(|XY |) ≤ E(X2) + E(Y 2)

2

as we know by the arithmetic-geometric mean inequality that
√
E(X2)E(Y 2) ≤ E(X2)+E(Y 2)

2 .
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Proof. Consider now the map α 7→ f(α) = E((|X|+ α |Y |)2). Note first that f(α) ≤ 2E(X2 + α2 Y 2) <
+∞ by assumption, so f is a well-defined map. This map clearly takes non-negative values for all values
of α ∈ R. Moreover, using the basic properties of the expectation, we see that

f(α) = E(X2) + 2αE(|XY |) + α2 E(Y 2)

The function f is represented below:

As f is a second-order polynomial with at most one root, we deduce that the discriminant of this
polynomial is non-positive, i.e., that

∆ = (E(|XY |)2 − E(X2)E(Y 2) ≤ 0

which implies the desired inequality:

E(|XY |) ≤
√

E(X2)E(Y 2)

Remark. An alternate proof of the inequality |E(XY )| ≤
√
E(X2)

√
E(Y 2) follows from the observation

that the bilinear form X,Y 7→ E(XY ) is a (semi-)inner product on the space of square-integrable random
variables (which further implies that X 7→

√
E(X2) is a (semi-)norm on the same space). Indeed:

1) The fact that it is bilinear in X,Y comes from the linearity of the expectation.

2) It is symmetric in X,Y by definition (and by commutativity of the multiplication).

3) It is also positive, as E(X2) ≥ 0 for every X.

The classical Cauchy-Schwarz inequality, valid for any (semi-)inner product, then implies that |E(XY )| ≤√
E(X2)

√
E(Y 2). In order to obtain the inequality with absolute values inside the expectation, just apply

the above inequality to |X| and |Y | instead of X and Y .

Jensen’s inequality. If X is an integrable random variable and φ : R→ R is Borel-measurable, convex
and such that E(|φ(X)|) < +∞, then

φ(E(X)) ≤ E(φ(X))

In particular: |E(X)| ≤ E(|X|), E(X)2 ≤ E(X2), exp(E(X)) ≤ E(exp(X)), exp(−E(X)) ≤ E(exp(−X))
and for X a positive random variable, log(E(X)) ≥ E(log(X)) (as log is concave, − log is convex).

Also, if X is such that P({X = a}) = p ∈ ]0, 1[ and P({X = b}) = 1 − p, then the above inequality says
that

φ (pa+ (1− p)b) ≤ pφ(a) + (1− p)φ(b)

which matches actually the definition of convexity for φ:
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Proof. The proof relies on the fact that for any convex function φ : R→ R and any point x0 ∈ R, there
exists an affine function x 7→ ax+ b which is below φ and is also tangent to φ in x0, i.e.,

φ(x) ≥ ax+ b, ∀x ∈ R and φ(x0) = ax0 + b

Therefore, choose x0 = E(X). We obtain, by linearity of expectation:

E(φ(X)) ≥ E(aX + b) = aE(X) + b = ax0 + b = φ(x0) = φ(E(X))

which is the desired inequality.

Another consequence of Jensen’s inequality is the following: the arithmetic mean of n positive real
numbers x1, . . . , xn is greater than or equal to their geometric mean, which is in turn greater than or
equal to their harmonic mean, i.e.,

x1 + . . .+ xn
n

≥ (x1 · · ·xn)1/n ≥
n

1
x1

+ . . .+ 1
xn

Proof. Consider X taking values x1, . . . , xn with uniform probability. Then proving the above inequalities
amounts to proving that

E(X) ≥ exp(E(log(X))) ≥ 1

E( 1
X )

Observe first that since log is a concave function, − log is convex, so by Jensen’s inequality, we have
E(log(X)) ≤ log(E(X)). Taking exponentials, this proves the above left-hand side inequality. In order to
prove the right-hand side inequality, observe that, again because − log is convex, we have

exp(E(log(X)) = exp(E(− log( 1
X ))) ≥ exp(− logE( 1

X )) = 1
E( 1

X )

proving the claim.

Chebyshev-Markov’s inequality. Let X be a random variable and t ∈ R+. If ψ : R → R+ is a
Borel-measurable function which is non-decreasing on R+ and such that ψ(t) > 0 and E(ψ(X)) < +∞,
then

P({X ≥ t}) ≤ E(ψ(X))

ψ(t)
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In particular, if X is square-integrable and t > 0, then taking ψ(x) = x2 gives P({X ≥ t}) ≤ E(X2)

t2
.

But please note that ψ could also be a much more intricate function, such as:

Proof. Using successively the assumptions that ψ takes values in R+, is non-decreasing on R+ and t > 0,
we obtain

P({X ≥ t}) = E
(
1{X≥t}

)
≤ E

(
ψ(X)

ψ(t)
1{X≥t}

)
=

E(ψ(X) 1{X≥t})

ψ(t)
≤ E(ψ(X))

ψ(t)

which is the desired inequality.

7 Transform methods

7.1 Convolution

In general, we can say that the distribution of the sum of two independent random variables X1, X2 is
the convolution of the distributions of X1 and X2. Let us first see what this means in two special cases.

Discrete case. Let X1, X2 be two independent discrete random variables, both with values in Z. Let
us compute for k ∈ Z:

P({X1 +X2 = k}) =
∑
j∈Z

P({X1 = j,X1 +X2 = k}) =
∑
j∈Z

P({X1 = j,X2 = k − j})

=
∑
j∈Z

P({X1 = j})P({X2 = k − j})

which is nothing but the discrete convolution of the probability mass functions of X1 and X2. Note that
following the same reasoning, we also obtain for t ∈ R:

P({X1 +X2 ≤ t}) =
∑
j∈Z

P({X1 = j})P({X2 ≤ t− j})

which may in turn be rewritten as

FX1+X2
(t) =

∑
j∈Z

P({X1 = j})FX2
(t− j) (4)

Continuous case. Let X1, X2 be two continuous and independent random variables, with joint pdf
pX1,X2

. Then

FX1+X2
(t) = P({X1 +X2 ≤ t}) =

∫
D(t)

dx1dx2 pX1,X2
(x1, x2)
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where D(t) = {(x1, x2) ∈ R2 : x1 + x2 ≤ t}. As pX1,X2(x1, x2) = pX1(x1) pX2(x2), we further obtain:

FX1+X2
(t) =

∫
R
dx1 pX1

(x1)

∫ t−x1

−∞
dx2 pX2

(x2)

which may be rewritten as

FX1+X2(t) =

∫
R
dx1 pX1(x1)FX2(t− x1) (5)

from which we deduce5 that the random variable X1 +X2 is also continuous with pdf

pX1+X2(t) =
d

dt
FX1+X2

(t) =

∫
R
dx1 pX1

(x1)
d

dt
FX2

(t− x1) =
∫
R
dx1 pX1

(x1) pX2
(t− x1)

which is the classical convolution of pX1 and pX2 .

General case. The expressions (4) and (5) share some similarity. In the general case, the cdf of the
sum of two independent random variables X1, X2 can be expressed as

FX1+X2(t) =

∫
R
dFX1(x1)FX2(t− x1)

which coincides with expressions (4) and (5) in the discrete and continuous cases [the above integral∫
R dFX1(x) . . ., known as the Lebesgue-Stieltjes integral, is a generalization of the classical Riemann inte-
gral]. One uses the following short-hand notations for the above relation:

FX1+X2
= FX1

∗ FX2
or µX1+X2

= µX1
∗ µX2

or also pX1+X2 = pX1 ∗ pX2 in the continuous case.

Example in the continuous case. Let X1, X2 be two i.i.d.∼ E(1) random variables, with common cdf

FX1(t) = FX2(t) =

{
1− exp(−t) if t ≥ 0

0 if t < 0

The cdf of X1 +X2 is then given by formula (5):

FX1+X2(t) =

∫ t

0

dx1 exp(−x1) (1− exp(−(t− x1)) = 1− exp(−t)− t exp(−t) for t ≥ 0

(and FX1+X2
(t) = 0 for t < 0). From this, we deduce that

pX1+X2
(t) =

d

dt
FX1+X2(t) = t exp(−t) for t ≥ 0

(and pX1+X2
(t) = 0 for t < 0). Of course, we could also have deduced this directly from the expression

given for the convolution of the pdfs pX1
and pX2

.

7.2 Characteristic function

With the definition of expectation in hand, we can define an important object: the characteristic function.

As a preliminary, we need define E(g(X)) for a complex-valued function g, but this is simple:
if E(|g(X)|) < +∞ (where | · | stands for the modulus), then E(g(X)) = E(Re(g(X))) + iE(Im(g(X))).

Definition 7.1. The characteristic function (or Fourier transform) of a random variable X is the map-
ping ϕX : R→ C defined as

ϕX(t) = E
(
eitX

)
, t ∈ R

5modulo a permutation of derivative and integral, which we will simply admit here
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Note that |eitx| = 1 for all x ∈ R, so E(|eitX |) = 1 < +∞ and ϕX(t) is well defined for all t ∈ R.

For a discrete random variable X with pmf (px, x ∈ D), the above formula reads:

ϕX(t) =
∑
x∈D

eitx px

and for a continuous random variable X with pdf PX :

ϕX(t) =

∫
R
eitx pX(x) dx

Examples. - Let X ∼ Bern(p). Then

ϕX(t) = p eit + 1− p

- Let X be such that P(X = +1) = P({X = −1}) = 1
2 . Then

ϕX(t) =
eit + e−it

2
= cos(t)

- Let X ∼ U([a, b]). Then

ϕX(t) =
1

b− a

∫ b

a

eitx dx =
eitb − eita

it(b− a)

(
=

sin(t)

t
in case a = −1 and b = +1

)
- Let X ∼ N (µ, σ2). Then noticing that X ∼ µ+ σZ, where Z ∼ N (0, 1), we obtain

ϕX(t) = E
(
eit(µ+σZ)

)
=

∫
R

1√
2π

eit(µ+σz)−z2/2 dz = eitµ−t2σ2/2

∫
R

1√
2π

e−(z−itσ)2/2 dz

= eitµ−t2σ2/2

∫
R

1√
2π

e−
w2

2 dw = exp(itµ− t2σ2/2)

Remark. The above “innocent” change of variable z − itσ 7→ w requires quite a bit of complex analysis
to be fully justified!

Properties. The characteristic function of a random variable satisfies the following properties:

(i) ϕX(0) = 1.

(ii) ϕX is continuous on R.

(iii) ϕX is positive semi-definite on R, i.e.

n∑
j,k=1

cj ck ϕX(tj − tk) ≥ 0, ∀n ≥ 1, c1, . . . , cn ∈ C, t1, . . . , tn ∈ R

(iv) ϕX(−t) = ϕX(t), for all t ∈ R.

(v) If X ∼ −X, then ϕX(t) ∈ R, for all t ∈ R.

(vi) |ϕX(t)| ≤ ϕX(0) = 1, for all t ∈ R.

(vii) ϕcX(t) = ϕX(ct) for all c, t ∈ R.
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Proof of (iii)6. For every n ≥ 1, c1, . . . , cn ∈ C, t1, . . . , tn ∈ R, we have

n∑
j,k=1

cj ck ϕX(tj − tk) =
n∑

j,k=1

cj ck E
(
ei(tj−tk)X

)

= E

 n∑
j=1

cj e
itjX

n∑
k=1

ck eitkX

 = E


∣∣∣∣∣∣

n∑
j=1

cj e
itjX

∣∣∣∣∣∣
2
 ≥ 0

The following theorem, due to Bochner and given here without proof, says that the above properties fully
characterize what characteristic functions are.

Theorem. Any function ϕ : R→ C satisfying properties (i), (ii), (iii) above is the characteristic function
of a random variable X.

On top of that, the knowledge of a characteristic function ϕX fully characterizes the distribution of the
random variable X, as the following inversion formula shows (given here without proof):

Inversion formula. To each characteristic function ϕX there is a unique corresponding cdf FX given
by

FX(b)− FX(a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t) dt for all a < b ∈ R continuity points of FX

If in addition
∫
R |ϕX(t)| dt < +∞, then the cdf FX admits a pdf pX given by

F ′
X(x) = pX(x) =

1

2π

∫
R
e−itx ϕX(t) dt ∀x ∈ R

This last property shows that there is a relation between the integrability of the function ϕX and the
regularity of the function FX . The reciprocal statement does not hold, but a weaker statement holds,
known as the Riemann-Lebesgue theorem: if FX admits a pdf pX , then limt→±∞ ϕX(t) = 0.

The properties below show that there are also interesting relations between the integrability of FX and
the regularity of ϕX :

If E(|X|) =
∫
R |x| dFX(x) < +∞, then ϕX is continuously differentiable on R and

ϕ′X(0) = iE(X)

This last relation can be obtained via the following informal computation:

d

dt
ϕX(t)

∣∣∣∣
t=0

= E
(
d

dt
eitX

∣∣∣∣
t=0

)
= E

((
iX eitX

) ∣∣∣∣
t=0

)
= E(iX)

More generally, it holds for k ≥ 1 that if E(|X|k) < +∞, then ϕX is k-times differentiable on R and

dkϕ

dtk
(t)
∣∣
t=0

= ikE(Xk)

Many other interesting relations can be found between FX and ϕX , which we shall not list here.

Factorization property. Finally, here is a very useful property of characteristic functions:

X1, X2 are independent if and only if E(eit1X1+it2X2) = ϕX1(t1)ϕX2(t2), for all t1, t2 ∈ R
6The other properties are quite straightforward, except for the continuity property, which requires the dominated con-

vergence theorem (not seen in this course).
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Proof. We only prove the easy part here, namely that independence implies the property on the right-hand
side: independence of X1 and X2 implies independence of eit1X1 and eit2X2 , so

E
(
eit1X1+it2X2)

)
= E

(
eit1X1 eit1X2

)
= E

(
eit1X1

)
E
(
eit2X2

)
which completes the proof.

Remark. Considering the particular case t1 = t2 = t, we obtain that independence of X1 and X2

implies that ϕX1+X2
(t) = ϕX1

(t)ϕX2
(t) for all t ∈ R (but please note that this condition alone does

not guarantee independence of X1 and X2). As the distribution of the sum of two independent random
variables X1, X2 is given by the convolution FX1 ∗ FX2 , we recover a classical result, expressed here in
the context of probability distributions: the Fourier transform of the convolution of two distributions is
the product of their Fourier transforms.

7.3 Moments

Definition 7.2. Let X be a random variable and k ≥ 0. If E(
(
|X|k

)
< +∞, we say that the moment of

order k of the random variable X is finite and defined as

mk = E
(
Xk
)

Note that if a random variable has a finite moment of order k, then all moments of order 0 ≤ j ≤ k are
also finite. Indeed, using Jensen’s inequality along with the fact that f(x) = xj/k is concave for x ≥ 0
and j ≤ k, we obtain

E
(
|X|j

)
= E

(
f
(
|X|k

))
≤ f

(
E
(
|X|k

))
< +∞

Note also that the moment of order 0 is always finite and equal to m0 = 1.

It is however not clear whether the distribution of the random variable X is fully characterized by the
sequence of moments (mn, n ≥ 0), even if these are all finite (if they are not, then the answer is clearly
no). This is known as the Hamburger moment problem and it turns out that the general answer to this
question depends on the growth of the moments mk as a function of k. Here are two illustrative examples:

1. If X is a bounded random variable (i.e., there exists C > 0 such that |X(ω)| ≤ C for every ω ∈ Ω),
then

|mk| = |E(Xk)| ≤ E(|X|k) ≤ Ck, ∀k ≥ 0

and in this case, it can be proven that the knowledge of the sequence (mk, k ≥ 0) fully characterizes
the distribution of X.

2. Consider now a random variable X whose moments are given by mk = exp(k2/2), k ≥ 0. In this
case, it is impossible to tell whether a) X is a continuous log-normal random variable:

X = eZ , where Z ∼ N (0, 1)

or b) X is a discrete random variable with pmf:

P({X = ej}) = 1

C
exp(−j2/2), j ∈ Z, where C =

∑
j∈Z

exp(−j2/2)

Application: Chernoff bounds

We begin by defining the moment generating function which is similar (but a bit different) to the char-
acteristic function.
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Definition 7.3. The moment generating function of a random variable X is the mapping MX : R→ R
defined as

MX(t) = E
(
etX
)
, t ∈ R

Observe that the moment generating function always exists at t = 0. However, unlike the characteristic
function, it may not exists for all random variables. Assuming MX(t) is finite in the neighborhood of
t = 0, we have the followin:

d

dt
MX(t)

∣∣∣∣
t=0

= E
(
d

dt
etX
∣∣∣∣
t=0

)
= E

((
X etX

) ∣∣∣∣
t=0

)
= E(X)

More generally, it holds for k ≥ 1 that if E(|X|k) < +∞, then ϕX is k-times differentiable on R and

dkM

dtk
(t)
∣∣
t=0

= E(Xk)

Proposition 7.4. For a ∈ R we have

P ({X ≥ a}) ≤ min
t≥0

(
e−taMX(t)

)
where the min is taken over all s such that MX(t) < +∞.

We live the proof of this proposition as an exercise for the homework. Note that once this inequality is
obtained, a more explicit bound could be found by computing MX(t) and optimizing over t. An example
of this is also given to you in the homework. The resulting bounds are often known as Chernoff-type
bounds.

8 Random vectors and Gaussian random vectors

8.1 Random vectors

A d-dimensional random vector X = (X1, . . . , Xd) is nothing but a random variable with values in Rd

instead of R. Here is the formal definition:

Definition 8.1. Let (Ω,F ,P) be a probability space and d > 1. An F-measurable random vector with
values in Rd is a mapping X : Ω 7→ Rd such that

{ω ∈ Ω : X(ω) ∈ B} ∈ F , ∀B ∈ B(Rd)

Similarly to the scalar case, this condition can be shown to be equivalent to

{ω ∈ Ω : X1(ω) ≤ t1, . . . , Xd(ω) ≤ td} ∈ F , ∀t1, . . . , td ∈ R

which can in turn be rephrased as

Xj is an F-measurable random variable, ∀j ∈ {1, . . . , d}

Joint distribution, multidimensional cdf and marginals. The joint distribution ofX = (X1, . . . , Xd)
is the probability measure µX on (Rd,B(Rd)) defined as

µX(B) = P({X ∈ B}), for B ∈ B(Rd)

As in the case of random variables, the knowledge of µX can be shown to be equivalent to the knowledge
of its corresponding multidimensional cdf:

FX(t1, . . . , td) = P({X1 ≤ t1, . . . , Xd ≤ td}), for t1, . . . , td ∈ R
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One also defines the marginals of the distribution µX as

µXj
(B) = P({Xj ∈ B}) = P({Xj ∈ B;Xk ∈ R,∀k ̸= j})

Watch out that the knowledge of all the marginals µX1 , . . . , µXd
is not equivalent to the knowledge of µX .

Put differently, the knowledge of all the marginal cdfs FX1 , . . . , FXd
is not equivalent to the knowledge

of the multidimensional cdf FX .

Discrete and continuous random vectors. - A discrete random vector is a random vector X that
takes values in a discrete set D ⊂ Rd. This is equivalent to saying that each component Xj is a discrete
random variable.

- A continuous random vector is a random vector X such that P({X ∈ B}) = 0 for every B ∈ B(Rd)
with Lebesgue measure zero, i.e., |B| = 0. In this case (by the same theorem as in the scalar case), there
exists a (Borel-measurable) joint pdf pX = pX1,...,Xd

: Rd → R+ such that

P({X ∈ B}) =
∫
B

pX(x1, . . . , xd) dx1 · · · dxd, ∀B ∈ B(Rd)

(with the integral over B = Rd being equal to 1). In the case where pX is continuous, it holds that

pX(x1, . . . , xd) =
∂dFX

∂x1 · · · ∂xd
(x1, . . . , xd), ∀(x1, . . . , xd) ∈ Rd

Also, the following is true: ifX1, . . . , Xd are independent and continuous random variables, then (X1, . . . , Xd)
is a continuous random vector. But without the independence assumption, the statement is wrong, as
we shall see.

In the present section, we will encounter a certain number of counter-intuitive facts. Here is the first
one: it is not because X1, X2 are both continuous random variables that X = (X1, X2) is necessarily a
continuous random vector. Here is a counter-example, which will serve other purposes.

Example 8.2. Let X1 ∼ N (0, 1), Z be independent of X1 and such that P({Z = +1}) = P({Z = −1}) =
1
2 , and finally X2 = Z X1. We see that the distribution of X2 is the same as that of X1:

P({X2 ≤ t}) = P({ZX1 ≤ t} | {Z = +1})P({Z = +1}) + P({ZX1 ≤ t} | {Z = −1})P({Z = −1})

=
1

2
P({X1 ≤ t} | {Z = +1}) + 1

2
P({X1 ≥ −t} | {Z = +1})

=
1

2
P({X1 ≤ t}) +

1

2
P({X1 ≥ −t}) = P({X1 ≤ t})

by the symmetry of the distribution of X1. So X1, X2 are both continuous random variables. But
X = (X1, X2) is not a continuous random vector. Indeed, let ∆ = {(x1, x2) ∈ R2 : x1 + x2 = 0}. This
diagonal line in R2 has Lebesgue measure 0 (i.e., |∆| = 0), but

P({X ∈ ∆}) = P({X1 +X2 = 0}) = P({X1 + ZX1 = 0}) = P({Z = −1}) = 1

2
> 0

so X is not a continuous random vector, according to the definition given above.

