Exercise 1

Consider a Hopfield network composed of 9 neurons. Each neuron has connections to all other neurons.

1.1 How many connections are there in total? Choose the appropriate weights for the prototype pattern given in figure 1.

![Figure 1: Prototype pattern. Black corresponds to \(S = +1 \).](image)

Now keeping the learned weights fixed, present a pattern \(S_i(t = 0) \) and let it evolve according to:

\[
S_i(t + 1) = \text{sign} \left(\sum_j w_{ij} S_j(t) \right)
\]

(1)

Suppose the initial state is again the swiss cross above but with one bit (neuron) flipped. Will the dynamics correct it?

1.2 Suppose that \(N \) bits are flipped. Will the dynamics correct them?
Exercise 2: Associative memory

Consider a Hopfield network with a continuous state variable $S_i(t) \in \mathbb{R}$. Assume that the network has stored 4 patterns

$$p^1 = \{p_1^1, \ldots, p_N^1\} \quad \cdots \quad p^4 = \{p_1^4, \ldots, p_N^4\}$$

that are orthogonal, i.e., $\frac{1}{N} \sum_{i=1}^{N} p^\mu_i p^\nu_i = \delta^\mu\nu$, where $\delta^\mu\nu$ is the Kronecker symbol

$$\delta^\mu\nu = \begin{cases} 1 & \text{if } \mu = \nu \\ 0 & \text{otherwise} \end{cases}$$

You present the network with an activity pattern that has overlap\(^1\) with p^3 only (no overlap with other memories). The activity dynamics is given by

$$S_i(t+1) = g \left(\sum_j w_{ij} S_j(t) \right)$$

2.1 Calculate the change of the overlap with pattern 3 in one time step, i.e. calculate $m^3(t+1)$ as a function of $m^3(t)$. Moreover, $g(\cdot)$ is an odd function: $g(-x) = -g(x)$

Hint: Follow the derivations shown in class (and in the book Neuronal Dynamics, chapter 17.2): Use the definitions of the overlap $m^3(t)$ and the weights w_{ij} to express $S_i(t+1)$ (eq. 3) as a function of the overlap. Then, using $S_i(t+1)$ compute the overlap $m^3(t+1)$. Keep in mind that the state of each neuron always takes one of two values: $p_i \in \{-1, 1\}$.

2.2 Use this to discuss the evolution of the overlap over several time steps

- when g is the sign-function
- when g is an odd and monotonically increasing function mapping the real line onto $[-1; 1]$. As an example, consider $g(x) = \tanh(\beta x)$ with some real, positive parameter β. Think about the effect of changing β (sometimes called 'inverse temperature') and discuss the cases $\beta < 1$, $\beta > 1$ and $\beta \to \infty$.

Exercise 3: Probability of error in the Hopfield model

3.1 Consider a Hopfield network of N neurons ($N = 10'000$) storing P random prototypes p^μ and the following dynamics:

$$S_i(t+1) = \text{sign} \left(\sum_j w_{ij} S_j(t) \right)$$

Given the initial activation set to pattern 1, i.e. $S_i(t = 0) = p_1^1$, show that

$$S_i(t = 1) = p_1^1 \text{sign}(1 + \sum_{\mu \neq 1}^{P} \sum_{j}^{N} \frac{1}{N} p_