Expectation and covariance. - If E(|Xj |) < +∞ for every j ∈ {1, . . . , d}, then we define the expectation
of the random vector X as

E(X) = (E(X1), . . . ,E(Xd))

which is a d-dimensional vector. Similarly, if E(X2
j ) < +∞ for every j ∈ {1, . . . , d}, then we define the

covariance of the random vector X as the d× d matrix:

Cov(X) =

{
Cov(Xj , Xk)

}d

j,k=1

where we recall that Cov(Xj , Xj) = Var(Xj).
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Proposition 8.3. The d× d matrix Cov(X) is symmetric and positive semi-definite, i.e.,

Cov(Xk, Xj) = Cov(Xj , Xk), ∀j ̸= k, and

d∑
j,k=1

cj ck Cov(Xj , Xk) ≥ 0

for all c1, . . . , cd ∈ R.

Proof. The symmetry property follows from the very definition of Cov(Xj , Xk). The second property
follows from the bilinearity property of Cov(Xj , Xk), i.e.,

d∑
j,k=1

cj ck Cov(Xj , Xk) = Cov

 d∑
j=1

cjXj ,

d∑
k=1

ckXk

 = Var

 d∑
j=1

cjXj

 ≥ 0.

Consequence (spectral decomposition). Because the matrix Cov(X) is symmetric and positive
semi-definite, the spectral theorem states that it admits d non-negative eigenvalues λ1, . . . , λd, as well
as d eigenvectors v(1), . . . , v(d) forming an orthonormal basis of Rd, i.e., Cov(X) v(k) = λk v

(k) for every
1 ≤ k ≤ d. This can be rewritten as

Cov(X) = V ΛV T (or componentwise: Cov(Xj , Xℓ) =

d∑
k=1

λk v
(k)
j v

(k)
ℓ )

where Λ = diag(λ1, . . . , λd) (i.e., the diagonal matrix whose diagonal entries are given by the λ’s) and
V is the matrix whose columns are the vectors v(1), . . . , v(d). Because (v(1), . . . , v(d)) is an orthonormal
basis of Rd, the matrix V is orthogonal, i.e. V V T = V TV = I, the identity matrix.

Proposition 8.4. Let X = (X1, . . . , Xd) be a square-integrable random vector (i.e., all its components
X1, . . . , Xd are square-integrable). If X1, . . . , Xd are independent random variables, then Cov(X) is a
diagonal matrix (i.e., a matrix whose off-diagonal entries Cov(Xj , Xk) = 0 for all j ̸= k).

The above proposition follows from the fact mentioned earlier that if X ⊥⊥ Y , then Cov(X,Y ) = 0. The
reciprocal statement does not hold in general.

Characteristic function. Let us finally mention that one defines the characteristic function of a random
vector X in the same way as that of a random variable:

ϕX(t1, . . . , td) = E(exp(i(t1X1 + . . .+ tdXd))) for (t1, . . . , td) ∈ Rd

which is always a well defined expectation, as t1X1 + . . .+ tdXd ∈ R.

8.2 Gaussian random vectors

Reminder. A Gaussian random variable X ∼ N (µ, σ2), where µ ∈ R and σ > 0, admits as pdf

pX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, x ∈ R

By extension, we say that X is Gaussian, and write X ∼ N (µ, 0), if X(ω) = µ for every ω ∈ Ω.

Definition 8.5. A random vector X = (X1, . . . , Xd) is a d-dimensional Gaussian random vector if

c1X1 + . . .+ cdXd is a Gaussian random variable ∀c1, . . . , cd ∈ R
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Notation. If E(X) = µ and Cov(X) = A, we write X ∼ N (µ,A).

Proposition 8.6. If X1, . . . , Xd are independent Gaussian random variables, then X = (X1, . . . , Xd) is
a Gaussian random vector.

Remark. From Proposition 8.4 above (and the fact that Gaussian random variables are square-integrable),
we also know that in this case, the d× d matrix Cov(X) is diagonal.

Proof in the case d = 2. Assume X1 ∼ N (µ1, σ
2), X2 ∼ N (µ2, σ

2) and X1 ⊥⊥ X2. Then

ϕX1+X2
(t) = ϕX1

(t)ϕX2
(t) = eiµ1t−σ2

1t
2/2 eiµ2t−σ2

2t
2/2 = ei(µ1+µ2)t−(σ2

1+σ2
2)t

2/2

so the characteristic function of X1+X2 is that of a Gaussian random variable, with expectation µ1+µ2

and variance σ2
1+σ

2
2 . A similar computation shows that c1X1+c2X2 is also Gaussian for every c1, c2 ∈ R,

which proves the claim. □

Of course, random vectors composed of independent Gaussian random variables are not the only examples
of Gaussian random vectors, as we shall see below. Nevertheless, it does not always hold that random
vectors composed of arbitrary Gaussian random variables are Gaussian random vectors. Here is a counter-
example, which is actually the same as Example 8.2 from the previous section.

Example 8.7. Let again X1 ∼ N (0, 1), Z be independent of X1 and such that P({Z = +1}) = P({Z =
−1}) = 1

2 , and finally X2 = Z X1. We saw in the previous section that X2 ∼ N (0, 1), so that both
X1, X2 are Gaussian random variables. But we also saw that

P({X1 +X2 = 0}) = 1

2
> 0

which prevents X1 +X2 from being a continuous random variable, and by extension, a Gaussian random
variable. According to the definition given above, X = (X1, X2) is therefore not a Gaussian random
vector, even though both X1, X2 are Gaussian random variables.

Now comes a well known property which says that the reciprocal statement of Proposition 8.4 holds
for Gaussian random vectors. This property could be wrongly summarized as “uncorrelated Gaussian
random variables are independent”, because we will see below that in order for this statement to hold,
the random variables need not only be Gaussian, but also be part of a Gaussian random vector.

Proposition 8.8. IfX = (X1, . . . , Xd) is a Gaussian random vector and its covariance matrix is diagonal,
then X1, . . . , Xd are independent random variables.

Proof in the case d = 2. We will use here the proposition from last lecture:

If E(eit1X1+it2X2) = E(eit1X1)E(eit2X2) for every t1, t2 ∈ R, then X1 ⊥⊥ X2.

To this end, let us fix t1, t2 ∈ R, assume X1 ∼ N (µ1, σ
2
1), X2 ∼ N (µ2, σ

2
2) and define Y = t1X1 + t2X2.

Because of the assumptions made, we have

E(Y ) = t1µ1 + t2µ2 and Var(Y ) = t21σ
2
1 + t22σ

2
2 + 0

Because X = (X1, X2) is assumed to be a Gaussian random vector, we obtain that Y is also Gaussian,
more precisely, that Y ∼ N (t1µ1 + t2µ2, t

2
1σ

2
1 + t22σ

2
2). This implies that

E(eit1X1+it2X2) = E(eiY ) = ei(t1µ1+t2µ2)−(t21σ
2
1+t22σ

2
2)/2

= eit1µ1−t21σ
2
1/2 eit2µ2−t22σ

2
2/2 = E(eit1X1)E(eit2X2)
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which proves the independence of X1 and X2. □

More generally, if we only assume that X1, X2 are Gaussian random variables and Cov(X1, X2) = 0,
this does not necessarily imply that X1 and X2 are independent. The above example 8.7 provides again
a proof of this claim: X1 ∼ N (0, 1) and X2 = ZX1 ∼ N (0, 1) are clearly not independent (rather than
stating a formal proof of this fact, let us observe simply that |X1| = |X2|), but

Cov(X1, X2) = E(X1X2) = E(ZX2
1 ) = E(Z)E(X2

1 ) = 0 · 1 = 0

where we have used the independence of Z and X1 in the third equality.

8.3 Joint distribution of Gaussian random vectors

Is it always the case that a Gaussian random vector X admits a joint pdf pX? The answer is no, as we
allowed for constant random variables to be called “Gaussians”, and these clearly do not admit a pdf,
so if one of the components of our vector X is such a constant random variable, then X cannot admit a
joint pdf. A less trivial example is X = (X1,−X1), where X1 ∼ N (0, 1): X is a Gaussian random vector,
because clearly, c1X1 + c2(−X1) = (c1 − c2)X1 is a Gaussian random variable for all possible values of
c1, c2, but the random vector X only takes values in the diagonal ∆ = {(x1, x2) ∈ R2 : x1 + x2 = 0},
which has Lebesgue measure zero.

In order for a Gaussian random vector X to admit a joint pdf pX , its covariance matrix Cov(X) needs
to be positive definite, i.e.,

d∑
j,k=1

cjck Cov(Xj , Xk) > 0 as soon as c1, . . . , cd ∈ R and (c1, . . . , cd) ̸≡ 0

This turns out to be equivalent to asking (for positive semi-definite matrices) that det(Cov(X)) > 0,
which is again equivalent to asking that the matrix Cov(X) is invertible. One can check that in the above
example, the covariance matrix of X = (X1,−X1) is given by

Cov(X) =

(
1 −1
−1 1

)
whose determinant is given by det(Cov(X)) = 1 · 1− (−1) · (−1) = 1− 1 = 0, implying that X does not
admit a joint pdf.

Our aim now is to compute the joint pdf of a Gaussian random vector when it exists. In order to simplify
the discussion, we will only deal with centered Gaussian random vectors, i.e., vectors for which E(Xj) = 0
for all j ∈ {1, . . . , d} (the generalization to the non-centered case being relatively straightforward). We
start with the simple case where the covariance matrix of X is diagonal.

Proposition 8.9. Let X be a centered Gaussian random vector with positive definite and diagonal
covariance matrix Cov(X) = Λ = diag(λ1, . . . , λd). Then X is a continuous random vector with joint pdf

pX(x) =
1√

(2π)d det(Λ)
exp

(
−x

TΛ−1x

2

)
, x ∈ Rd

Proof. Because Cov(X) = Λ is positive definite, all λj > 0 (so det(Λ) > 0 and Λ−1 exists), and because
it is diagonal, Proposition 8.8 implies that X1, . . . , Xd are independent, with each Xj ∼ N (0, λj), so

pX(x) = pX1,...,Xd
(x1, . . . , xd) = pX1(x1) · · · pXd

(xd) =

d∏
j=1

1√
2πλj

exp

(
−
x2j
2λj

)

=
1√

(2π)d
∏d

j=1 λj

exp

− d∑
j=1

x2j
2λj

 =
1√

(2π)d det(Λ)
exp

(
−x

TΛ−1x

2

)
, for x ∈ Rd
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which completes the proof.

In the general (i.e., non-diagonal) case, the expression for the joint pdf is actually the same!

Proposition 8.10. Let X be a centered Gaussian random vector with positive definite covariance matrix
Cov(X) = A. Then X is a continuous random vector with joint pdf

pX(x) =
1√

(2π)d det(A)
exp

(
−x

TA−1x

2

)
, x ∈ Rd

Proof. Because Cov(X) = A is a symmetric and positive semi-definite matrix, we saw at the end of Section
8.1 that A can be decomposed into A = V ΛV T , where V is an orthogonal matrix (i.e., V V T = V TV = I)
and λ = diag(λ1, . . . , λd) is a diagonal matrix with non-negative entries. Because A is assumed here to
be also positive definite, all λj > 0. Also, A−1 exists and can be decomposed into

A−1 = (V ΛV T )−1 = (V T )−1Λ−1V −1 = V Λ−1V T

as V −1 = V T (orthogonal matrix). Likewise, det(A) = det(V ΛV T ) = det(ΛV TV ) = det(Λ) > 0.

In order to deduce the above expression for the joint pdf of X, let us first consider the random vector
defined as Y = V TX, or component-wise, Yj =

∑d
ℓ=1 Vℓj Xℓ, j ∈ {1, . . . , d}. Because it is a linear

transformation of a centered Gaussian random vector, Y is also a centered Gaussian random vector and

Cov(Yj , Yk) =

d∑
ℓ,m=1

Vℓj Vmk Cov(Xℓ, Xm)︸ ︷︷ ︸
=Aℓm

= (V TAV )jk

= (V TV ΛV TV )jk = Λjk = λj δjk

so Y is a centered Gaussian random vector with a diagonal and positive definite covariance matrix Λ. By
Proposition 8.9 above, Y is a continuous random vector with joint pdf

pY (y) =
1√

(2π)d det(Λ)
exp

(
−y

TΛ−1y

2

)
, y ∈ Rd

Finally, because Y = V TX and V is orthogonal, the Jacobian of this linear transformation is equal to 1,
so

pX(x) = pY (V
Tx) =

1√
(2π)d det(Λ)

exp

(
−x

TV Λ−1V Tx

2

)
=

1√
(2π)d det(A)

exp

(
−x

TA−1x

2

)
following the observations made at the beginning of this proof, which is now complete.

As a by-product, this proof also shows that every centered Gaussian random vector X can be written as
X = V Y , where Y is a vector of independent Gaussian random variables (and note that this holds also
in the general case where the covariance matrix A is not invertible).

For the sake of completeness, we give below the general formula when the expectation E(X) = µ is
non-zero (and the covariance matrix Cov(X) = A is positive definite):

pX(x) =
1√

(2π)d det(A)
exp

(
− (x− µ)TA−1(x− µ)

2

)
, x ∈ Rd
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9 Laws of large numbers

9.1 Preliminary: convergence of sequences of numbers

Let us recall that a sequence of real numbers (an, n ≥ 1) converges to a limit a ∈ R (and this is denoted
as an →

n→∞
a) if and only if

∀ε > 0, ∃N ≥ 1 such that ∀n ≥ N, |an − a| < ε

Reciprocally, the sequence (an, n ≥ 1) does not converge to a ∈ R if and only if

∃ε > 0 such that ∀N ≥ 1, ∃n ≥ N such that |an − a| ≥ ε

This is still equivalent to saying that

∃ε > 0 such that |an − a| ≥ ε for an infinite number of values of n

In the previous sentence, “for an infinite number of values of n” may be abbreviated as “infinitely often”.

9.2 Convergences of sequences of random variables

In order to extend the notion of convergence from sequences of numbers to sequences of random variables,
there are quite a few possibilities. We have indeed seen in the previous lectures that random variables are
functions. In a first year analysis course, one hears about various notions of convergence for sequences
of functions, among which pointwise and uniform convergence. There are actually many others. We will
see four of them that are most useful in the context of probability, and three of them in today’s lecture.

Let (Xn, n ≥ 1) be a sequence of random variables and X be another random variable, all defined on the
same probability space (Ω,F ,P).

1) Quadratic convergence. Assume that all Xn, X are square-integrable. The sequence (Xn, n ≥ 1)

is said to converge in quadratic mean to X (and this is denoted as Xn
L2

→
n→∞

X) if

E(|Xn −X|2) →
n→∞

0

2) Convergence in probability. The sequence (Xn, n ≥ 1) is said to converge in probability to X (and

this is denoted as Xn
P→

n→∞
X) if

∀ε > 0, P({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) →
n→∞

0

3) Almost sure convergence. The sequence (Xn, n ≥ 1) is said to converge almost surely to X (and
this is denoted as Xn →

n→∞
X a.s.) if

P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1

9.3 Relations between the three notions of convergence

Quadratic convergence implies convergence in probability. This is a direct consequence of Cheby-

shev’s inequality. Assume indeed that Xn
L2

→
n→∞

X. Then we have for any fixed ε > 0:

P({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}) ≤ E(|Xn −X|2)
ε2

→
n→∞

0 by assumption, so Xn
P→

n→∞
X
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□

Convergence in probability does not imply quadratic convergence. This is left for homework.
Note that counter-examples exist even in the case where all Xn, X are square-integrable. On the other
hand, the following proposition holds [without proof].

Proposition 9.1. Let (Xn, n ≥ 1) be a sequence of random variables and X be a random variable such

that Xn
P→

n→∞
X. Assume moreover there exists C > 0 such that |Xn(ω)| ≤ C for all ω ∈ Ω and n ≥ 1.

Then Xn
L2

→
n→∞

X.

Almost sure convergence implies convergence in probability. In order to show this, we will the
following lemma which provides an alternate characterization of almost sure convergence:

Lemma 9.2. (characterization of almost sure convergence)

Xn →
n→∞

X a.s. if and only if ∀ε > 0, P ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε infinitely often}) = 0

Proof. We drop here the full notation with ω’s and use the abbreviation “i.o.” for “infinitely often” in
order to lighten the writing. Based on what was said on the covergence of sequences of numbers, we
obtain the following series of equivalences:

Xn →
n→∞

X a.s. ⇐⇒ P
({

lim
n→∞

Xn = X
})

= 1

⇐⇒ P
({

lim
n→∞

Xn ̸= X
})

= 0 ⇐⇒ P ({∃ε > 0 such that |Xn −X| ≥ ε i.o.}) = 0

⇐⇒ P
({
∃M ≥ 1 such that |Xn −X| ≥

1

M
i.o.

})
= 0 ⇐⇒ P

 ⋃
M≥1

{
|Xn −X| ≥

1

M
i.o.

} = 0

This implies that

∀M ≥ 1, P
({
|Xn −X| ≥

1

M
i.o.

})
= 0

which is in turn equivalent to saying that

∀ε > 0, P ({|Xn −X| ≥ ε i.o.}) = 0

and completes the proof. Note the “hat trick” used here in order to replace an uncountable union over
ε’s by a countable union over M ’s.

Proof that almost sure convergence implies convergence in probability. We have the following series of
equivalences. By Lemma 9.2,

Xn →
n→∞

X a.s. ⇐⇒ ∀ε > 0, P ({ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε infinitely often}) = 0

⇐⇒ ∀ε > 0, P ({∀N ≥ 1, ∃n ≥ N such that |Xn −X| ≥ ε}) = 0

⇐⇒ ∀ε > 0, P
(
∩N≥1 ∪n≥N {|Xn −X| ≥ ε}︸ ︷︷ ︸

=BN

)
= 0

Since BN ⊃ BN+1 for every N ≥ 1, we obtain that

∀ε > 0, lim
N→∞

P
(
∪n≥N {|Xn −X| ≥ ε}

)
= 0

and this implies that ∀ε > 0, limN→∞ P ({|XN −X| ≥ ε}) = 0. Said otherwise: XN
P→

N→∞
X. □
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Convergence in probability does not imply almost sure convergence, as surprising as this may
sound! Here is a counter-example: let us consider a sequence of independent and identically distributed
(i.i.d.) heads (H) and tails (T). Out of this sequence, we construct another sequence of random variables:

X1 = 1H , X2 = 1T , X3 = 1HH , X4 = 1HT , X5 = 1TH , X6 = 1TT , X7 = 1HHH , X8 = 1HHT . . .

meaning “X1 = 1 iff the first coin falls on heads”, “X2 = 1 iff the first coin falls on tails”, “X3 = 1 iff
the first two coins fall on heads”, etc. Note that this new sequence of random variables is everything but
independent: there is indeed a strong dependency e.g. between X3, X4, X5 and X6, as only one of these
random variables can take the value 1 for a given sequence of heads and tails.

On the one hand, Xn
P→

n→∞
0. Indeed, one can check that for any ε > 0, the probability

P ({|Xn − 0| ≥ ε}) = O

(
1

n

)
It therefore converges to 0 as n→∞.

On the other hand,Xn ̸→ 0 a.s. Indeed, for a given realization ω of heads and tails, such as e.g. HHTHTT...,
the sequence (Xn(ω), n ≥ 1) is equal to 10100001000000... Note that as you explore further the sequence,
you encounter less and less 1’s; nevertheless, you always encounter a 1 after a sufficiently large number
of steps. So the sequence (Xn(ω), n ≥ 1) is an alternating sequence of 0’s and 1’s, that therefore does
not converge to 0 (according to the first definition of today’s lecture), and this is true for any realization
ω. In conclusion,

P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = 0

})
= 0

which is the complete opposite of the definition of almost sure convergence.

Remark. As we know that Xn
P→

n→∞
0, the sequence cannot converge to anything else almost surely.

Indeed, as almost sure convergence implies convergence in probability, if Xn were to converge a.s. to
another limit X ̸= 0, this would imply that Xn should also converge in probability towards this same
limit X. But we know already that Xn converges in probability to 0, so X cannot be different from 0
(up to a set of probability 0). This is formalized by the proposition below.

Proposition 9.3. Let (Xn, n ≥ 1) be a sequence of random variables and X,Y be two random variables

such that Xn
P→

n→∞
X and Xn

P→
n→∞

Y . Then X = Y a.s.

Note. For two random variables X,Y , there is therefore no such thing as “X = Y in probability” or
“X = Y in L2”.

Proof. We have for any fixed ε > 0:

P({|X − Y | ≥ ε}) = P({|X −Xn +Xn − Y | ≥ ε}) ≤ P({|X −Xn|+ |Xn − Y | ≥ ε})

≤ P({|X −Xn| ≥
ε

2
} ∪ {|Xn − Y | ≥

ε

2
}) ≤ P({|Xn −X| ≥

ε

2
}) + P({|Xn − Y | ≥

ε

2
}) →

n→∞
0

by the assumptions made. So P({|X − Y | ≥ ε}) = 0 for any ε > 0, therefore P({X = Y }) = 1, which
proves the claim.

9.4 The Borel-Cantelli lemma

As one might guess from the previous pages, proving convergence in probability (using e.g. Chebyshev’s
inequality) is in general much easier than proving almost sure convergence. Still, these two notions are
not equivalent, as the previous counter-example shows. So it would be convenient to have a criterion
saying that if both convergence in probability and another easy-to-check condition hold, then almost sure
convergence holds. This criterion is the (first) Borel-Cantelli lemma.
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Reminder. Let (an, n ≥ 1) be a sequence of non-negative numbers. Then writing that
∑

n≥1 an < +∞
exactly means that

lim
N→∞

∑
n≥N

an = 0

which is stronger than limn→∞ an = 0. This last condition alone does indeed not guarantee that∑
n≥1 an < +∞. A famous counter-example is the harmonic series an = 1

n .

Lemma 9.4. (Borel-Cantelli)
Let (An, n ≥ 1) be a sequence of events in F such that

∑
n≥1 P(An) < +∞. Then

P ({ω ∈ Ω : ω ∈ An infinitely often}) = 0

Before proving this lemma, let us see how it can be applied to the convergence of sequences of random
variables. Let (Xn, n ≥ 1) be a sequence of random variables.

a) If for all ε > 0, P({|Xn −X| ≥ ε}) →
n→∞

0, then Xn
P→

n→∞
X, by definition.

b) If for all ε > 0,
∑

n≥1 P({|Xn − X| ≥ ε}) < ∞, then Xn →
n→∞

X a.s. Indeed, by the Borel-Cantelli

lemma, the condition on the sum implies that for all ε > 0,

P ({|Xn −X| ≥ ε infinitely often}) = 0

which is exactly the characterization of almost sure convergence given in Lemma 9.2.

So we see that if one can prove that P({|Xn−X| ≥ ε}) = O( 1n ) for all ε > 0, this guarantees convergence
in probability, but not almost sure convergence, as the condition on the sum is not necessarily satisfied
(cf. the example in the previous section).

Proof of the Borel-Cantelli lemma. Let us first rewrite

P ({ω ∈ Ω : ω ∈ An infinitely often}) = P ({∀N ≥ 1, ∃n ≥ N such that ω ∈ An})

= P

 ⋂
N≥1

⋃
n≥N

An

 = lim
N→∞

P

 ⋃
n≥N

An


where we have used Fact 2 for the last equality. Using finally the union bound, we obtain:

P ({ω ∈ Ω : ω ∈ An infinitely often}) ≤ lim
N→∞

∑
n≥N

P(An) = 0

by the assumption made on the sum (and the above reminder). This completes the proof. □

9.5 Laws of large numbers

We state below the law of large numbers. This law justifies the notion of theoretical expectation, as
it shows that the average of a large number of independent and identically distributed (i.i.d.) random
variables converges to this expectation (in probability and almost surely).

Theorem 9.5. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that E(X2
1 ) < +∞, and

let Sn = X1 + . . .+Xn. Then:

a)
Sn

n

P→
n→∞

E(X1).

b)
Sn

n
→

n→∞
E(X1) almost surely (strong law).
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Remarks. - Because the random variables X’s are i.i.d., the assumption E(X2
1 ) < +∞ is an assumption

on the whole sequence and not only on the random variable X1.

- Both laws above hold under the weaker assumption that E(|X1|) < +∞, but in this case, the proof
of the theorem becomes significantly longer! Restricting ourselves to the assumption that E(X2

1 ) < +∞
allows in particular to use Var(X1) in the proof.

- One may wonder why should one state both a weak and a strong law, as the latter is obviously a
stronger result than the former. A first simple reason is that the weak law was found historically by
Jacob Bernoulli around year 1700, much before the strong law, obtained by Borel and Cantelli around
year 1900. Besides, both the weak and the strong law can be generalized to different sets of assumptions
on the random variables X’s. But more generalizations are possible for the weak law than for the strong
law, as we shall see.

Proof. a) For all ε > 0, we have

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ ε}) = P ({|Sn − nE(X1)| ≥ nε}) = P ({|Sn − E(Sn)| ≥ nε})

≤ E((Sn − E(Sn))
2)

n2ε2
=

Var(Sn)

n2 ε2
=

Var(X1)

n ε2
→

n→∞
0

where we have used Chebyshev’s inequality and the fact that the variance of a sum of independent

variables is the sum of the variances of these random variables. This implies that
Sn

n

P→
n→∞

E(X1) and

therefore proves the weak law of large numbers.

b) Note that the former proof does not allow to conclude here, because we only showed that

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ ε}) = O

(
1

n

)
so we cannot apply Borel-Cantelli’s lemma in this case, as mentioned already in the last lecture. There
is nevertheless an elegant solution to this problem, as described in the sequel.

- Observe first that we may simply replace n by n2 in the previous equality, so as to obtain:

P
({∣∣∣∣Sn2

n2
− E(X1)

∣∣∣∣ ≥ ε}) = O

(
1

n2

)
Using the Borel-Cantelli lemma and the fact that

∑
n≥1

1
n2 <∞, we obtain that

Sn2

n2
→

n→∞
E(X1) almost

surely. This alone of course does not prove the result, but. . .

- Assume for now that Xn ≥ 0 for all n ≥ 1 and consider an integer m such that n2 ≤ m ≤ (n + 1)2.
Because the X’s are positive, the sequence Sn is non-decreasing, so we obtain in this case

Sn2

(n+ 1)2
≤ Sm

m
≤
S(n+1)2

n2

Note that by what was just shown above and by the fact that (n+1)2

n2 →
n→∞

1, both the left-most and the

right-most terms converge almost surely to E(X1) as n → ∞. As
Sm

m
is lower and upper bounded by

these two terms, respectively, we deduce that
Sm

m
also converges almost surely to E(X1) as m→∞.

- Finally, we need to address the case where the X’s are not necessarily non-negative. Let us define in
this case X+

n = max(Xn, 0) and X
−
n = max(−Xn, 0), so that Xn = X+

n −X−
n . Similarly, let

S+
n =

n∑
j=1

X+
j and S−

n =

n∑
j=1

X−
j , so that Sn = S+

n − S−
n
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Note that it is not necessarily the case that S+
n = max(Sn, 0) and S

−
n = max(−Sn, 0), but this does not

matter here. What matters is that both S+
n and S−

n are sums of i.i.d. non-negative random variables, so
that the previous result applies to both:

S+
n

n
→

n→∞
E(X+

1 ) a.s. and
S−
n

n
→

n→∞
E(X−

1 ) a.s.

which in turn implies that

Sn

n
=
S+
n

n
− S−

n

n
→

n→∞
E(X+

1 )− E(X−
1 ) = E(X1) a.s.

and therefore completes the proof.

Remark. With the weaker assumption that E(|X1|) < +∞, one cannot mimic the above proof using
Chebyshev’s inequality with ψ(x) = |x| instead of ψ(x) = x2. Indeed, in part a), one would get

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ ε}) ≤ E(|Sn − E(Sn)|)
n ε

but then how to upper bound E(|Sn − E(Sn)|? Using the triangle inequality, one would get

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ ε}) ≤ nE(|X1 − E(X1)|)
n ε

=
E(|X1 − E(X1)|)

ε

which does not decrease to 0 as n increases. . .

9.6 Application: convergence of the empirical distribution

Let again (Xn, n ≥ 1) be a sequence of i.i.d. random variables (but without any assumption on their
integrability), and let F denote their common cdf (F (t) = P({X1 ≤ t}), t ∈ R.).

Let now Fn(t) =
1
n ♯{1 ≤ j ≤ n : Xj ≤ t} for t ∈ R; Fn is the empirical distribution (or cdf) of the first n

random variables X1, . . . , Xn. Note that for fixed n, it is a discrete distribution (i.e., the cdf is a staircase
function). As well as the law of large numbers provides a justification for the notion of expectation, the
statement below provides a justification for the notion of distribution.

Theorem 9.6. For every t ∈ R,

Fn(t) →
n→∞

F (t) almost surely

Proof. Fix t ∈ R and let Yj = 1{Xj≤t}. As the X’s are i.i.d., so are the Y ’s. On top of that, the Y ’s are
square-integrable, as they are Bernoulli random variables, taking values in {0, 1} only. Also, Fn(t) may
be rewritten as

Fn(t) =
1

n

n∑
j=1

Yj →
n→∞

E(Y1) almost surely

by the strong law of large numbers. Noticing finally that E(Y1) = P({X1 ≤ t}) = F (t) completes the
proof.

9.7 Extension of the strong law: Kolmogorov’s 0-1 law

The strong law cannot be extended beyond the E(|X1|) < +∞ assumption. One can show actually the
following more precise statement:

• If E(|X1|) < +∞, then limn→∞
Sn

n
= E(X1) a.s.
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• If E(|X1|) = +∞, then lim supn→∞

∣∣∣∣Sn

n

∣∣∣∣ = +∞ a.s., i.e.,
Sn

n
diverges a.s.

The aim here is not to give a full proof of the above statements, but rather to explain why
Sn

n
can only

converge or diverge a.s.

Let (Xn, n ≥ 1) be a sequence of random variables, all defined on the same probability space (Ω,F ,P).
For n ≥ 1, define

Gn = σ(Xn, Xn+1, Xn+2, . . .) and T =
⋂
n≥1

Gn

T is called the tail σ-field of the sequence (Xn, n ≥ 1). In words, it is the information related to the
asymptotic behaviour of the sequence when n→∞ (which in general might contain lots of information!).
Here is an example of event in T :

A1 =

ω ∈ Ω :
∑
n≥1

Xn(ω) converges


Indeed, note that for every N ≥ 1, we have

A1 =

ω ∈ Ω :
∑
n≥N

Xn(ω) converges


so A1 ∈ GN for every N ≥ 1. It therefore also belongs to T = ∩N≥1GN .

Along the same lines, here is another example of event in T :

A2 =

{
ω ∈ Ω : lim

n→∞

Sn(ω)

n
exists

}
which is of direct interest to us in the sequel.

Theorem 9.7. (Kolmogorov’s 0-1 law)
If the sequence (Xn, n ≥ 1) is independent and A ∈ T , then P(A) ∈ {0, 1} (so in this case, T is essentially
a trivial σ-field).

Remark. Please pay attention that P(A) ∈ {0, 1} means that either P(A) = 0 or P(A) = 1, not that
0 ≤ P(A) ≤ 1, which is always true.

Consequence. Because the event A2 above belongs to T , we can therefore conclude that either the
sequence Sn

n converges a.s., or it diverges a.s., but it cannot be that convergence takes place with a
probability which is strictly between 0 and 1. It turns out [without proof] that a.s. convergence takes
place if and only if E(|X1|) < +∞, and correspondingly that a.s. divergence takes place if and only if
E(|X1|) = +∞.

Proof of Theorem 9.7. The strategy for the proof of the above theorem is to show that when the Xn’s
are independent, any event A ∈ T is independent of itself! So that P(A) = P(A ∩ A) = P(A)2, implying
P(A) ∈ {0, 1}. First note that because of the independence of the X’s, for every n ≥ 1, the σ-fields

Fn = σ(X1, . . . , Xn) and Gn+1 = σ(Xn+1, Xn+2, . . .)

are independent. As T ⊂ Gn+1 for every n ≥ 1, this also implies that T is independent of Fn for every
n ≥ 1. But this implie that T is also independent of σ(X1, X2, . . . , Xn, . . .)

7, which is the σ-field generated
by all the Fn’s. Finally, observe that T ⊂ σ(X1, X2, . . . , Xn, . . .), which implies that T is independent of
itself! So that any event A ∈ T has probability 0 or 1, as mentioned above. □

7Note that we skip here the measure-theoretic argument allowing to prove this.
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9.8 Extension of the weak law: an example

As just seen, the strong law of large numbers does not extend beyond the assumption E(|X1|) < +∞.
The situation is different for the weak law. Let us consider an example of random variable with infinite
expectation, which can be described through the following game: toss a (fair) coin until it falls on “heads”
and call T the total number of tosses; your gain is then G = 2T francs. What is your expected reward?

P({G = 2k}) = P({T = k}) = 1

2k
, so E(G) =

∑
k≥1

2k P({G = 2k}) =
∑
k≥1

1 = +∞

Nevertheless, note that it is not encouraged to bet a too large amount of money on such a game, as you
might be disappointed with the result. . . This is called the St-Petersburg paradox.

Consider now that you are allowed to play this game multiple times, say n times, with n large. We
assume that the n realizations G1, . . . , Gn of the game are independent. How much would you agree to
pay to be allowed to play these n games? If these games were “reasonable” games with finite expectation
µ, a plausible answer would be nµ, according to the law of large numbers seen above, telling you that
the sum of the n games would then be of the order of nµ for large n. But as we saw, E(G1) = +∞. So
by the previous paragraph, defining Sn = G1 + . . . + Gn, we obtain that Sn

n diverges almost surely (to
+∞ in this case). This again does not sound like a reasonable answer.

A more reasonable answer can be obtained via the following proposition, which is an extension of the
weak law.

Proposition 9.8. Under the above assumptions, it holds that
Sn

n log2 n

P→
n→∞

1, i.e., that for any ε > 0,

P
({∣∣∣∣ Sn

n log2 n
− 1

∣∣∣∣ ≥ ε}) →
n→∞

0

So for a large number of games n, investing log2 n francs per game (that is, n log2 n francs in total) is the
right thing to do. We provide below the proof of this proposition, skipping some technical details.

Proof. A classical way to handle random variables with infinite expectation is to cut them off, that is, to
consider, for a fixed value of n: Hj = Gj 1{Gj≤n log2 n}, 1 ≤ j ≤ n, as well as S′

n = H1 + . . . +Hn (the
value of the cutoff, n log2 n, is of course chosen in hindsight to make everything work well, as we shall see
below). Let us now write

P
({∣∣∣∣ Sn

n log2 n
− 1

∣∣∣∣ ≥ ε}) = P({|Sn − n log2 n| ≥ εn log2 n})

= P({|Sn − n log2 n| ≥ εn log2 n, Gj ≤ n log2 n, ∀1 ≤ j ≤ n})
+ P({|Sn − n log2 n| ≥ εn log2 n, ∃1 ≤ j ≤ n such that Gj > n log2 n})

Noticing that Gj = Hj when Gj ≤ n log2 n and using the simple fact that P(A∩B) ≤ P(A) or P(B), the
above expression can be upperbounded by

P({|S′
n − n log2 n| ≥ εn log2 n}) + P({∃1 ≤ j ≤ n such that Gj > n log2 n}) (6)

S′
n = H1 + . . .+Hn is a sum of bounded random variables, and one can check that

E(H1) =
∑

k≤log2(n log2 n)

2k
1

2k
=

∑
k≤log2(n log2 n)

1 ≃ log2 n

so that E(S′
n) ≃ n log2 n and that, using Chebyshev’s inequality, we obtain:

P({|S′
n − n log2 n| ≥ εn log2 n}) ≤

Var(S′
n)

(εn log2 n)
2
=

nVar(H1)

(εn log2 n)
2
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where

Var(H1) ≤ E(H2
1 ) =

∑
k≤log2(n log2 n)

22k
1

2k
=

∑
k≤log2(n log2 n)

2k ≃ 2n log2 n

Therefore,

P({|S′
n − n log2 n| ≥ εn log2 n}) ≤

2n2 log2 n

(εn log2 n)
2
=

2

ε2 log2 n
→

n→∞
0

The second term in (6) can be upperbounded using the union bound:

P({∃1 ≤ j ≤ n such that Gj > n log2 n}) ≤ nP({G1 > n log2 n}) = n
∑

k>log2(n log2 n)

1

2k
≃ 1

log2 n
→

n→∞
0

which completes the proof.

Remark. From the above proof, we deduce that the result cannot be extended to become a strong law

type of result. Indeed, the decay of the probability P
({∣∣∣ Sn

n log2 n − 1
∣∣∣ ≥ ε}) is only O

(
1

log2(n)

)
, far too

slow to apply the Borel-Cantelli lemma (and also too slow to apply the same trick as in our proof of the
strong law; this last observation is left as exercise).

10 The central limit theorem

10.1 Convergence in distribution

Convergence in distribution is a key tool in probability, allowing notably to state the central limit theorem.

Definition 10.1. Let (Xn, n ≥ 1) be a sequence of random variables, not necessarily defined on the same
probability space (Ω,F ,P). The sequence (Xn, n ≥ 1) is said to converge in distribution to a limiting

random variable X (and this is denoted as Xn
d→

n→∞
X) if

FXn
(t) = P({Xn ≤ t}) →

n→∞
FX(t) = P({X ≤ t})

for every t ∈ R continuity point of the limiting cdf FX .

Remark 10.2. Why asking only for convergence in continuity points of FX and not in all t ∈ R? There
are two main reasons for this:

- The fact is, it may happen that the limit cdf FX is itself discontinuous (if it is e.g. the cdf of a discrete
random variable, in which case we recall that FX is a staircase function). In this case, it would be asking
for too much to have a sequence of functions converging to FX in every t ∈ R, including in points where
the function FX makes a jump; one can at least imagine easily examples of sequences of functions that
converge everywhere except in these points.

- Besides, as we know that the limit FX is a right-continuous function, by definition, this implies that
even if there is no convergence in a point where FX makes a jump, it is always possible to reconstruct
FX in this point by taking the limit from the right.

Remark 10.3. We have already seen an instance of convergence in distribution in Section 9.6: the
convergence of the empirical distribution of a sequence of i.i.d. random variables. Note however that this
example is a bit more complicated, as the empirical cdfs are also random in this case!

The proposition below shows that convergence in distribution is the weakest of the four notions of
convergence we have seen so far.

Proposition 10.4. Let (Xn, n ≥ 1) be a sequence of random variables defined on the same probability

space (Ω,F ,P) and X be another random variable defined on (Ω,F ,P). If Xn
P→

n→∞
X, then Xn

d→
n→∞

X.
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Example 10.5. The weak law of large numbers states that Sn

n

P→
n→∞

µ = E(X1) if Sn = X1 + . . .+Xn

and the X’s are i.i.d. random variables with finite expectation. The above proposition implies therefore
that

FSn/n(t) = P({Sn/n ≤ t}) →
n→∞

{
1, if t > µ

0, if t < µ

Proof. Recall that Xn
P→

n→∞
X means that for all ε > 0, limn→∞ P({|Xn−X| ≥ ε}) = 0. We show below

that this implies that limn→∞ FXn(t) = FX(t) for every t ∈ R continuity point of FX .

- Let us first compute, for a given fixed ε > 0:

FXn
(t) = P({Xn ≤ t}) = P({Xn ≤ t, X ≤ t+ ε}) + P({Xn ≤ t, X > t+ ε})

≤ P({X ≤ t+ ε}) + P({|Xn −X| ≥ ε})

Because of the assumption made, this implies that lim supn→∞ FXn
(t) ≤ FX(t+ ε) + 0.

- Let us then compute, again for a given fixed ε > 0:

FX(t− ε) = P({X ≤ t− ε}) = P({X ≤ t− ε, Xn ≤ t}) + P({X ≤ t− ε, Xn > t})
≤ P({Xn ≤ t}) + P({|Xn −X| ≥ ε})

Again, because of the assumption made, this implies that FX(t− ε) ≤ lim infn→∞ FXn
(t) + 0.

- In conclusion, we obtain for any given ε > 0:

FX(t− ε) ≤ lim inf
n→∞

FXn(t) ≤ lim sup
n→∞

FXn(t) ≤ FX(t+ ε)

Assuming t ∈ R is a continuity point of FX , we have limε↓0 FX(t− ε) = limε↓0 FX(t+ ε) = FX(t), so by
the above inequalities,

lim
n→∞

FXn
(t) = FX(t)

which proves the claim.

Remark 10.6. Let us insist here that convergence in distribution is a much weaker notion than conver-
gence in probability. For example, a sequence (Xn, n ≥ 1) of i.i.d. random variables never converges in
probability (unless these random variables are all constants), but it converges in distribution, because all
cdfs are the same, so that the sequence (FXn

(t), n ≥ 1) necessarily converges for every t ∈ R.

10.2 Application: the Curie-Weiss model

In the following, we give an example, coming from statistical physics, of a sequence of random variables
(Xn, n ≥ 1) taking values in {−1,+1} such that the sequence 1

n (X1+ . . .+Xn) does not converge almost
surely, nor in probability, but only in distribution. Actually, the sequence of random variables (Xn, n ≥ 1)
we will consider is not an “orthodox” one, because the interaction between the first n random variables
X1, . . . , Xn depends on the value of n. For each n ≥ 1, we will therefore need a different probability
space to describe the n-tuple X1, . . . , Xn. Let us see what this concretely means.

For a given n, the probability space on which we define the n random variablesX1, . . . , Xn is the following:
Ωn = {−1,+1}n, Fn = P(Ωn) and

Pn({ω}) =
1

Cn
exp

β
n

n∑
j,k=1
j<k

ωjωk

 , ω ∈ Ωn
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where β > 0 is a fixed parameter and the normalization constant Cn is given by

Cn =
∑
ω∈Ωn

exp

β
n

n∑
j,k=1
j<k

ωjωk


so that

∑
ω∈Ωn

Pn({ω}) = 1. The random variables X1, . . . , Xn are then defined as

Xj(ω) = ωj , j ∈ {1, . . . , n}

We are interested below in the asymptotic behaviour of the sequence of random variables

Mn(ω) =
1

n
(X1(ω) + . . .+Xn(ω)), n ≥ 1

under this model. As the probability space Ωn changes for each value of n, we can only hope to obtain
convergence in distribution for this sequence.

Interpretation in statistical physics. The random variables X1, . . . , Xn represent spins (i.e., small
magnetic moments) interacting together. The interaction here is ferromagnetic, which means that the
spins are positively correlated: if Xj = +1, then this encourages8 other spins Xk to also take the value
+1. The model is also a mean field model, in the sense that all pairs of spins interact together, with the
same interaction strength for each pair. The parameter β > 0 models the inverse of the temperature of
the system: when β is small, the probability Pn tends to be uniform over the whole space Ωn, so the spins
are highly fluctuating; on the contrary, when β is large, the probability Pn concentrates on certain parts
of Ωn and the spins tend to freeze in these configurations. Finally, the quantity Mn represents the mag-
netization of the system, which is the macroscopic quantity of interest that can actually be measured in a
physical experiment (please remember that in a physical system, the number of particles (spins) is of the
order of the Avogadro number, which is roughly 6·1023, so it reallymakes sense to consider large n limits!).

Contrary to many other unsolved problems of the same type, the Curie-Weiss model can be exactly
analyzed in the large n limit. To this end, let us first observe that for a given value of n,

n∑
j,k=1
j<k

ωjωk =
1

2

n∑
j,k=1
j ̸=k

ωjωk =
1

2


 n∑

j=1

ωj

2

− n


so that the probability Pn may be rewritten as

Pn({ω}) =
1

C̃n

exp

 β

2n

 n∑
j=1

ωj

2
 , ω ∈ Ωn

where

C̃n =
∑
ω∈Ωn

exp

 β

2n

 n∑
j=1

ωj

2


Observe also that for a given value of n, the magnetization Mn, being the average of n random variables
taking values in {−1,+1}, can take the following values:

−1, −1 + 2

n
, −1 + 4

n
, . . . 1− 4

n
, 1− 2

n
, 1

8i.e., increases the probability of
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Let m be one such value and let us compute

Pn({ω ∈ Ω : Mn(ω) = m}) =
∑

ω∈Ωn : 1
n (ω1+...+ωn)=m

Pn({ω})

Using the above formula for Pn({ω}), this can be rewritten as

Pn({ω ∈ Ω : Mn(ω) = m}) =
∑

ω∈Ωn : 1
n (ω1+...+ωn)=m

1

C̃n

exp

(
nβ

2
m2

)

=
1

C̃n

exp

(
nβ

2
m2

)
#{ω ∈ Ωn :

1

n
(ω1 + . . .+ ωn) = m}

where #A denotes the cardinality of the set A. Some combinatorics are required now, which we will skip,
as it is not our main focus here. These combinatorics lead to the following approximation:

#{ω ∈ Ωn :
1

n
(ω1 + . . .+ ωn) = m} ≃

n→∞
exp

(
nh

(
1 +m

2

))
where h(p) = −p log(p) − (1 − p) log(1 − p) is the classical entropy function, defined for 0 ≤ p ≤ 1.
Gathering the last two computations together, we obtain

Pn({ω ∈ Ω : Mn(ω) = m}) ≃
n→∞

1

C̃n

exp

(
n

(
βm2

2
+ h

(
1 +m

2

)))
From the above expression, we infer9 that the possible values taken by the magnetizationMn in the large
n limit are the ones maximizing the following function:

f(m) =
βm2

2
+ h

(
1 +m

2

)
, where − 1 ≤ m ≤ +1

This function f has an interesting behaviour: when β ≤ 1 (i.e., in the so-called “high temperature
regime”), f has a unique maximum in m = 0 and it can be shown that

Mn
d→

n→∞
0

but note again that convergence only takes place in distribution here, so this is not a “law of large
numbers” result. More interestingly, when β > 1 (i.e., in the so-called “low temperature regime”), the
function f has two maxima at the same level in m = +m∗(β) > 0 and m = −m∗(β) < 0, and it can be
shown in this case that

Mn
d→

n→∞
M

where the limiting random variable M takes values +m∗(β) and −m∗(β) with probability 1
2 each.

The physical interpretation of the above result is the following: at high temperature (β ≤ 1), there is
lots of agitation in the system, so the spins are disordered and the resulting magnetization is zero. On
the other hand, at low temperature (β > 1), the positive interaction between the spins wins over the
agitation, so that the spins get aligned in one direction (+m∗(β)) or the other (−m∗(β)).

10.3 Equivalent criterion for convergence in distribution

Observe first that if two random variables X,Y share the same distribution, then

E(g(X)) = E(g(Y ))

for any continuous and bounded function g : R → R. It turns out that the reciprocal statement holds,
and even better: the following theorem, also known as (part of) the Portemanteau theorem, gives an
equivalent criterion for convergence in distribution.

9Disclaimer: this needs to be seriously proven.
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Theorem 10.7. Let (Xn, n ≥ 1) be a sequence of random variables and X be another random variable.

Then Xn
d→

n→∞
X if and only if

E(g(Xn)) →
n→∞

E(g(X))

for every continuous and bounded function g : R→ R.

Proof of the “if” part. Observe first that Definition 10.1 is equivalent to saying that

E(ht(Xn)) →
n→∞

E(ht(X)),

for every function ht : R→ R of the form ht(x) = 1{x≤t}, where t is a continuity point of F . Our aim is
to show that for fixed t ∈ R, there is a way to approximate from above and from below the step function
ht with continuous and bounded functions. To this end, assume without loss of generality that t > 0 and
define for m ≥ 1:

gm(x) =


1 if x ≤ t

(
1− 1

m

)
m
(
1− x

t

)
if t
(
1− 1

m

)
< x ≤ t

0 if x > t

and Gm(x) =


1 if x ≤ t
m
(
1 + 1

m −
x
t

)
if t < x ≤ t

(
1 + 1

m

)
0 if x > t

(
1 + 1

m

)

One deduces the following facts from the above figure (valid for any m ≥ 1):

• the functions gm and Gm are continuous and bounded;

• gm(x) ≤ ht(x) ≤ Gm(x), gm(x) ≤ gm+1(x) and Gm(x) ≥ Gm+1(x) for every x ∈ R;

• limm→∞ gm(x) = 1{x<t} and limm→∞Gm(x) = 1{x≤t}.

From the assumption made, we also obtain that for every m ≥ 1:

E(gm(X)) = lim
n→∞

E(gm(Xn)) ≤ lim inf
n→∞

E(ht(Xn)) ≤ lim sup
n→∞

E(ht(Xn)) ≤ lim
n→∞

E(Gm(Xn)) = E(Gm(X))

Besides, the monotone convergence theorem (not seen in this course) implies that

lim
m→∞

E(gm(X)) = E( lim
m→∞

gm(X)) = E(1{X<t}) = P({X < t})

lim
m→∞

E(Gm(X)) = E( lim
m→∞

Gm(X)) = E(1{X≤t}) = P({X ≤ t})

so
P({X < t}) ≤ lim inf

n→∞
E(ht(Xn)) ≤ lim sup

n→∞
E(ht(Xn)) ≤ P({X ≤ t})

which in turn implies that the limit exists (and is equal to what we want) when t is a continuity point of
FX (i.e., when P({X = t}) = 0). □

Remark 10.8. For k ∈ N, let Ck
b (R) denote the space of k times continuously differentiable functions

g : R → R, which are bounded and whose all k derivatives are also bounded. Replacing the above
functions gm and Gm by regular cubic splines, one can show the following improvement of the above
theorem:

If E(g(Xn)) →
n→∞

E(g(X)) for every function g ∈ C3
b (R), then Xn

d→
n→∞

X

This remark will be useful below.
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10.4 The central limit theorem

Let (Xn, n ≥ 1) be a sequence of i.i.d. square-integrable random variables. Let also µ = E(X1), σ
2 =

Var(X1) and Sn = X1 + . . . + Xn. Using basic properties of expectation and variance, we obtain the
following:

E(Sn) = nE(X1) = nµ and Var(Sn) = nVar(X1) = nσ2

Please watch out that independence of the X’s is needed for the second computation, but not for the
first one. These two equalities may be restated in a single one:

Sn = nµ+
√
nσ S̃n,

where S̃n is a random variable with E(S̃n) = 0 and Var(S̃n) = E(S̃2
n) = 1. The central limit theorem

states that as n grows large, S̃n converges in distribution to a Gaussian random variable with zero mean
and unit variance. This result is therefore universal: the Gaussian distribution appears in the limit,
independently of the distribution chosen for the X’s. Slightly more formally, we have the following.

Theorem 10.9. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that E(|X1|3) < +∞,
defined on a common probability space (Ω,F ,P). Let also µ = E(X1), σ

2 = Var(X1) (the latter being
assumed to be strictly positive), Sn = X1 + . . .+Xn and

S̃n =
Sn − nµ√

nσ
, n ≥ 1

Then S̃n
d→

n→∞
Z ∼ N (0, 1), i.e.,

P({S̃n ≤ t}) →
n→∞

P({Z ≤ t}) =
∫ t

−∞

1√
2π

e−x2/2 dx, ∀t ∈ R

Note that convergence has to take place here for every t ∈ R, as the limiting cdf is continuous.

Remark 10.10. The above condition E(|X1|3) < +∞ is not needed for the conclusion of the theorem to
hold; with extra effort, it can be proven under the weaker assumption that X1 is only square-integrable
(and this last assumption is clearly needed in order for σ to be well defined).

The proof of the theorem relies on the following sequence of two lemmas, which together are known as
Lindeberg’s principle that is of interest in its own right. This principle can be informally stated as follows:
in a sum of independent and small random variables, one may replace each small random variable by
another one having the same mean and variance, without changing asymptotically the distribution of the
sum.

Lemma 10.11. Let g ∈ C3
b (R) and X, Y , Z be random variables such that X is independent of both Y

and Z, E(Y ) = E(Z), E(Y 2) = E(Z2) and E(|Y |3) < +∞, E(|Z|3) < +∞. Then

|E(g(X + Y ))− E(g(X + Z))| ≤ C

6

(
E(|Y |3) + E(|Z|3)

)
where C = supx∈R |g′′′(x)|.

What this lemma is essentially saying is that provided both Y and Z are “small” random variables, one
may trade Y for Z in the expression E(g(X + Y )) without changing much the value of the expectation.

Proof. By Taylor’s expansion, we obtain for real numbers x, y:

g(x+ y) = g(x) + y g′(x) +
y2

2
g′′(x) +

y3

6
g′′′(u) for some u such that |u− x| ≤ |y|
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The independence of X and Y then implies that

E(g(X + Y )) = E(g(X)) + E(Y )E(g′(X)) +
1

2
E(Y 2)E(g′′(X)) +

1

6
E(Y 3 g′′′(U))

where U is a random variable satisfying |U −X| ≤ |Y |. Similarly, one may write

E(g(X + Z)) = E(g(X)) + E(Z)E(g′(X)) +
1

2
E(Z2)E(g′′(X)) +

1

6
E(Z3 g′′′(V ))

where V is a random variable satisfying |V −X| ≤ |Z|. By the assumptions made, we obtain

E(g(X + Y ))− E(g(X + Z)) =
1

6

(
E(Y 3 g′′′(U))− E(Z3g′′′(V ))

)
so

|E(g(X + Y ))− E(g(X + Z))| ≤ C

6

(
E(|Y |3) + E(|Z|3)

)
which completes the proof.

The above lemma generalizes to the case of sums of multiple random variables, as shown below.

Lemma 10.12. Let g ∈ C3
b (R) and Y1, . . . , Yn, Z1, . . . , Zn be random variables, all independent and such

that E(Yi) = E(Zi), E(Y 2
i ) = E(Z2

i ) and E(|Yi|3) < +∞, E(|Zi|3) < +∞ for all i ∈ {1, . . . , n}. Then

|E(g(Y1 + . . .+ Yn))− E(g(Z1 + . . .+ Zn))| ≤
C

6

n∑
i=1

(
E(|Yi|3) + E(|Zi|3)

)
where C = supx∈R |g′′′(x)|.

Proof. Define

X1 = Z2 + . . .+ Zn, Xn = Y1 + . . .+ Yn−1, and

Xi = Y1 + . . .+ Yi−1 + Zi+1 + . . .+ Zn for i ∈ {2, . . . , n− 1}

Observe then that

Y1 + . . .+ Yn = Xn + Yn, Z1 + . . .+ Zn = X1 + Z1, and

Xi + Yi = Y1 + . . .+ Yi + Zi+1 + . . .+ Zn = Xi+1 + Zi+1, for i ∈ {1, . . . , n− 1}

so that

|E(g(Y1 + . . .+ Yn))− E(g(Z1 + . . .+ Zn))| = |E(g(Xn + Yn))− E(g(X1 + Z1))|

= |E(g(Xn + Yn))− E(g(Xn + Zn)) + E(g(Xn−1 + Yn−1)) + . . .

. . .− E(g(X2 + Z2)) + E(g(X1 + Y1))− E(g(X1 + Z1))|

≤
n∑

i=1

|E(g(Xi + Yi))− E(g(Xi + Zi))| ≤
C

6

n∑
i=1

(
E(|Yi|3) + E(|Zi|3)

)
by repeated uses of Lemma 10.11. The proof is complete.

As the above lemma is valid for any function g ∈ C3
b (R), this says that if a random variable is the sum

of multiple small independent components, then essentially only the first and second moments of these
components matter for the computation of the distribution of the random variable itself. We are now in
position to prove Theorem 10.9.
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Proof of Theorem 10.9. Let us first estimate E(g(S̃n)) for g ∈ C3
b (R) and n large. Defining Yi =

Xi−µ√
nσ

,

we may rewrite

S̃n =
Sn − nµ√

nσ
=

n∑
i=1

Xi − µ√
nσ

=

n∑
i=1

Yi

The random variables Yi are i.i.d. with E(Yi) = 0, E(Y 2
i ) =

1
n and E(|Yi|3) = O(n−3/2).

Let now Z1, . . . , Zn be i.i.d. N (0, 1
n ) random variables, independent of X1, . . . , Xn (and therefore also

of Y1, . . . , Yn). Clearly, it is also the case E(Zi) = 0, E(Z2
i ) =

1
n and E(|Zi|3) = O(n−3/2). By Lemma

10.12, we have

|E(g(Y1 + . . .+ Yn))− E(g(Z1 + . . .+ Zn))| ≤
C

6

n∑
i=1

(
E(|Yi|3) + E(|Zi|3)

)
≤ C

6

n∑
i=1

O(n−3/2) = O(n−1/2) →
n→∞

0

Observe next that as Var(Z1+ . . .+Zn) =
1
n+ . . .+

1
n = 1 for all n ≥ 1, the random variables Z1+ . . .+Zn

all share the same distributionN (0, 1), so E(g(Z1+. . .+Zn)) = E(g(Z)), for all n ≥ 1, where Z ∼ N (0, 1).
By Theorem 10.7 (or more precisely Remark 10.8 following it), we finally deduce that

S̃n = Y1 + . . .+ Yn
d→

n→∞
Z

which completes the proof of the theorem. □.

10.5 An alternate proof of the central limit theorem

The proof of the central limit theorem 10.9 provided below relies on the use of characteristic functions
and more specifically on the following interesting characterization of convergence in distribution (whose
proof is omitted here, but is related to the Portemanteau theorem seen in Section 10.3).

Proposition 10.13. Let (Xn, n ≥ 1) be a sequence of random variables and X be another random
variable. Then

Xn
d→

n→∞
X if and only if ϕXn(t) →

n→∞
ϕX(t), ∀t ∈ R

Note that such a proposition is made possible because a characteristic function is fully characterizing its
corresponding distribution, as guaranteed by the inversion formula (see Section 7).

Alternate proof of Theorem 10.9. As already seen above, we have

S̃n =
Sn − nµ√

nσ
=

n∑
j=1

Yj

where Yj =
Xj−µ√

nσ
are i.i.d. random variables with E(Y1) = 0, E(Y 2

1 ) =
1
n and E(|Y1|3) = O(n−3/2)) (using

the assumption that E(|X1|3) < +∞).

Let ϕn be the characteristic function of S̃n. Using Proposition 10.13, it is sufficient to prove that

ϕn(t) →
n→∞

ϕ(t) = e−t2/2, ∀t ∈ R

as ϕ is the characteristic function of Z ∼ N (0, 1). To this end, making use of the factorization property
of characteristic functions, we compute

ϕn(t) = E
(
exp

(
itS̃n

))
=

n∏
j=1

E(exp(itYj)) = (E(exp(itY1)))n

58



Using Taylor’s expansion, we further obtain

E(exp(itY1)) = 1 + (it)E(Y1) +
(it)2

2
E(Y 2

1 ) +
(it)3

6
O(E(|Y1|3)) = 1 + 0− t2

2n
+O(n−3/2)

so

ϕn(t) =

(
1− t2

2n
+O(n−3/2)

)n

→
n→∞

e−t2/2

which actually needs some careful verification here, as the O(n−3/2) is complex-valued. This completes
our second proof of the central limit theorem. □

10.6 Application: the coupon collector problem

We describe below a “convergence in distribution” type of result occurring in the context of a famous
problem in probability theory: the coupon collector problem. Interestingly, the limiting distribution is
not Gaussian in this case. Another famous example of that kind is the birthday problem (see exercises).

Problem formulation. The question is simple: suppose that m balls are thrown independently and
uniformly at random into n bins. How large need m be in order to ensure that the n bins are all occupied
by at least one ball? This problem was first studied by Laplace in 1812. Since then, many variations
of the problem have been studied, with interesting applications in various areas (including the one of
estimating how much money you need to spend, once every four years, in order to complete an empty
book with 682 stickers10).

Expected behaviour. For k ∈ {1, . . . , n}, define Tk to be the first time (i.e., the smallest value of m)
such that k bins are occupied. We can compute the expected value of Tn by the following reasoning. Let
X1 = T1 = 1 and Xk = Tk − Tk−1 for k ∈ {2, . . . , n} (in words, Xk is the waiting time for a new bin to
be reached after k − 1 of them have already been reached). Then

P({Xk = ℓ}) =
(
k − 1

n

)ℓ−1 (
1− k − 1

n

)
for ℓ ≥ 1

i.e., Xk is a geometric random variable of parameter pk = 1− k−1
n = n−k+1

n . Such a random variable has
expectation

E(Xk) =
1

pk
=

n

n− k + 1

logically translating the fact that the average time duration for a new bin to be reached increases with
k. We finally obtain

E(Tn) =
n∑

k=1

E(Xk) = n

n∑
k=1

1

n− k + 1
= n

n∑
k=1

1

k
≃ n log n

as n gets large (we spare you here the additional Euler constant that refines this approximation).

Threshold phenomenon. The result below (due to Erdős and Rényi) shows thatm = n log n is not only
an average behaviour, but also the precise threshold before which the coupon collection is not complete
with high probability and after which it is complete with high probability.

Proposition. For t ∈ R, we have

lim
n→∞

P({Tn ≤ n log n+ nt}) = exp(−e−t)

10For those interested, the answer was around 1’000 Swiss Francs for the last edition!
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In other words, this is saying that the sequence of random variables (Gn, n ≥ 1) defined as

Gn =
Tn − n log n

n

converges in distribution as n→∞ towards the random variable G with cdf

FG(t) = exp(−e−t), t ∈ R

also known as the standard Gumbel distribution.

Remark. The implications of the above result are the following:

- If t is large and positive, then P({Tn ≤ n log n+ nt}) ≃ exp(−e−t) ≃ exp(−0) ≃ 1.

- If t is large and negative, then P({Tn ≤ n log n+ nt}) ≃ exp(−e−t) ≃ exp(−∞) ≃ 0.

which proves the claim made at the beginning of this section.

Proof sketch. We do not provide below a complete proof of the above proposition, but just an approxi-
mation argument. For m ≥ 1 and i ∈ {1, . . . , n}, define

Eim = {bin i is still empty after m throws}

Considering m = ⌈n log n+ tn⌉ with t ∈ R fixed, we obtain as n gets large:

P(Eim) =

(
1− 1

n

)m

≃ exp
(
−m
n

)
≃ exp(− log n− t) = e−t

n
, ∀i ∈ {1, . . . , n} (7)

Besides, the events E1m, . . . , Enm are “approximately independent” in the following sense11: for every
i ∈ {1, . . . ,m} and J ⊂ {1, . . . , n} such that J ∩ {i} = ∅ and |J | = k with k fixed, we have

P(Eim | ∩j∈J Ejm) ≃ P(Eim) as n→∞ (and m = ⌈n log n+ tn⌉) (8)

Indeed:

P(Eim | ∩j∈J Ejm) =
P(Eim ∩ (∩j∈JEjm))

P(∩j∈JEjm)
=

(1− (k + 1)/n)m

(1− k/n)m

=

(
n− k − 1

n− k

)m

=

(
1− 1

n− k

)m

≃ exp

(
− m

n− k

)
≃ exp

(
−m
n

)
≃ P(Eim)

for k fixed and n large (with m = ⌈n log n+ tn⌉). Using the above approximations (7) and (8), we obtain

P({Tn ≤ m}) = P({all bins are occupied after m throws})

= P

(
n⋂

i=1

Ec
im

)
≃

n∏
i=1

P(Ec
im) ≃

(
1− e−t

n

)n

≃ exp(−e−t)

which “proves” the claim (for a full proof, the inclusion-exclusion principle is needed, as well as the
Bonferroni inequalities). □

11 Conditional expectation

Let (Ω,F ,P) be a probability space.

11Note that they cannot be all independent, because if for example the first n − 1 bins are empty after m throws, then
the last one can’t be.
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11.1 Conditioning with respect to an event B ∈ F

The conditional probability of an event A ∈ F given another event B ∈ F is defined as

P(A|B) =
P(A ∩B)

P(B)
, provided that P(B) > 0

Note that if A and B are independent, then P(A|B) = P(A); the conditioning does not affect the
probability. This fact remains true in more generality (see below).

In a similar manner, the conditional expectation of an integrable random variable X given B ∈ F is
defined as

E(X|B) =
E(X 1B)

P(B)
, provided that P(B) > 0

11.2 Conditioning with respect to a discrete random variable Y

Let us assume that the random variable Y (is F-measurable and) takes values in a discrete set D.

P(A|Y ) = φ(Y ), where φ(y) = P(A|{Y = y}), y ∈ D
E(X|Y ) = ψ(Y ), where ψ(y) = E(X|{Y = y}), y ∈ D

If X is also a discrete random variable with values in D, then

E(X|Y ) = ψ(Y ), where ψ(y) =
E(X 1{Y=y})

P({Y = y})
=
∑
x∈D

x
E(1{X=x}∩{Y=y})

P({Y = y})
=
∑
x∈D

xP({X = x}|{Y = y})

Important remark. φ(y) and ψ(y) are functions, while φ(Y ) = P(A|Y ) and ψ(Y ) = E(X|Y ) are
random variables. They both are functions of the outcome of the random variable Y , that is, they are
σ(Y )-measurable random variables.

Example. Let X1, X2 be two independent die rolls and let us compute E(X1 +X2|X2) = ψ(X2), where

ψ(y) = E(X1 +X2|{X2 = y}) =
E((X1 +X2) 1{X2=y})

P({X2 = y})

=
E(X1 1{X2=y}) + E(X2 1{X2=y})

P({X2 = y})
(a)
=

E(X1)E(1{X2=y}) + E(y 1{X2=y})

P({X2 = y})

=
E(X1)P({X2 = y}) + y P({X2 = y})

P({X2 = y})
= E(X1) + y

where the independence assumption between X1 and X2 has been used in equality (a). So finally (as
one would expect), E(X1 + X2|X2) = E(X1) + X2, which can be explained intuitively as follows: the
expectation of X1 conditioned on X2 is nothing but the expectation of X1, as the outcome of X2 provides
no information on the outcome of X1 (X1 and X2 being independent); on the other hand, the expectation
of X2 conditioned on X2 is exactly X2, as the outcome of X2 is known.

11.3 Conditioning with respect to a continuous random variable Y ?

In this case, one faces the following problem: if Y is a continuous random variable, P({Y = y}) = 0 for
all y ∈ R. So a direct generalization of the above formulas to the continuous case is impossible at first
sight. A possible solution to this problem is to replace the event {Y = y} by {y ≤ Y < y + ε} and to
take the limit ε→ 0 for the definition of conditional expectation. This actually works, but also leads to a
paradox in the multidimensional setting (known as Borel’s paradox). In addition, some random variables
are neither discrete, nor continuous. It turns out that the cleanest way to define conditional expectation
in the general case is through σ-fields.
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11.4 Conditioning with respect to a sub-σ-field G

In order to define the conditional expectation in the general case, one needs the following proposition12.

Proposition 11.1. Let (Ω,F ,P) be a probability space, G be a sub-σ-field of F and X be an integrable
random variable on (Ω,F ,P). There exists then an integrable random variable Z such that

(i) Z is G-measurable;

(ii) E(ZU) = E(XU) for any random variable U G-measurable and bounded.

Moreover, if Z1, Z2 are two integrable random variables satisfying (i) and (ii), then Z1 = Z2 a.s.

Definition 11.2. The above random variable Z is called the conditional expectation of X given G and
is denoted as E(X|G). Because of the last part of the above proposition, it is defined up to a negligible
set.

Definition 11.3. One further defines P(A|G) = E(1A|G) for A ∈ F .

Remark. Note that as before, both P(A|G) and E(X|G) are (G-measurable) random variables.

Properties. The above definition does not give a computation rule for the conditional expectation; it is
only an existence theorem. The properties listed below will therefore be of help for computing conditional
expectations. The proofs of the first two are omitted, while the next five are left as (important!) exercises.

- Linearity. E(cX + Y |G) = cE(X|G) + E(Y |G) a.s.

- Monotonicity. If X ≥ Y a.s., then E(X|G) ≥ E(Y |G) a.s. (so if X ≥ 0 a.s., then E(X|G) ≥ 0 a.s.)

- E(E(X|G)) = E(X).

- If X is independent of G, then E(X|G) = E(X) a.s.

- If X is G-measurable, then E(X|G) = X a.s.

- If Y is G-measurable and bounded (or if Y is G-measurable and both X and Y are square-integrable;
what actually matters here is that the random variable XY is integrable), then E(XY |G) = E(X|G)Y
a.s.

- If H is a sub-σ-field of G, then E(E(X|H)|G) = E(E(X|G)|H) = E(X|H) a.s. (in other words, the
smallest σ-field always “wins”: this property is also known as the“towering property” of conditional ex-
pectation)

Some of the above properties are illustrated below with an example.

Example. Let Ω = {1, . . . , 6}, F = P(Ω) and P({ω}) = 1
6 for ω = 1, . . . , 6 (the probability space of the

die roll). Let also X(ω) = ω be the outcome of the die roll and consider the two sub-σ-fields:

G = σ({1, 3}, {2}, {5}, {4, 6}) and H = σ({1, 3, 5}, {2, 4, 6})

Then E(X) = 3.5,

E(X|G)(ω) =
{

2 if ω ∈ {1, 3} or ω = 2
5 if ω ∈ {4, 6} or ω = 5

and E(X|H)(ω) =
{

3 if ω ∈ {1, 3, 5}
4 if ω ∈ {2, 4, 6}

So E(E(X|G)) = E(E(X|H)) = E(X). Moreover,

E(E(X|G)|H)(ω) =
{

1
3 (2 + 2 + 5) = 3 if ω ∈ {1, 3, 5}
1
3 (2 + 5 + 5) = 4 if ω ∈ {2, 4, 6} = E(X|H)(ω)

12We do not prove here this proposition: let us just mention that it is a consequence of the Radon-Nikodym theorem.
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and

E(E(X|H)|G)(ω) =
{

3 if ω ∈ {1, 3} or ω = 5
4 if ω ∈ {4, 6} or ω = 2

= E(X|H)(ω)

The proposition below (given here without proof) is an extension of some of the above properties.

Proposition 11.4. Let G be a sub-σ-field of F , X, Y be two random variables such thatX is independent
of G and Y is G-measurable, and let φ : R2 → R be a Borel-measurable function such that E(|φ(X,Y )|) <
+∞. Then

E(φ(X,Y )|G) = ψ(Y ) a.s., where ψ(y) = E(φ(X, y))

This proposition has the following consequence: when computing the expectation of a function φ of two
independent random variables X and Y , one can always divide the computation in two steps by writing

E(φ(X,Y )) = E(E(φ(X,Y )|G)) = E(ψ(Y ))

where ψ(y) = E(φ(X, y)) (this is actually nothing but Fubini’s theorem).

Finally, the proposition below (given again without proof) shows that Jensen’s inequality also holds for
conditional expectation.

Proposition 11.5. Let X be a random variable, G be a sub-σ-field of F and ψ : R → R be Borel-
measurable, convex and such that E(|ψ(X)|) < +∞. Then

ψ(E(X|G)) ≤ E(ψ(X)|G) a.s.

In particular, |E(X|G)| ≤ E(|X||G) a.s.

11.5 Conditioning with respect to a random variable Y

Once the definition of conditional expectation with respect to a σ-field is set, it is natural to define it for
a generic random variable Y :

E(X|Y ) = E(X|σ(Y )) and P(A|Y ) = P(A|σ(Y ))

Remark. Since any σ(Y )-measurable random variable may be written as g(Y ), where g is a Borel-
measurable function, the definition of E(X|Y ) may be rephrased as follows.

Definition 11.6. E(X|Y ) = ψ(Y ), where ψ : R→ R is the unique Borel-measurable function such that
E(ψ(Y ) g(Y )) = E(Xg(Y )) for any function g : R→ R Borel-measurable and bounded.

In two particular cases, the function ψ can be made explicit, which allows for concrete computations.

- If X, Y are two discrete random variables with values in a set D, then

E(X|Y ) = ψ(Y ), where ψ(y) =
∑
x∈D

x P({X = x}|{Y = y}), y ∈ D

which matches the formula given in Section 11.2. The proof that it also matches the theoretical definition
of conditional expectation is left as an exercise.

- If X,Y are two jointly continuous random variables with joint pdf pX,Y , then

E(X|Y ) = ψ(Y ), where ψ(y) =

∫
R
x
pX,Y (x, y)

pY (y)
dx, y ∈ R

and pY is the marginal pdf of Y given by pY (y) =
∫
R pX,Y (x, y) dx, assumed here to be strictly positive

(but this assumption is not needed, actually). Let us check that the random variable ψ(Y ) is indeed
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the conditional expectation of X given Y according to Definition 11.6: for any function g : R → R
Borel-measurable and bounded, one has

E(ψ(Y ) g(Y )) =

∫
R
ψ(y) g(y) pY (y) dy

=

∫
R

(∫
R
x
pX,Y (x, y)

pY (y)
dx

)
g(y) pY (y) dy

=

∫∫
R2

x g(y) pX,Y (x, y) dx dy = E(Xg(Y ))

□

Remark. The function ψ(y) =
∫
R x

pX,Y (x,y)
pY (y) dx is sometimes dangerously denoted as “E(X|{Y = y})”.

11.6 Geometric interpretation

Finally, let us go back to the general case and mention a geometric interpretation of conditional ex-
pectation when X is a square-integrable random variable. Observe first that in this case, according to
definition 11.2, Z = E(X|G) is the unique13 square-integrable random variable such that

(i) Z is G-measurable;

(ii) E(ZU) = E(XU) for any random variable U G-measurable and square-integrable.

Indeed, as X is square-integrable, Z = E(X|G) also is (use Jensen’s inequality), so the above equality may
be extended from bounded U ’s to square-integrable ones (ensuring that both XU and ZU are integrable).

Denote now by L2(Ω) the Hilbert space14 of square-integrable random variables equipped with the scalar
product:

⟨X,Y ⟩2 = E(XY ) and the corresponding norm ∥X∥2 =
√
E(X2)

and denote by G the linear subspace of L2(Ω) comprising G-measurable and square-integrable random
variables. With these two definitions, the above definition can be rephrased as: Z = E(X|G) is the
unique11 random variable such that

(i) Z ∈ G;

(ii) E((Z −X)U) = 0 for every U ∈ G (i.e., Z −X ⊥ G).

In geometric terms, this is nothing but saying that Z is the orthogonal projection of X onto the linear
subspace G, as illustrated on the following page.

We provide below an alternate characterization of this orthogonal projection, as well as the proof of the
equivalence between the two characterizations, for the sake of completeness.

13up to set of probability 0
14Strictly speaking, we should consider here L2(Ω) to be the space of equivalence classes of square-integrable random

variables, two random variables X,Y being equivalent if X = Y a.s.
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Proposition 11.7. Let X be a square-integrable random variable, G be a sub-σ-field of F and G be the
linear subspace of square-integrable and G-measurable random variables. Then Z ∈ G satisfies

E((Z −X)U) = 0 ∀U ∈ G (9)

if and only if
E((Z −X)2) ≤ E((Z ′ −X)2) ∀Z ′ ∈ G (10)

Proof. - Assume first that Z ∈ G satisfies (9). Then for every Z ′ ∈ G, we have

E((Z ′ −X)2) = E((Z ′ − Z + Z −X)2) = E((Z ′ − Z)2) + 2E((Z ′ − Z)(Z −X)) + E((Z −X)2)

= E((Z ′ − Z)2) + E((Z −X)2)

as by assumption, E((Z ′ − Z)(Z −X)) = 0 since Z ′ − Z ∈ G. From this, we deduce that

E((Z ′ −X)2) ≥ E((Z −X)2) ∀Z ′ ∈ G

implying (10).

- Assume now that Z ∈ G satisfies (10). Fix U ∈ G and for α ∈ R, define

F (α) = E((Z −X + αU)2) = E((Z −X)2) + 2αE((Z −X)U) + α2 E(U2)

By the assumption made, we know that F has a global minimum in α = 0. So 0 = F ′(0) = 2E((Z−X)U),
implying (9), as U ∈ G is arbitrary.

12 Martingales

12.1 Basic definitions

Definition 12.1. Let (Ω,F ,P) be a probability space. A filtration is a sequence (Fn, n ∈ N) of sub-σ-
fields of F such that Fn ⊂ Fn+1, ∀n ∈ N.

Example. Let Ω = [0, 1], F = B([0, 1]), Xn(ω) = nth decimal of ω, for n ≥ 1. Let also F0 = {∅,Ω},
Fn = σ(X1, . . . , Xn). Then Fn ⊂ Fn+1, ∀n ∈ N.

Definitions 12.2. - A discrete-time process (Xn, n ∈ N) is said to be adapted to the filtration (Fn, n ∈ N)
if Xn is Fn-measurable ∀n ∈ N.

- The natural filtration of a process (Xn, n ∈ N) is defined as FX
n = σ(X0, . . . , Xn), n ∈ N. It represents

the available amount of information about the process at time n.

Remark. A process is adapted to its natural filtration, by definition.

Let now (Fn, n ∈ N) be a given filtration.

Definition 12.3. A discrete-time process (Mn, n ∈ N) is a martingale with respect to (Fn, n ∈ N) if

(i) E(|Mn|) < +∞, ∀n ∈ N.

(ii) Mn is Fn-measurable, ∀n ∈ N (i.e., (Mn, n ∈ N) is adapted to (Fn, n ∈ N)).

(iii) E(Mn+1|Fn) =Mn a.s., ∀n ∈ N.

A martingale is therefore a fair game: the expectation of the process at time n+1 given the information
at time n is equal to the value of the process at time n.

Remark. Conditions (ii) and (iii) are actually redundant, as (iii) implies (ii).

65



Properties. If (Mn, n ∈ N) is a martingale, then

- E(Mn+1) = E(Mn) (= . . . = E(M0)), ∀n ∈ N (by the first property of conditional expectation).

- E(Mn+1 −Mn|Fn) = 0 a.s. (nearly by definition).

- E(Mn+m|Fn) =Mn a.s., ∀n,m ∈ N.

This last property is important, as it says that the martingale property propagates over time. Here is a
short proof, which uses the towering property of conditional expectation:

E(Mn+m|Fn) = E(E(Mn+m|Fn+m−1)|Fn) = E(Mn+m−1|Fn) = . . . = E(Mn+1|Fn) =Mn a.s.

Example: the simple symmetric random walk.

Let (Sn, n ∈ N) be the simple symmetric random walk : S0 = 0, Sn = X1 + . . .+Xn, where the Xn are
i.i.d. and P({X1 = +1}) = P({X1 = −1}) = 1/2.

Let us define the following filtration: F0 = {∅, Ω}, Fn = σ(X1, . . . , Xn), n ≥ 1. Then (Sn, n ∈ N) is a
martingale with respect to (Fn, n ∈ N). Indeed:

(i) E(|Sn|) ≤ E(|X1|) + . . .+ E(|Xn|) = 1 + . . .+ 1 = n < +∞, ∀n ∈ N.

(ii) Sn = X1 + . . .+Xn is a function of (X1, . . . , Xn), i.e., is σ(X1, . . . , Xn) = Fn-measurable.

(iii) We have

E(Sn+1|Fn) = E(Sn +Xn+1|Fn) = E(Sn|Fn) + E(Xn+1|Fn)

= Sn + E(Xn+1) = Sn + 0 = Sn a.s.

The first equality on the second line follows from the fact that Sn is Fn-measurable and that Xn+1 is
independent of Fn = σ(X1, . . . , Xn). □
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Here is an additional illustration of the martingale property of the simple symmetric random walk:

Remark. Even though one uses generally the same letter “M” for both martingales and Markov process,
these are a priori completely different processes! A possible way to state the Markov property is to say
that

E(g(Mn+1)|Fn) = E(g(Mn+1)|Xn) a.s. for any g : R→ R continuous and bounded

which is clearly different from the above stated martingale property. Beyond the use of the same letter
“M”, the confusion between the two notions comes also from the fact that the simple symmetric random
walk is usually taken a paradigm example for both martingales and Markov processes.

Generalization. If the random variables Xn are i.i.d. and such that E(|X1|) < +∞ and E(X1) = 0,
then (Sn, n ∈ N) is also a martingale (in particular, X1 ∼ N (0, 1) works).

Definition 12.4. Let (Fn, n ∈ N) be a filtration. A process (Mn, n ∈ N) is a submartingale (resp. a
supermartingale) with respect to (Fn, n ∈ N) if

(i) E(|Mn|) < +∞, ∀n ∈ N.

(ii) Mn is Fn-measurable, ∀n ∈ N.

(iii) E(Mn+1|Fn) ≥Mn a.s., ∀n ∈ N (resp. E(Mn+1|Fn) ≤Mn a.s., ∀n ∈ N).

Remarks. - Not every process is either a sub- or a supermartingale!

- The appellations sub- and supermartingale are counter-intuitive. They are due to historical reasons.

- Condition (ii) is now necessary in itself, as (iii) does not imply it.

- If (Mn, n ∈ N) is both a submartingale and a supermartingale, then it is a martingale.

Example: the simple asymmetric random walk.

- If P({X1 = +1}) = p = 1− P({X1 = −1}) with p ≥ 1/2, then Sn = X1 + . . .+Xn is a submartingale.

- More generally, Sn = X1 + . . .+Xn is a submartingale if E(X1) ≥ 0.

Proposition 12.5. If (Mn, n ∈ N) is a martingale with respect to a filtration (Fn, n ∈ N) and φ : R→ R
is a Borel-measurable and convex function such that E(|φ(Mn)|) < +∞, ∀n ∈ N, then (φ(Mn), n ∈ N) is
a submartingale.

Proof. (i) E(|φ(Mn)|) < +∞ by assumption.

(ii) φ(Mn) is Fn-measurable as Mn is (and φ is Borel-measurable).

(iii) E(φ(Mn+1)|Fn) ≥ φ(E(Mn+1|Fn)) = φ(Mn) a.s.

In (iii), the first inequality follows from Jensen’s inequality and the second follows from the fact that M
is a martingale.

Example. If (Mn, n ∈ N) is a square-integrable martingale (i.e., E(M2
n) < +∞, ∀n ∈ N), then the

process (M2
n, n ∈ N) is a submartingale (as x 7→ x2 is convex).
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12.2 Stopping times

Definitions 12.6. - A random time is a random variable T with values in N ∪ {+∞}. It is said to
be finite if T (ω) < +∞ for every ω ∈ Ω and bounded if there exists moreover an integer N such that
T (ω) ≤ N for every ω ∈ Ω (note that a finite random time is not necessarily bounded).

- Let (Xn, n ∈ N) be a stochastic process and assume T is finite. One then defines XT (ω) = XT (ω)(ω) =∑
n∈NXn(ω) 1{T=n}(ω).

- A stopping time with respect to a filtration (Fn, n ∈ N) is a random time T such that {T = n} ∈ Fn,
∀n ∈ N.

Example. Let (Xn, n ∈ N) be a process adapted to (Fn, n ∈ N) and a > 0. Then Ta = inf{n ∈ N :
|Xn| ≥ a} is a stopping time with respect to (Fn, n ∈ N). Indeed:

{Ta = n} = {|Xk| < a, ∀0 ≤ k ≤ n− 1 and |Xn| ≥ a}

=

n−1⋂
k=0

{|Xk| < a}︸ ︷︷ ︸
∈Fk⊂Fn

∩ {|Xn| ≥ a} ∈ Fn, ∀n ∈ N

Definition 12.7. Let T be a stopping time with respect to a filtration (Fn, n ∈ N). One defines the
information one possesses at time T as the following σ-field:

FT = {A ∈ F : A ∩ {T = n} ∈ Fn, ∀n ∈ N}

Facts.

- If T (ω) = N ∀ω ∈ Ω, then FT = FN . This is obvious from the definition.

- If T1, T2 are stopping times such that T1(ω) ≤ T2(ω) ∀ω ∈ Ω, then FT1
⊂ FT2

. Indeed, if T1(ω) ≤
T2(ω) ∀ω ∈ Ω and A ∈ FT1

, then for all n ∈ N, we have:

A ∩ {T2 = n} = A ∩ (∪nk=1{T1 = k}) ∩ {T2 = n} =
(
∪nk=1 A ∩ {T1 = k}︸ ︷︷ ︸

∈Fk⊂Fn

)
∩ {T2 = n} ∈ Fn

so A ∈ FT2
. By the way, here is an example of stopping times T1, T2 such that T1(ω) ≤ T2(ω) ∀ω ∈ Ω:

let 0 < a < b and consider T1 = inf{n ∈ N : |Xn| ≥ a} and T2 = inf{n ∈ N : |Xn| ≥ b}.

- A random variable Y is FT -measurable if and only if Y 1{T=n} is Fn-measurable, ∀n ∈ N. As a conse-
quence: if (Xn, n ∈ N) is adapted to (Fn, n ∈ N), then XT is FT -measurable.

12.3 Doob’s optional stopping theorem, version 1

Let (Mn, n ∈ N) be a martingale with respect to (Fn, n ∈ N), N ∈ N be fixed and T1, T2 be two stopping
times such that 0 ≤ T1(ω) ≤ T2(ω) ≤ N < +∞, ∀ω ∈ Ω. Then

E(MT2
|FT1

) =MT1
a.s.

In particular, E(MT2
) = E(MT1

).

In particular, if T is a stopping time such that 0 ≤ T (ω) ≤ N < +∞, ∀ω ∈ Ω, then E(MT ) = E(M0).

Remarks. - The above theorem says that the martingale property holds even if one is given the option
to stop at any (bounded) stopping time.

- The theorem also holds for sub- and supermartingales (i.e., ifM is a submartingale, then E(MT2
|FT1

) ≥
MT1 a.s.).
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Proof. - We first show that if T is a stopping time such that 0 ≤ T (ω) ≤ N, ∀ω ∈ Ω, then

E(MN |FT ) =MT (11)

Indeed, let Z = MT =
∑N

n=0Mn 1{T=n}. We check below that Z is the conditional expectation of MN

given FT :

(i) Z is FT -measurable: Z 1{T=n} =Mn 1{T=n} is Fn-measurable ∀n, so Z is FT -measurable.

(ii) E(ZU) = E(MNU), ∀U FT -measurable and bounded:

E(ZU) =

N∑
n=0

E(Mn1{T=n}U) =

N∑
n=0

E(E(MN |Fn) 1{T=n}U︸ ︷︷ ︸
Fn−measurable

) =

N∑
n=0

E(MN1{T=n}U) = E(MNU)

- Second, let us check that E(MT2 |FT1) =MT1 :

MT1
=

(11) with T=T1

E(MN |FT1
) =
FT1

⊂FT2

E(E(MN |FT2
)|FT1

) =
(11) with T=T2

E(MT2
|FT1

)

This concludes the proof of the theorem.

12.4 The reflection principle

Let (Sn, n ∈ N) be the simple symmetric random walk and

T = inf{n ≥ 1 : Sn = +1 or n = N}

As S is a martingale and T is a bounded stopping time (indeed, T (ω) ≤ N for every ω ∈ Ω), the optional
stopping theorem applies here, so it holds that E(ST ) = E(S0) = 0. But what is the distribution of the
random variable ST ? Intuitively, for N large, ST will be +1 with high probability, but in case it does
not reach this value, what is the average loss we should expect? More precisely, we are asking here for
the value of

E
(
ST

∣∣∣∣ { max
0≤n≤N

Sn ≤ 0

})
= E

(
SN

∣∣∣∣ { max
0≤n≤N

Sn ≤ 0

})
=

E
(
SN 1{max0≤n≤N Sn≤0}

)
P ({max0≤n≤N Sn ≤ 0})

(12)

Let us first compute the denominator in (12), assuming that N is even to simplify notations:

P
({

max
0≤n≤N

Sn ≤ 0

})
= P({Sn ≤ 0,∀0 ≤ n ≤ N}) =

∑
k≥0

P({SN = −2k, Sn ≤ 0,∀0 ≤ n ≤ N − 1})

noticing that SN can only take even values (because N itself is even) and that we are asking here that
SN ≤ 0. Let us now consider a fixed value of k ≥ 0. In order to compute the probability

P({SN = −2k, Sn ≤ 0,∀0 ≤ n ≤ N − 1})

we should enumerate all paths of the following form:
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but this is rather complicated combinatorics. In order to avoid such a computation, first observe that

P({SN = −2k, Sn ≤ 0,∀0 ≤ n ≤ N−1, }) = P({SN = −2k})−P({SN = −2k, ∃1 ≤ n ≤ N1 with Sn = +1})

A second important observation, which is at the heart of the reflection principle, is that to each path
going from 0 (at time 0) to −2k (at time N) “via” +1 corresponds a mirror path that goes from 0 to
2k + 2, also “via” +1, as illustrated below:

so that in total:

P({SN = −2k, ∃1 ≤ n ≤ N1 with Sn = +1}) = P({SN = 2k + 2, ∃1 ≤ n ≤ N1 with Sn = +1})

A third observation is that for any k ≥ 0, there is no way to go from 0 to 2k+2 without crossing the +1
line, so that

P({SN = 2k + 2, ∃1 ≤ n ≤ N1 with Sn = +1}) = P({SN = 2k + 2})

Finally, we obtain

P
({

max
0≤n≤N

Sn ≤ 0

})
=
∑
k≥0

(P({SN = −2k})−P({SN = 2k+2})) =
∑
k≥0

(P({SN = 2k})−P({SN = 2k+2}))

by symmetry. But this is a telescopic sum, and we know that for finite N , it ends before k = +∞. At
the end, we therefore obtain:

P
({

max
0≤n≤N

Sn ≤ 0

})
= P({SN = 0})

which can be computed via simple combinatorics (writing here N = 2M):

P({S2M = 0}) = 1

22M

(
2M

M

)
=

1

22M
(2M)!

(M !)2

which gives for large M , using Stirling’s formula: M ! ≃MMe−M
√
2πM :

P({S2M = 0}) ≃ 1

22M
(2M)2M e−2M

√
4πM

(M e−M
√
2πM)2

=
1√
πM

This leads to the approximation for large N :

P
({

max
0≤n≤N

Sn ≤ 0

})
≃
√

2

πN

Finally, the optional stopping theorem spares us the direct computation of the numerator in (12), since

0 = E(ST ) = 1 · P
({

max
0≤n≤N

Sn ≥ +1

})
+ E

(
SN 1{max0≤n≤N Sn≤0}

)
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so

E
(
SN 1{max0≤n≤N Sn≤0}

)
= −1 + P

({
max

0≤n≤N
Sn ≤ 0

})
≃ −1 +

√
2

πN

for large N , and finally

E
(
ST

∣∣∣∣ { max
0≤n≤N

Sn ≤ 0

})
≃
−1 +

√
2

πN√
2

πN

= 1−
√
πN

2

for large N . In conclusion, in case S does not reach the value +1 during the time interval {0, . . . N}, we
should expect a loss of order −

√
N .

12.5 Martingale transforms

Definition 12.8. A process (Hn, n ∈ N) is said to be predictable with respect to a filtration (Fn, n ∈ N)
if H0 = 0 and Hn is Fn−1-measurable ∀n ≥ 1.

Remark. If a process is predictable, then it is adapted.

Let now (Fn, n ∈ N) be a filtration, (Hn, n ∈ N) be a predictable process with respect to (Fn, n ∈ N)
and (Mn, n ∈ N) be a martingale with respect to (Fn, n ∈ N).

Definition 12.9. The process G defined as

G0 = 0, Gn = (H ·M)n =

n∑
i=1

Hi(Mi −Mi−1), n ≥ 1

is called the martingale transform of M through H.

Remark. This process is the discrete version of the stochastic integral. It represents the gain obtained
by applying the strategy H to the game M :

- Hi = amount bet on day i (Fi−1-measurable).

- Mi −Mi−1 = increment of the process M on day i.

- Gn = gain on day n.

Proposition 12.10. If Hn is a bounded random variable for each n (i.e., |Hn(ω)| ≤ Kn ∀ω ∈ Ω), then
the process G is a martingale with respect to (Fn, n ∈ N).

In other words, one cannot win on a martingale!

Proof. (i) E(|Gn|) ≤
∑n

i=1 E(|Hi| |Mi −Mi−1|) ≤
∑n

i=1Ki (E(|Mi|) + E(|Mi−1|)) < +∞.

(ii) Gn is Fn-measurable by construction.

(iii) E(Gn+1|Fn) = E(Gn+Hn+1 (Mn+1−Mn)|Fn) = Gn+Hn+1 E(Mn+1−Mn|Fn) = Gn+0 = Gn.

Example: “the” martingale.

Let (Mn, n ∈ N) be the simple symmetric random walk (Mn = X1+ . . .+Xn) and consider the following
strategy:

H0 = 0, H1 = 1, Hn+1 =

{
2Hn, if ξ1 = . . . = ξn = −1
0, otherwise
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Note that all the Hn are bounded random variables. Then by the above proposition, the process G
defined as

G0 = 0, Gn =

n∑
i=1

Hi (Mi −Mi−1) =

n∑
i=1

HiXi, n ≥ 1

is a martingale. So E(Gn) = E(G0) = 0, ∀n ∈ N. Let now

T = inf{n ≥ 1 : Xn = +1}

T is a stopping time and it is easily seen that GT = +1. But then E(GT ) = 1 ̸= 0 = E(G0)? Is there a
contradiction? Actually no. The optional stopping theorem does not apply here, because the time T is
unbounded: P(T = n) = 2−n, ∀n ∈ N, i.e., there does not exist N fixed such that T (ω) ≤ N , ∀ω ∈ Ω.

12.6 Doob’s decomposition theorem

Theorem 12.11. Let (Xn, n ∈ N) be a submartingale with respect to a filtration (Fn, n ∈ N). Then
there exists a martingale (Mn, n ∈ N) with respect to (Fn, n ∈ N) and a process (An, n ∈ N) predictable
with respect to (Fn, n ∈ N) and increasing (i.e., An ≤ An+1 ∀n ∈ N) such that A0 = 0 andXn =Mn+An,
∀n ∈ N. Moreover, this decomposition of the process X is unique.

Proof. (main idea)
E(Xn+1|Fn) ≥ Xn, so a natural candidate for the process A is to set A0 = 0 and An+1 = An +
E(Xn+1|Fn) −Xn (≥ An), which is a predictable and increasing process. Then, M0 = X0 and Mn+1 −
Mn = Xn+1−Xn− (An+1−An) = Xn+1−E(Xn+1|Fn) is indeed a martingale, as E(Mn+1−Mn|Fn) =
0.

13 Martingale convergence theorems

13.1 Preliminary: Doob’s martingale

Proposition 13.1. Let (Ω,F ,P) be a probability space, (Fn, n ∈ N) be a filtration and X : Ω→ R be
an F-measurable and integrable random variable. Then the process (Mn, n ∈ N) defined as

Mn = E(X|Fn), n ∈ N

is a martingale with respect to (Fn, n ∈ N).

Proof. (i) E(|Mn|) = E(|E(X|Fn)|) ≤ E(E(|X| |Fn)) = E(|X|) < +∞, for all n ∈ N.

(ii) By the definition of conditional expectation, Mn = E(X|Fn) is Fn-measurable, for all n ∈ N.

(iii) E(Mn+1|Fn) = E(E(X|Fn+1)|Fn) = E(X|Fn) =Mn, for all n ∈ N.

Remarks. - This process describes the situation where one acquires more and more information about a
random variable. Think e.g. at the case where X is a number drawn uniformly at random between 0 and
1, and one reads this number from left to right: while reading, one obtains more and more information
about the number, as illustrated on the left-hand side of the figure below:
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- On the right-hand side of the figure is another illustration of a Doob martingale: as time goes by, one
gets more and more information about where to locate oneself in the space Ω.

- Are Doob’s martingales a very particular type of martingales? No! As the following paragraph shows,
there are quite many such martingales!

13.2 The martingale convergence theorem: first version

Theorem 13.2. Let (Mn, n ∈ N) be a square-integrable martingale (i.e., a martingale such that E(M2
n) <

+∞ for all n ∈ N) with respect to a filtration (Fn, n ∈ N). Under the additional assumption that

sup
n∈N

E(M2
n) < +∞ (13)

there exists a limiting random variable M∞ such that

(i) Mn →
n→∞

M∞ almost surely.

(ii) limn→∞ E
(
(Mn −M∞)2

)
= 0 (quadratic convergence).

(iii) Mn = E(M∞|Fn), for all n ∈ N (this last property is referred to as the martingale M being “closed
at infinity”).

Remarks. - Condition (13) is of course much stronger than just asking that E(M2
n) < +∞ for every

n. Think for example at the simple symmetric random walk Sn: E(S2
n) = n < +∞ for every n, but the

supremum is infinite.

- By conclusion (iii) in the theorem, any square-integrable martingale satisfying condition (13) is actually
a Doob martingale (take X =M∞)!

- A priori, one could think that all the conclusions of the theorem hold true if one replaces all the squares
by absolute values in the above statement (such as e.g. replacing condition (13) by supn∈N E(|Mn|) < +∞,
etc.). This is wrong, and we will see interesting counter-examples later.

- A stronger condition than (13) (leading therefore to the same conclusion) is the following:

sup
n∈N

sup
ω∈Ω
|Mn(ω)| < +∞. (14)

Martingales satisfying this stronger condition are called bounded martingales.

Example 13.3. Let M0 = x, where x ∈ [0, 1] is a fixed number, and let us define recursively:

Mn+1 =

{
M2

n, with probability 1
2

2Mn −M2
n, with probability 1

2

The process M is a bounded martingale. Indeed:

(i) By induction, if Mn ∈ [0, 1], then Mn+1 ∈ [0, 1], for every n ∈ N, so as M0 = x ∈ [0, 1], we obtain

sup
n∈N

sup
ω∈Ω
|Mn(ω)| ≤ 1 < +∞

(ii) E(Mn+1|Fn) =
1
2 M

2
n + 1

2 (2Mn −M2
n) =Mn, for every n ∈ N.

By the theorem, there exists therefore a random variable M∞ such that the three conclusions of the
theorem hold. In addition, it can be shown by contradiction that M∞ takes values in the binary set
{0, 1} only, so that

x = E(M0) = E(M∞) = P({M∞ = 1})
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13.3 Consequences of the theorem

Before diving into the proof of the above important theorem, let us first explore a few of its interesting
consequences.

Optional stopping theorem, version 2. Let (Fn, n ∈ N) be a filtration, let (Mn, n ∈ N) be a square-
integrable martingale with respect to (Fn, n ∈ N) which satisfies condition (13) and let 0 ≤ T1 ≤ T2 ≤
+∞ be two stopping times with respect to (Fn, n ∈ N). Then

E(MT2 |FT1) =MT1 a.s. and E(MT2) = E(MT1)

Proof. Simply replace N by ∞ in the proof of the first version and use the fact that M is a closed
martingale by the convergence theorem.

Stopped martingale. Let (Mn, n ∈ N) be a martingale and T be a stopping time with respect to a
filtration (Fn, n ∈ N), without any further assumption. Let us also define the stopped process

(MT∧n, n ∈ N)

where T ∧ n = min{T, n} by definition. Then this stopped process is also a martingale with respect to
(Fn, n ∈ N) (we skip the proof here).

Optional stopping theorem, version 3. Let (Mn, n ∈ N) be a martingale with respect to (Fn, n ∈ N)
such that there exists c > 0 with |Mn+1(ω) −Mn(ω)| ≤ c for all ω ∈ Ω and n ∈ N (this assumption
ensures that the martingale does not make jumps of uncontrolled size: the simple symmetric random
walk Sn satisfies in particular this assumption). Let also a, b > 0 and

T = inf{n ∈ N : Mn ≤ −a or Mn ≥ b}

Observe that T is a stopping time with respect to (Fn, n ∈ N) and that −a− c ≤ MT∧n(ω) ≤ b+ c for
all ω ∈ Ω and n ∈ N. In particular,

sup
n∈N

E(M2
T∧n) < +∞

so the stopped process (MT∧n, n ∈ N) satisfies the assumptions of the first version of the martingale
convergence theorem. By the conclusion of this theorem, the stopped martingale (MT∧n, n ∈ N) is
closed, i.e. it admits a limit MT∧∞ =MT and

E(MT ) = E(MT∧∞) = E(MT∧0) = E(M0)

Application. Let (Sn, n ∈ N) be the simple symmetric random walk (which satisfies the above assump-
tions with c = 1) and T be the above stopping time (with a, b positive integers). Then E(ST ) = E(S0) = 0.
Given that ST ∈ {−a,+b}, we obtain

0 = E(ST ) = (+b)P({ST = +b}) + (−a)P({ST = −a}) = bp− a(1− p), where p = P({ST = +b})

From this, we deduce that P({ST = +b}) = p = a
a+b .

Remark. Note that the same reasoning does not hold if we replace the stopping time T by a stopping
time of the form

T ′ = inf{n ∈ N : Mn ≥ b}

There is indeed no guarantee in this case that the stopped martingale (MT ′∧n, n ∈ N) is bounded (from
below).
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13.4 Proof of the theorem

A key ingredient for the proof: the maximal inequality. The following inequality, apart from
being useful for the proof of the martingale convergence theorem, is interesting in itself. Let (Mn, n ∈ N)
be a square-integrable martingale. Then for every N ∈ N and x > 0,

P
({

max
0≤n≤N

|Mn| ≥ x
})
≤ E(M2

N )

x2

Remark. This inequality resembles Chebyshev’s inequality, but it is actually much stronger. In particu-
lar, note the remarkable fact that deviation probability of the maximum value of the martingale over the
whole time interval {0, . . . , N} is controlled by the second moment of the martingale at the final instant
N alone.

Proof. - First, let x > 0 and let Tx = inf{n ∈ N : |Mn| ≥ x}: Tx is a stopping time and note that

{Tx ≤ N} =
{

max
0≤n≤N

|Mn| ≥ x
}

So what we need actually to prove is that P({Tx ≤ N}) ≤ E(M2
N )

x2 .

- Second, observe that asM is a martingale,M2 is a submartingale. So by the optional stopping theorem,
we obtain

E(M2
N ) ≥ E

(
M2

Tx∧N

)
≥ E

(
M2

Tx∧N 1{Tx≤N}
)

= E
(
M2

Tx
1{Tx≤N}

)
≥ E

(
x2 1{Tx≤N}

)
= x2 P({Tx ≤ N})

where the last inequality comes from the fact that |MTx
| ≥ x, by definition of Tx. This proves the

claim.

Proof of Theorem 13.2. - We first prove conclusion (i), namely that the sequence (Mn, n ∈ N) converges
almost surely to some limit. This proof is divided in two parts.

Part 1. We first show that for every ε > 0,

P
({

sup
n∈N
|Mn+m −Mm| ≥ ε

})
→

m→∞
0 (15)

This is saying that for every ε > 0, the probability that the martingale M deviates by more than ε after
a given time m can be made arbitrarily small by taking m large enough. This essentially says that the
fluctuations of the martingale decay with time, i.e. that the martingale ultimately converges! Of course,
this is just an intuition and needs a formal proof, which will be done in the second part of the proof. For
now, let us focus on proving (15).

a) Let m ∈ N be fixed and define the process (Yn, n ∈ N) by Yn = Mn+m −Mm, for n ∈ N. Y is a
square-integrable martingale, so by the maximal inequality, we have for every N ∈ N and every ε > 0:

P
({

max
0≤n≤N

|Yn| ≥ ε
})
≤ E(Y 2

N )

ε2

b) Let us now prove that
E(Y 2

N ) = E(M2
m+N )− E(M2

m).

This equality follows from the orthogonality of the increments of M . Here is a detailed proof:

E(Y 2
N ) = E((Mm+N −Mm)2) = E(M2

m+N )− 2E(Mm+N Mm) + E(M2
m)

= E(M2
m+N )− 2E(E(Mm+N Mm|Fm)) + E(M2

m)

= E(M2
m+N )− 2E(E(Mm+N |Fm)Mm) + E(M2

m)

= E(M2
m+N )− 2E(M2

m) + E(M2
m) = E(M2

m+N )− E(M2
m)
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Gathering a) and b) together, we obtain for every m,N ∈ N and every ε > 0:

P
({

max
0≤n≤N

|Mm+n −Mm| ≥ ε
})
≤

E(M2
m+N )− E(M2

m)

ε2
.

c) Assumption (13) states that supn∈N E(M2
n) < +∞. As the sequence (E(M2

n), n ∈ N) is increasing
(since M2 is a submartingale), this also says that the sequence has a limit: limn→∞ E(M2

n) = K < +∞.
Therefore, for every m ∈ N and ε > 0, we obtain

P
({

sup
n∈N
|Mm+n −Mm| ≥ ε

})
= lim

N→∞
P
({

max
0≤n≤N

|Mm+n −Mm| ≥ ε
})

≤ lim
N→∞

E(M2
m+N )− E(M2

m)

ε2
=
K − E(M2

m)

ε2

Taking now m to infinity, we further obtain

P
({

sup
n∈N
|Mm+n −Mm| ≥ ε

})
≤ K − E(M2

m)

ε2
→

m→∞

K −K
ε2

= 0

for every ε > 0. This proves (15) and concludes therefore the first part of the proof.

Part 2. Let C = {ω ∈ Ω : limn→∞Mn(ω) exists}. In this second part, we prove that P(C) = 1, which
is conclusion (i).

Here is what we have proven so far. For m ∈ N and ε > 0, define Am(ε) = {supn∈N |Mm+n −Mm| ≥ ε}.
Then (15) says that for every fixed ε > 0, limm→∞ P(Am(ε)) = 0. This implies in particular that

∀ε > 0, P(∩m∈NAm(ε)) = 0

We then have the following (long!) series of equivalent statements:

∀ε > 0, P(∩m∈NAm(ε)) = 0 ⇐⇒ ∀M ≥ 1, P(∩m∈NAm( 1
M )) = 0

⇐⇒ P(∪M≥1 ∩m∈N Am( 1
M )) = 0 ⇐⇒ P(∪ε>0 ∩m∈N Am(ε)) = 0

⇐⇒ P({∃ε > 0 s.t. ∀m ∈ N, sup
n∈N
|Mm+n −Mm| ≥ ε}) = 0

⇐⇒ P({∀ε > 0, ∃m ∈ N s.t. sup
n∈N
|Mm+n −Mm| < ε}) = 1

⇐⇒ P({∀ε > 0, ∃m ∈ N s.t. |Mm+n −Mm| < ε, ∀n ∈ N}) = 1

⇐⇒ P({∀ε > 0, ∃m ∈ N s.t. |Mm+n −Mm+p| < ε, ∀n, p ∈ N}) = 1

⇐⇒ P({the sequence (Mn, n ∈ N) is a Cauchy sequence}) = 1⇐⇒ P(C) = 1

as every Cauchy sequence in R converges. This completes the proof of conclusion (i) in the theorem.

- In order to prove conclusion (ii) (quadratic convergence), let us recall that from what was shown above

E((Mn −Mm)2) = E(M2
n)− E(M2

m), ∀n ≥ m ≥ 0

This, together with the fact that limn→∞ E(M2
n) = K, implies that Mn is a Cauchy sequence in L2: it

therefore converges to some limit, as the space of square-integrable random variables is complete. Let us
call this limit M̃∞. But does it hold that M̃∞ = M∞, the a.s. limit of part (i)? Yes, as both quadratic
convergence and a.s. convergence imply convergence in probability, and we have seen in part I (Theorem
5.3) that if a sequence of random variables converges in probability to two possible limits, then these two
limits are equal almost surely.

- Conclusion (iii) then follows from the following reasoning. We need to prove that Mn = E(M∞|Fn) for
every (fixed) n ∈ N (where M∞ is the limit found in parts (i) and (ii)). To this end, let us go back to
the very definition of conditional expectation and simply check that

(i) Mn is Fn-measurable: this is by definition.
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(ii) E(M∞U) = E(MnU) for every random variable U Fn-measurable and bounded. This follows from
the following observation:

E(MnU) = E(MNU), ∀N ≥ n
This equality together with the Cauchy-Schwarz inequality imply that for every N ≥ n:

|E(M∞U)−E(MnU)| = |E(M∞U)−E(MNU)| = |E((M∞−MN )U)| ≤
√

E((M∞ −MN )2)
√

E(U2) →
N→∞

0

by quadratic convergence (conclusion (ii)). So we obtain that necessarily, E(M∞U) = E(MnU) (remember
that n is fixed here). This completes the proof of Theorem 13.2. □

13.5 The martingale convergence theorem: second version

Theorem 13.4. Let (Mn, n ∈ N) be a martingale such that

sup
n∈N

E(|Mn|) < +∞ (16)

Then there exists a limiting random variable M∞ such that Mn →
n→∞

M∞ almost surely.

We shall not go through the proof of this second version of the martingale convergence theorem15, whose
order of difficulty resembles that of the first one. Let us just make a few remarks and also exhibit an
interesting example below.

Remarks. - Contrary to what one could perhaps expect, it does not necessarily hold in this case that
limn→∞ E(|Mn −M∞|) = 0, nor that E(M∞|Fn) =Mn for every n ∈ N.

- By the Cauchy-Schwarz inequality, we see that condition (16) is weaker than condition (13).

- On the other hand, condition (16) is of course stronger than just asking E(|Mn|) < +∞ for all n ∈ N
(this last condition is by the way satisfied by every martingale, by definition). It is also stronger than
asking supn∈N E(Mn) < +∞. Why? Simply because for every martingale, E(Mn) = E(M0) for every
n ∈ N, so the supremum is always finite! The same does not hold when one adds absolute values: the
process (|Mn|, n ∈ N) is a submartingale, so the sequence (E(|Mn|), n ∈ N) is non-decreasing, possibly
growing to infinity.

- If M is a non-negative martingale, then |Mn| = Mn for every n ∈ N and by what was just said above,
condition (16) is satisfied! So non-negative martingales always converge to a limit almost surely! But
they might not be closed at infinity.

A puzzling example. Let (Sn, n ∈ N) be the simple symmetric random walk and (Mn, n ∈ N) be the
process defined as

Mn = exp(Sn − cn), n ∈ N

where c = log
(

e+e−1

2

)
> 0 is such that M is a martingale, with E(Mn) = E(M0) = 1 for every n ∈ N.

On top of that, M is a positive martingale, so by the previous remark, there exists a random variable
M∞ such that Mn →

n→∞
M∞ almost surely. So far so good. Let us now consider some more puzzling

facts:

- A simple computation shows that supn∈N E(M2
n) = supn∈N E(exp(2Sn − 2cn)) = +∞, so we cannot

conclude that (ii) and (iii) in Theorem 13.2 hold. Actually, these conclusions do not hold, as we will see
below.

- What can the random variable M∞ be? It can be shown that Sn − cn →
n→∞

−∞ almost surely, from

which we deduce that Mn = exp(Sn − cn) →
n→∞

0 almost surely, i.e. M∞ = 0!

15It is sometimes called the first version in the literature!
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- It is therefore impossible that E(M∞|Fn) = Mn, as the left-hand side is 0, while the right-hand side
is not. Likewise, quadratic convergence to 0 does not hold (this would mean that limn→∞ E(M2

n) = 0,
which does not hold).

- On the contrary, we just said above that Var(Mn) = E(M2
n)− (E(Mn))

2 = E(M2
n)− 1 grows to infinity

as n goes to infinity. Still, Mn converges to 0 almost surely. If this sounds puzzling to you, be reassured
that you are not alone!

For illustration purposes, here are below three well known martingales: (Sn, n ∈ N), (S2
n−n, n ∈ N) and

(Mn = exp(Sn − cn, n ∈ N) just seen above:

We see again here that even though theses three processes are all contant mean processes, they do exhibit
very different behaviours!

13.6 Generalization to sub- and supermartingales

We state below the generalization of the two convergence theorems to sub- and supermartingales.

Theorem 13.5. (Generalization of Theorem 13.2)
Let (Mn, n ∈ N) be a square-integrable submartingale (resp., supermartingale) with respect to a filtration
(Fn, n ∈ N). Under the additional assumption that

sup
n∈N

E(M2
n) < +∞ (17)

there exists a limiting random variable M∞ such that

(i) Mn →
n→∞

M∞ almost surely.

(ii) limn→∞ E (|Mn −M∞|) = 0 (L1 convergence).

(iii) Mn ≤ E(M∞|Fn) (resp., Mn ≥ E(M∞|Fn)), for all n ∈ N.
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Note that L2 convergence does not hold in general when M is a sub- or a supermartingale, but L1 con-
vergence does, and the sub- or supermartingale is also closed at infinity in this case (with the equality
Mn = E(M∞|Fn) being replaced by an inequality, of course).

Theorem 13.6. (Generalization of Theorem 13.4)
Let (Mn, n ∈ N) be a submartingale (resp., supermartingale) such that

sup
n∈N

E(M+
n ) < +∞ (resp., sup

n∈N
E(M−

n ) < +∞) (18)

where recall here thatMn+ = max(Mn, 0) andM
−
n = max(−Mn, 0). Then there exists a limiting random

variable M∞ such that Mn →
n→∞

M∞ almost surely.

As one can see, not much changes in the assumptions and conclusions of both theorems! Let us mention
some interesting consequences.

- From Theorem 13.5, it holds that ifM is a sub- or a supermartingale satisfying condition (17), thenMn

converges both almost surely and in L1 to some limitM∞. In case whereM is a (non-trivial) martingale,
we saw previously that the limit M∞ cannot be equal to 0, as this would lead to a contradiction, because
of the third part of the conclusion stating that Mn = E(M∞|Fn) = 0 for all n. In the case of a sub- or
supermartingale, this third part only says that Mn ≤ E(M∞|Fn) = 0 or Mn ≥ E(M∞|Fn) = 0, which is
not necessarily a contradiction.

- From Theorem 13.6, one deduces that any positive supermartingale admits an almost sure limit at
infinity. But the same conclusion cannot be drawn for a positive submartingale (think simply of Mn = n:
this very particular positive submartingale does not converge). From the same theorem, one deduces also
that any negative submartingale admits an almost sure limit at infinity.

13.7 Azuma’s and McDiarmid’s inequalities

Theorem 13.7. (Azuma’s inequality)
Let (Mn, n ∈ N) be a martingale such that |Mn(ω)−Mn−1(ω)| ≤ 1 for every n ≥ 1 and ω ∈ Ω. Such a
martingale is said to have bounded differences. Assume also that M0 is constant. Then for every n ≥ 1
and t > 0, we have

P({|Mn −M0| ≥ nt}) ≤ 2 exp

(
−nt

2

2

)
Remark. This statement resembles that of Hoeffding’s inequality! The difference here is that a martin-
gale is not necessarily a sum of i.i.d. random variables.

Proof. Let Xn = Mn −Mn−1 for n ≥ 1. Then, by the assumptions made, Mn −M0 =
∑n

j=1Xj , with
|Xj(ω)| ≤ 1 for every j ≥ 1 and ω ∈ Ω, but as mentioned above, the Xj ’s are not necessarily i.i.d.: we
only know that E(Xj |Fj−1) = 0 for every j ≥ 1. We need to bound

P
({∣∣∣∑n

j=1Xj

∣∣∣ ≥ nt}) = P
({∑n

j=1Xj ≥ nt
})

+ P
({∑n

j=1Xj ≤ −nt
})

By Chebyshev’s inequality with φ(x) = esx and s > 0, we obtain

P
({∑n

j=1Xj ≥ nt
})
≤

E
(
exp

(
s
∑n

j=1Xj

))
exp(snt)

= e−snt E
(
E
(
exp

(
s
∑n

j=1Xj

) ∣∣Fn−1

))
= e−snt E

(
exp

(
s
∑n−1

j=1 Xj

)
E
(
exp (sXn)

∣∣Fn−1

))

79



As E(Xn|Fn−1) = 0 and |Xn(ω)| ≤ 1 for every ω ∈ Ω, we can apply the same lemma as in the proof of
Hoeffding’s inequality to conclude that

E(exp(sXn)|Fn−1) ≤ es
2/2

So
P
({∑n

j=1Xj ≥ nt
})
≤ e−snt E

(
exp

(
s
∑n−1

j=1 Xj

))
es

2/2

and working backwards, we finally obtain the upper bound

P
({∑n

j=1Xj ≥ nt
})
≤ e−snt+ns2/2

which is again minimum for s∗ = t and equal then to exp(−nt2/2). By symmetry, the same bound is
obtained for the other term:

P
({∑n

j=1Xj ≤ −nt
})
≤ exp(−nt2/2)

which completes the proof.

Generalization. Exactly like Hoeffding’s inequality, Azuma’s inequality can be generalized as follows.
Let M be a martingale such that Mn(ω)−Mn−1(ω) ∈ [an, bn] for every n ≥ 1 and every ω ∈ Ω. Then

P({|Mn −M0| ≥ nt}) ≤ 2 exp

(
− 2n2t2∑n

j=1(bj − aj)2

)

Application 1. Consider the martingale transform of Section 12.5 defined as follows. Let (Xn, n ≥ 1)
be a sequence of i.i.d. random variables such that P({X1 = +1}) = P({X1 = −1}) = 1

2 . Let F0 = {∅,Ω}
and Fn = σ(X1, . . . , Xn) for n ≥ 1. Let (Hn, n ∈ N) be a predictable process with respect to (Fn, n ∈ N)
such that |Hn(ω)| ≤ Kn for every n ∈ N and ω ∈ Ω. Let finally G0 = 0, Gn =

∑n
j=1HjXj , n ≥ 1. Then

P({|Gn −G0| ≥ nt}) ≤ 2 exp

(
− n2t2

2
∑n

j=1K
2
j

)

In the case where Kn = K for every n ∈ N, this says that

P({|Gn −G0| ≥ nt}) ≤ 2 exp

(
− nt2

2K2

)
We had obtained the same conclusion earlier for the random walk, but here, the increments of G are in
general far from being independent.

Application 2: McDiarmid’s inequality. Let n ≥ 1 be fixed, letX1, . . . , Xn be i.i.d. random variables
and let f : Rn → R be a Borel-measurable function such that

|f(x1, . . . , xj , . . . , xn)− f(x1, . . . , x′j , . . . , xn)| ≤ Kj , ∀x1, . . . , xj , x′j , . . . , xn ∈ R, 1 ≤ j ≤ n

Then

P({|f(X1, . . . , Xn)− E(f(X1, . . . , Xn))| ≥ nt}) ≤ 2 exp

(
− n2t2

2
∑n

j=1K
2
j

)

Proof. Define F0 = {∅,Ω}, Fj = σ(X1, . . . , Xj) and Mj = E(F (X1, . . . , Xn)|Fj) for j ∈ {0, . . . , n}. By
definition, M is a martingale and observe that

Mn = f(X1, . . . , Xn) and M0 = E(f(X1, . . . , Xn))

80



Moreover,

|Mj −Mj−1| = |E(f(X1, . . . , Xn)|Fj)− E(f(X1, . . . , Xn)|Fj−1)| = |g(X1, . . . , Xj)− h(X1, . . . , Xj−1)|

where g(x1, . . . , xj) = E(f(x1, . . . , xj , Xj+1, . . . , Xn)) and h(x1, . . . , xj−1) = E(f(x1, . . . , xj−1, Xj , . . . , Xn)).
By the assumption made, we find that for every x1, . . . , xj ∈ R,

|g(x1, . . . , xj)− h(x1, . . . , xj−1)| ≤ E(|f(x1, . . . , xj , Xj+1, . . . , Xn)− f(x1, . . . , xj−1, Xj , . . . , Xn)|) ≤ Kj

so Azuma’s inequality applies. This completes the proof.
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14 Concentration inequalities

The weak law of large numbers states that
Sn

n
converges in probability to E(X1), when Sn = X1+. . .+Xn

and the X’s are i.i.d. random variables. This is exactly saying that for every fixed t > 0,

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ t}) →
n→∞

0

However, this law does not say anything about the speed of convergence to 0 of this probability. The
answer to this question is provided by concentration inequalities.

14.1 Hoeffding’s inequality

Theorem 14.1. Let (Xn, n ≥ 1) be a sequence of i.i.d. and integrable random variables, defined on a
common probability space (Ω,F ,P) and such that |Xn(ω) − E(Xn)| ≤ 1, for all n ≥ 1 and ω ∈ Ω. Let
also Sn = X1 + . . .+Xn. Then

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ t}) ≤ 2 exp

(
−nt

2

2

)
, ∀t > 0, n ≥ 1

Before proving this theorem, let us make a few observations.

Remarks. - From this result, we easily recover the strong law of large numbers. Indeed, for all t > 0,
we have ∑

n≥1

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ t}) ≤ 2
∑
n≥1

exp

(
−nt

2

2

)
<∞

which implies by the Borel-Cantelli lemma that

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ t infinitely often

})
= 0

This therefore says that
Sn

n
→

n→∞
E(X1) almost surely.

- Note the universal character of this result (as already observed for the central limit theorem): the upper
bound on the probability does not depend on the distribution of the X’s (except for the fact that these
are bounded random variables by assumption).

- Note also the following: replacing t by u√
n
in the above statement, we obtain

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ u√
n

})
≤ 2 exp

(
−u

2

2

)
Recalling that the cdf of a N (0, 1) random variable behaves as

F (u) ∼ 1− exp

(
−u

2

2

)
when u is large

we observe here another analogy with the central limit theorem.

The following lemma is the key to the proof of Theorem 14.1.

Lemma 14.2. Let Z be a random variable such that |Z(ω)| ≤ 1 for all ω ∈ Ω and E(Z) = 0. Then

E
(
esZ
)
≤ exp

(
s2

2

)
, ∀s ∈ R
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Proof. First observe that the mapping z 7→ esz is convex for any s ∈ R, so for any z ∈ [−1, 1], we have

esz ≤ es + e−s

2
+ z

(
es − e−s

2

)
= cosh(s) + z sinh(s)

Therefore, as |Z(ω)| ≤ 1 for all ω ∈ Ω and E(Z) = 0, we obtain

E
(
esZ
)
≤ cosh(s) + E(Z) sinh(s) = cosh(s)

The rest of the proof is calculus. Let f(s) = log cosh(s); then

f ′(s) =
sinh(s)

cosh(s)
= tanh(s) and f ′′(s) = 1− (tanh(s))2 ≤ 1

So for s ≥ 0, f ′(s) = f ′(0) +
∫ s

0
f ′′(t) dt ≤ 0 +

∫ s

0
dt = s. Similarly,

f(s) = f(0) +

∫ s

0

f ′(t) dt ≤ 0 +

∫ s

0

t dt =
s2

2

This implies that cosh(s) ≤ exp
(

s2

2

)
. The same reasoning can be applied to the case s ≤ 0, leading to

the same conclusion. This proves the lemma.

Proof of Theorem 14.1. Let us compute

P
({∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ t}) = P ({|Sn − nE(X1)| ≥ nt}) = P ({|Sn − E(Sn)| ≥ nt})

= P ({Sn − E(Sn) ≥ nt}) + P ({Sn − E(Sn) ≤ −nt}) (19)

Let us focus on the first term, as the second can be handled exactly in the same way. By Chebyshev’s
inequality (using φ(x) = esx with s ≥ 0), we obtain

P ({Sn − E(Sn) ≥ nt}) ≤
E
(
es (Sn−E(Sn))

)
esnt

= e−nst E

 n∏
j=1

es (Xj−E(Xj))


= e−nst

(
E
(
es(X1−E(X1))

))n
By the assumptions made, the random variable Z = X1 − E(X1) satisfies the assumptions of Lemma

14.2, so E
(
es(X1−E(X1))

)
≤ es2/2. This implies finally that

P ({Sn − E(Sn) ≥ nt}) ≤ e−nst+ns2/2 = en(s
2/2−st)

As s ≥ 0 is a freely chosen parameter, we deduce that

P ({Sn − E(Sn) ≥ nt}) ≤ min
s≥0

en(s
2/2−st) = e−nmaxs≥0(st−s2/2)
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A simple derivation shows that the maximum (i.e., the tightest upper bound) is reached in s∗ = t. This

gives P ({Sn − E(Sn) ≥ nt}) ≤ e−nt2/2. As mentioned above, a similar reasoning gives the same upper
bound on the second term in (19), and this concludes the proof. □

Generalization. (This is actually Hoeffding’s original statement.)

Let (Xn, n ≥ 1) be a sequence of independent and integrable random variables (so not necessarily i.i.d.)
such that Xn(ω) ∈ [an, bn] for all n ≥ 1 and ω ∈ Ω. Let also Sn = X1 + . . .+Xn. Then

P ({|Sn − E(Sn)| ≥ nt}) ≤ 2 exp

(
− 2n2t2∑n

j=1(bj − aj)2

)
, ∀t > 0, n ≥ 1

The proof is strictly speaking the same as above, but note that in this general case,
Sn

n
need not converge

to a limit as n→∞.

14.2 Large deviations principle

Large deviations estimates lead to a refinement of Hoeffding’s inequality. Rather than stating the result
from the beginning, let us discover it together!

Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables defined on a common probability space (Ω,F ,P)
and such that E(esX1) < +∞ for all |s| < s0, for some s0 > 0 16. Let also t > E(X1) and Sn =
X1 + . . .+Xn. Using then again Chebyshev’s inequality (with φ(x) = esx and s ≥ 0), we obtain

P
({

Sn

n
≥ t
})

= P({Sn > nt}) ≤
E
(
esSn

)
esnt

= e−nst
(
E
(
esX1

))n
= e−nst exp

(
n logE

(
esX1

))
= exp

(
−n
(
st− logE

(
esX1

)))
Optimizing this upper bound over s ≥ 0, we obtain

P
({

Sn

n
≥ t
})
≤ exp

(
−n max

s≥0

(
st− logE

(
esX1

)))
, ∀t > E(X1)

Let us make a slightly technical observation at this point. First, the function st− logE
(
esX1

)
takes the

value 0 in s = 0, so the above maximum is greater than or equal to 0. Second, for all s < 0, we obtain,
using Jensen’s inequality:

st− logE
(
esX1

)
≤ s (t− E(X1)) < 0

as s < 0 and t − E(X1) > 0 by assumption. In the above inequality, we may therefore replace the
maximum over s ≥ 0 by the maximum over all s ∈ R, leading to:

P
({

Sn

n
≥ t
})
≤ exp

(
−n max

s∈R

(
st− logE

(
esX1

)))
, ∀t > E(X1)

Let us now define the function Λ(s) = logE
(
esX1

)
, for s ∈ R. This function might take the value +∞

for some values of s above s0, but this is not a problem here.

Let us also define what is called the Legendre transform of Λ: Λ∗(t) = maxs∈R (st− Λ(s)). It is a non-
negative and convex function, which of course depends on the distribution of X1. By the above inequality,
we have:

P
({

Sn

n
≥ t
})
≤ exp(−nΛ∗(t)), ∀t > E(X1) (20)

This is our first large deviations estimate, which is more precise than Hoeffding’s inequality. This is
normal, as we take into account here the specificity of the distribution; we are not after a universal upper

16One can show that this condition is equivalent to saying that there exists c > 0 such that P({|X1| ≥ x})
∼
≤ exp(−cx)

as x → ∞.

84



bound. Note also that the only inequality in the above derivation comes from the use of Chebyshev’s
inequality at the beginning. All the rest are equalities. Moreover, we optimize our choice over a large set
of functions (φ(x) = esx) while using Chebyshev’s inequality, so this upper bound is hopefully tight.

Likewise, for t < E(X1), we obtain for s ≥ 0:

P
({

Sn

n
≤ t
})

= P({Sn ≤ nt}) = P({−Sn ≥ −nt}) ≤
E
(
e−sSn

)
e−snt

= enst
(
E
(
e−sX1

))n
= enst exp

(
n logE

(
e−sX1

))
= exp

(
−n
(
−st− logE

(
e−sX1

)))
Optimizing over s ≥ 0, we further obtain

P
({

Sn

n
≤ t
})
≤ exp

(
−nmax

s≥0

(
−st− logE

(
e−sX1

)))
, ∀t < E(X1)

and for similar reasons as before, the maximum can be turned into a maximum over R, so that

P
({

Sn

n
≤ t
})

≤ exp

(
−nmax

s∈R

(
−st− logE

(
e−sX1

)))
= exp

(
−nmax

s∈R

(
st− logE

(
esX1

)))
= exp (−nΛ∗(t)) , ∀t < E(X1) (21)

What do these two equations (20) and (21) actually mean?

One can check that Λ∗(t) = 0 if and only if t = E(X1), so we see that in both cases (t > E(X1) and
t < E(X1)), the upper bound on the probability is decreasing exponentially in n, as it was the case with
Hoeffding’s inequality. What changes here is the multiplicative factor Λ∗(t) which differs from (and is
generally larger than) t2/2, as we will see in the examples below.

Generalization. Before that, let us mention the generalization of the above result, also known as
Cramér’s theorem. Let A be a “nice” subset of R (think e.g. of an interval). Then

P
({

Sn

n
∈ A

})
≃

n→∞
exp

(
−n inf

t∈A
Λ∗(t)

)
Note therefore that the above probability is decreasing exponentially in n if and only if E(X1) /∈ A.

In the particular cases where A is either the interval ]−∞, t[ with t < E(X1), or the interval ]t,+∞[ with
t > E(X1), one recovers the above equations (20) and (21). Indeed, one can check that the infimum of
Λ∗ on ]−∞, t[ is achieved in t when t < E(X1), and likewise for the interval on the positive axis.

Finally, let us mention that Cramér’s theorem not only provides an upper bound on the probability, but
also a corresponding lower bound which is matching the upper bound in some asymptotic sense (see
Appendix A.6 for a proof of this fact). This is therefore a quite remarkable and complete result.

Examples. - LetX1 ∼ N (0, 1). Note thatX1 is an unbounded random variable, so Hoeffding’s inequality
does not apply here. Let us compute

Λ(s) = logE
(
esX1

)
= log

(∫
R
esx

1√
2π

e−x2/2 dx

)
= log

(
es

2/2
)
=
s2

2

and

Λ∗(t) = max
s∈R

(
st− s2

2

)
=
t2

2
, attained in s∗ = t

Also, E(X1) = 0, so P
({

Sn

n ≥ t
})
≤ exp

(
−nt2

2

)
, for all t > 0. Surprisingly perhaps, this gives exactly the

same upper bound as the one derived by Hoeffding (even though the random variables X’s are unbounded
here).

85



- Let X1 be such that P({X1 = +1}) = P({X1 = −1}) = 1
2 . In this case,

Λ(s) = log

(
es + e−s

2

)
= −s+ log(1 + e2s)− log(2)

and
Λ∗(t) = max

s∈R
(st− Λ(s)) = max

s∈R

(
s (t+ 1)− log(1 + e2s) + log(2)

)
Looking for the value where the maximum is attained, we obtain s∗ = 1

2 log
(

1+t
1−t

)
(note that it does

not make sense to consider values of t such that |t| > 1, as it is always the case here that |Sn/n| ≤ 1).
Correspondingly, after some computations:

Λ∗(t) =
1 + t

2
log

(
1 + t

2

)
+

1− t
2

log

(
1− t
2

)
+ log(2) for |t| ≤ 1

Also E(X1) = 0, so P
({

Sn

n ≥ t
})
≤ exp (−nΛ∗(t)) for all t > 0. Let us compare this result with

Hoeffding’s inequality, which reads in this case:

P
({

Sn

n
≥ t
})
≤ exp

(
−nt

2

2

)
, ∀t > 0

It can be observed that for t > 0, the above function Λ∗(t) dominates the function t2/2 obtained via
Hoeffding’s inequality (in particular, Λ∗(±1) = log(2) > 1/2, and Λ∗(t) ≃ t2 around t = 0, which is
greater than t2/2).

A Appendix

A.1 Carathéodory’s extension theorem

Definition A.1. Let Ω be a set. A ring on Ω is a collection R of subsets of Ω such that

(i) ∅,Ω ∈ R.

(ii) if A,B ∈ R, then A ∪B ∈ R.

(iii) if A,B ∈ R, then A\B ∈ R.

Example. One easily checks that the collection R1 of finite unions of pairwise disjoint and half-open
intervals in R, such as

A =

n⋃
j=1

[aj , bj [ with [aj , bj [ disjoint

is a ring.

Definition A.2. A pre-probability measure on (Ω,R) is a mapping P : R → [0, 1] such that

(i) P(∅) = 0, P(Ω) = 1.

(ii) If (An, n ≥ 1) is a sequence of disjoint subsets of Ω such that An ∈ R for all n ≥ 1 and ∪n≥1An ∈ R,
then P(∪n≥1An) =

∑
n≥1 P(An).

Example. Let p : R → R be a given pdf on R (take your favorite, e.g. p(x) = 1[0,1](x) or p(x) =
1√
2π

exp(−x2/2)). Let now P1(A) =
∫
A
p(x) dx for A ∈ R1 defined above. As A is a finite union of pair-

wise disjoint intervals, P1(A) is well defined and one can also check that P1 is a pre-probablity measure
on R1.
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Theorem A.3. (Carathéodory’s extension theorem, without proof)
LetR be a ring on Ω and P be a pre-probability measure on (Ω,R). Then there exists a unique probability

measure P̃ defined on the σ-field F = σ(R) such that P̃(A) = P(A) for every A ∈ R.

Remark. This theorem has of course little to do with the other well-known Carathéodory theorem
stating that in a convex body K in Rd, any interior point can be written as a convex combination of at
most d+ 1 extremal points of K.

A.2 Distances between random variables associated to various convergences

For quadratic convergence, there is of course a natural distance related to it:

d2(X,Y ) = ∥X − Y ∥2, where ∥X − Y ∥22 = E((X − Y )2)

whereas there is no distance associated to almost sure convergence. Below, we describe distances associ-
ated to convergence in probability and convergence in distribution.

Distances for convergence in probability: the Ky-Fan distances

Recall the definition: Xn
P→

n→∞
X if ∀ε > 0, limn→∞ P({|Xn −X| ≥ ε}) = 0 (applicable only to random

variables defined on a common probability space (Ω,F ,P)).

It can be shown that for any of the following three distances (attributed to Ky Fan):

d(X,Y ) = inf{ε > 0 : P({|X − Y | ≥ ε}) ≤ ε}

d(X,Y ) = E(min{|X − Y |, 1}) or d(X,Y ) = E
(
|X − Y |

1 + |X − Y |

)
it holds that Xn

P→
n→∞

X if and only if d(Xn, X) →
n→∞

0.

Distances for convergence in distribution

Recall the definition: Xn
d→

n→∞
X if limn→∞ FXn

(t) = FX(t), ∀t ∈ R continuity point of FX (and we do

not need to assume that the random variables Xn are defined on a common probability space).

The Lévy distance

The Lévy distance between two random variables X,Y (or more precisely, between the distribution of X
and that of Y ) is defined as:

dL(X,Y ) = inf{ε > 0 : FX(t− ε)− ε ≤ FY (t) ≤ FX(t+ ε) + ε, ∀t ∈ R}

It can be shown that Xn
d→

n→∞
X if and only if dL(Xn, X) →

n→∞
0, i.e., convergence in distribution is

equivalent to convergence in the Lévy distance.

The next three distances defined below are stronger than the Lévy distance, in the sense that if conver-
gence in any of these distance takes place, then convergence in distribution takes place (but the reciprocal
statement does not hold).

The Kantorovich (L1) distance

dK,1(X,Y ) =

∫
R
|FX(t)− FY (t)| dt
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Observe that this distance is not a proper distance as it might take the value +∞ for a given pair
of random variables X,Y (this is the case for example if X,Y are two Cauchy random variables with

different parameters). Nevertheless, it can be shown that Xn
d→

n→∞
X if dK,1(Xn, X) →

n→∞
0.

To gain some intuition on what this distance means, observe also that if Y = X + c, where c is a
constant, then dK,1(X,Y ) = c. Moreover, when both X and Y are bounded random variables (implying
that dK,1(X,Y ) < +∞ in this case), this distance is equal to the Wasserstein distance:

dW (X,Y ) = sup{|E(f(X))− E(f(Y ))| : f : R→ R is such that |f(x)− f(y)| ≤ |x− y|, ∀x, y ∈ R}

The Kolmogorov (L∞) distance

dK,∞(X,Y ) = sup
t∈R
|FX(t)− FY (t)|

It can be shown (heathy exercise!) that dK,∞(X,Y ) ≥ dL(X,Y ) for every pair of random variables X,Y ,
implying that convergence in the Kolmogorov distance implies convergence in the Levy distance (and
therefore also convergence in distribution).

The Radon or total variation (TV) distance

dTV(X,Y ) = sup
B∈B(R)

|µX(B)− µY (B)|

It is immediate that dTV(X,Y ) ≥ dK(X,Y ) (as dK is a supremum over a restricted number of sets). It
is therefore the strongest of all norms above, so strong that dTV(X,Y ) = 1 as soon as X is discrete and
Y is continuous, for example. The total variation distance can also be rewritten as

dTV(X,Y ) = sup{|E(f(X))− E(f(Y ))| : f : R→ R is a continuous function with values in [−1,+1]}

A.3 Two useful facts about convergences of sequences of random variables

Continuous mapping theorem

Consider a sequence (Xn, n ≥ 1) of random variables, another random variable X and a function g :
R → R continuous on a domain D such that P({X ∈ D}) = 1. Then it is straightforward to check
that if Xn →

n→∞
X almost surely, then g(Xn) →

n→∞
g(X) almost surely. The more surprising fact (stated

here without proof) is that the same holds true both for convergence in probability and convergence in
distribution, namely:

if Xn
P→

n→∞
X, then g(Xn)

P→
n→∞

g(X) if Xn
d→

n→∞
X, then g(Xn)

d→
n→∞

g(X)

This fact does not hold true for L2 convergence, as X being square-integrable does not necessarily imply
that g(X) also is.

Cauchy sequences

It is straightforward to check that a sequence (Xn, n ≥ 1) of random variables converges almost surely if
and only if it is almost surely a Cauchy sequence, i.e.

P
({

lim
n,m→∞

|Xn −Xm| = 0

})
= 1

A similar statement holds true for quadratic convergence (as the space L2(Ω) equipped with the scalar
product ⟨X,Y ⟩2 = E(XY ) is a Hilbert space17), as well as for convergence in probability: i.e., the

17As already mentioned before, we should consider here L2(Ω) to be the space of equivalence classes of square-integrable
random variables, two random variables X,Y being equivalent if X = Y a.s.
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sequence (Xn, n ≥ 1) converges in probability if and only if

∀ε > 0, P({|Xn −Xm| ≥ ε}) →
n,m→∞

0

but this does not hold true for convergence in distribution. Here is a counter-example: the sequence
(Xn, n ≥ 1) where Xn ∼ U([−n,+n]) does satisfy

|FXn(t)− FXm(t)| →
n,m→∞

0, ∀t ∈ R

but does not converge in distribution.

A.4 An intriguing fact about convergence in distribution

The above counter-example is related to an intriguing fact that has two different versions:

1. Let (Fn, n ≥ 1) be a sequence of cdfs such that there exists a function F : R → [0, 1] with
limn→∞ Fn(t) = F (t) for every t ∈ R. Then it is not necessarily the case that F itself is the cdf of
a random variable.

2. Let (ϕn, n ≥ 1) be a sequence of characteristic functions such that there exists a function ϕ : R→ C
with limn→∞ ϕn(t) = ϕ(t) for every t ∈ R. Then it is not necessarily the case that ϕ is itself the
characteristic function of a random variable.

Here is an example illustrating this. Consider (Xn, n ≥ 1) a sequence of random variables with Xn ∼
U([−n,+n]) for every n ≥ 1. Then their pdfs are given by

pXn(x) =
1

2n
1[−n,n](x), x ∈ R

and correspondingly,

FXn
(t) =

1

2n

∫ t

−∞
1[−n,n](x) dx =


0, if t ≤ −n
1
2 (1 +

t
n ), if − n < t ≤ n

1, if t > n

One can check easily that for every fixed t ∈ R, F (t) = limn→∞ FXn
(t) = 1

2 , which is not a cdf, as
limt→±∞ F (t) = 1

2 ̸= 0 or 1.

Likewise,

ϕXn
(t) =

1

2n

∫ n

−n

eitx dx =

{
eitn−e−itn

2itn = sin(tn)
tn , if t ̸= 0

1, if t = 0

so

ϕ(t) = lim
n→∞

ϕXn
(t) =

{
0, if t ̸= 0

1, if t = 0

but ϕ is not a characteristic function, as it is not continuous in t = 0.

From either of the above observations, we conclude that the sequence of random variables (Xn, n ≥ 1)
does not converge in distribution, even though both their cdfs and characteristic functions converge to a
limit. What is the problem?

The intuition, first: the random variable Xn is uniformly distributed on [−n,+n], so as n → ∞, Xn

should converge to a random variable X “uniformly distributed on R”, but we know that such a random
variable does not exist. What is happening here is that all the mass of the distribution of Xn is escaping
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to ±∞ as n increases. In order to prevent such a thing from happening, we could impose that the
sequence Xn remains bounded as n increases, i.e., that there exists C > 0 such that

sup
n≥1

sup
ω∈Ω
|Xn(ω)| ≤ C

This however is a strong assumption, ruling out nicely behaved random variables such as Gaussian or
Poisson random variables. It can be relaxed to the following: for every ε > 0, there exists C > 0 such
that

inf
n≥1

P({|Xn| ≤ C}) ≥ 1− ε (22)

Such a sequence of random variables is said to be tight. This assumption guarantees that most of the
mass of the distribution of the random variables Xn remains in a bounded interval, even for large values
of n (more precisely, that for every ε > 0, there exists C > 0 such that at least a fraction 1 − ε of the
mass of all random variables Xn remains in the interval [−C,+C]). Note that this assumption is natural,
as for a single real-valued random variable X, it always holds by definition that for every ε > 0, there
exists C > 0 such that

P({|X| ≤ C}) ≥ 1− ε
If we therefore expect the sequence Xn to converge in distribution as n gets large, condition (22) should
hold. Reversely, one can show that when condition (22) is met, pointwise convergence of either sequence
(FXn

, n ≥ 1) or (ϕXn
, n ≥ 1) guarantees convergence in distribution of the sequence (Xn, n ≥ 1).

A.5 Stein’s method

Stein’s method is (yet) another method allowing to prove the central limit theorem. It is based on the
following equality (seen in the exercises and known as Stein’s lemma):

E(Z f(Z)) = E(f ′(Z)) (23)

if Z ∼ N (0, 1) and f is a continuously differentiable function such that both |f(x)| and |f ′(x)| do not
grow faster than polynomially when |x| → ∞. More interestingly, one can show that that if Z is a random
variable satisfying (23) for every f ∈ C1

b (R), then the distribution of Z is necessarily N (0, 1). Even more
interestingly, if (Yn, n ≥ 1) is a sequence of random variables such that

E(Yn f(Yn)− f ′(Yn)) →
n→∞

0, ∀f ∈ C1
b (R) (24)

then Yn
d→

n→∞
Z ∼ N (0, 1).

Proof. We show below that condition (24) implies that

E(g(Yn)) →
n→∞

E(g(Z)), ∀g ∈ Cb(R)

implying in turn convergence in distribution. To this end, let g be a given function in Cb(R) and f be
the solution of the following differential equation:

x f(x)− f ′(x) = g(x)− E(g(Z)), x ∈ R (25)

It turns out that the solution f of this equation belongs to C1
b (R) [TO BE CHECKED] and can be

written explicitly as

f(x) = ex
2/2

∫ x

−∞
e−t2/2 (g(t)− E(g(Z)) dt

[This can be checked by simply computing the derivative of f ]. Because f satisfies equation (25), we can
evaluate this equation in x = Yn and take expectations on both sides to conclude that

E(g(Yn))− E(g(Z)) = E(Yn f(Yn)− f ′(Yn)) →
n→∞

0

by assumption.
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The interest of Stein’s method is twofold:

1. It allows to obtain precise estimates on how “close” the distribution of a random variable is from the
Gaussian distribution, by estimating either the Wasserstein distance between the two distributions
or their Kolmogorov distance (= max difference between their cdfs).

2. It allows to generalize the statement of the central limit theorem from sums of i.i.d. random variables
to expressions of the form F (X1, . . . , Xn), where the random variables

Wj =F (X1, . . . , X
′
j , . . . , Xn)− F (X1, . . . , Xj , . . . , Xn)

(with X ′
j an independent copy of Xj)

are “small” and “approximately independent” as n gets large. This extension is therefore significant
(of the same flavor as McDiarmid’s inequality for concentration).

We present below the method for the classical setup: assume (Xn, n ≥ 1) are i.i.d. random variables with
mean 0 and variance 1 (for simplicity) and define, for n ≥ 1, Sn = X1 + . . .+Xn and Yn = Sn/

√
n. The

central limit theorem states in this case that Yn
d→

n→∞
Z ∼ N (0, 1).

We now prove (leaving out some technical details) that the sequence (Yn, n ≥ 1) satisfies condition (24)
above. To this end, let us compute, for a given f ∈ C1

b (R):

E(Yn f(Yn)) =
1√
n
E(Sn f(Yn)) =

1√
n

n∑
j=1

E(Xj f(Yn)) (26)

For j ∈ {1, . . . , n}, define Y (j)
n = Yn − Xj√

n
. Since f ∈ C1

b (R), we can write, using Taylor’s expansion:

f(Y (j)
n ) ≃ f(Yn) + (Y (j)

n − Yn) f ′(Yn) = f(Yn)−
Xj√
n
f ′(Yn)

or equivalenty:

f(Yn) ≃ f(Y (j)
n ) +

Xj√
n
f ′(Yn)

Introducing this in (26), we obtain

E(Yn f(Yn)) ≃
1√
n

n∑
j=1

{
E
(
Xj

(
f(Y (j)

n ) +
Xj√
n
f ′(Yn)

))}

The independence of the X’s implies that Xj ⊥⊥ Y (j)
n for every j ∈ {1, . . . , n}, so

E(Yn f(Yn)) ≃
1√
n

n∑
j=1

E(Xj)︸ ︷︷ ︸
=0

E(f(Y (j)
n )) +

1

n

n∑
j=1

E(X2
j f

′(Yn))

≃ E

 1

n

n∑
j=1

X2
j f

′(Yn)


The last two ingredients are: the law of large numbers which says that

1

n

n∑
j=1

X2
j →

n→∞
E(X2

1 ) = 1 almost surely

and another “technical detail” (i.e., the dominated convergence theorem), which allow to conclude that

E(Yn f(Yn)) ≃ E(f ′(Yn))

as n gets large, therefore proving (24). □
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A.6 Lower bound on large deviations estimates

In Section 14.2, we proved the following upper bound on the probability of a large deviation (at a given
value of n ≥ 1):

P
({

Sn

n
≥ t
})
≤ exp(−nΛ∗(t)), ∀t > µ

where we recall that Sn = X1+ . . .+Xn, µ = E(X1), Λ
∗(t) = maxs∈R(st−Λ(s)) and Λ(s) = logE(esX1).

This implies in particular that

lim sup
n→∞

1

n
logP

({
Sn

n
≥ t
})
≤ −Λ∗(t), ∀t > µ

In the following, we prove the matching lower bound

lim inf
n→∞

1

n
logP

({
Sn

n
≥ t
})
≥ −Λ∗(t), ∀t > µ

implying that the limit exists and is equal to −Λ∗(t), and therefore that the upper bound is tight18.

Proof. In order to obtain this lower bound, we will do something strange: for a given n ≥ 1 and t > µ,
the event {Sn ≥ nt} is a rare event (this is what the upper bound says). Let us now change the probability
measure P so as to make this event become frequent. To this end, define first for s ≥ 0 and A ∈ F :

P̃s(A) = E(1A · exp(sX1 − Λ(s)))

(observing that P̃0 = P). All these new probability measures P̃s are candidates for transforming the rare
event {Sn ≥ nt} into a frequent event, but this will work for a unique value of s, as we shall see. Let us

first check that for every s ≥ 0, P̃s is indeed a probability measure: clearly, P̃s(∅) = 0 and the σ-additivity
property follows from the fact that P itself is a probability measure. What remains to be checked is that
P̃s(Ω) = 1:

P̃s(Ω) = E(exp(sX1 − Λ(s))) = E(exp(sX1)) · exp(−Λ(s)) =
E(exp(sX1))

E(exp(sX1))
= 1

Moreover, under this new probability measure, we have:

Ẽs(X1) = E(X1·exp(sX1−Λ(s))) =
E(X1 exp(sX1))

E(exp(sX1))
=

∂
∂sE(exp(sX1))

E(exp(sX1))
=

∂

∂s
logE(exp(sX1)) =

∂

∂s
Λ(s)

By carefully choosing the value of s, we can therefore tune the value of Ẽs(X1) so as to make it close to
t and not µ (thereby making the event {Sn ≥ nt} frequent).

This is the main idea behind the change of probability measure, but the story is actually a little bit more
complicated than that, as we need to define a change of probability measure involving all the random
variables X1, . . . , Xn

19 and not only X1. To this end, let us define for s ≥ 0 and A ∈ F : (overriding the
above definition with a single X1):

P̃s(A) = E

1A ·
n∏

j=1

exp(sXj − Λ(s))


Using the very same argument as above, we can show that P̃s is a probability measure for every s ≥ 0.
Moreover, observe that

P̃s(A) = E

1A · exp

s n∑
j=1

Xj − nΛ(s)

 = E(1A exp(sSn − nΛ(s))) (27)

18Note that a similar result holds for t < µ
19Recall that n is fixed here.
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Following the same procedure as above, we also obtain the equality Ẽs(X1) =
∂
∂sΛ(s). Let us not choose

yet the value of s, but let us try instead to obtain a lower bound P({Sn ≥ nt}) (which is our goal). To
this end, observe first that the equality (27) can be rewritten as

P(A) = Ẽs(1A exp(−sSn + nΛ(s))) for A ∈ F

With this, we obtain (setting ε > 0):

P({Sn ≥ nt}) ≥ P({nt ≤ Sn ≤ n(t+ ε)}) = Ẽs

(
1{nt≤Sn≤n(t+ε)} exp(−sSn + nΛ(s))

)
= exp(−n(st− Λ(s))) Ẽs

(
1{nt≤Sn≤n(t+ε)} exp(−s(Sn − nt))

)
≥ exp(−n(st− Λ(s))) exp(−snε) P̃s({nt ≤ Sn ≤ n(t+ ε)})

Let us now choose s ≥ 0 that maximizes st − Λ(s), i.e., ∂Λ(s)
∂s = t and st − Λ(s) = Λ∗(t). Under the

probability measure P̃s, we have seen above that Ẽs(X1) =
∂Λ(s)
∂s = t, so Sn ≃ nt “on average” for large

n. One can actually show more precisely that for any ε > 0

P̃s({nt ≤ Sn ≤ n(t+ ε)}) →
n→∞

c > 0

Therefore, as n gets large,

P({Sn ≥ nt})
∼
≥ exp(−nΛ∗(t)) exp(−snε) c

implying that

lim inf
n→∞

1

n
logP({Sn ≥ nt}) ≥ −Λ∗(t)− sε

implying in turn the result, as ε > 0 is arbitrary (and s ≥ 0 is fixed).
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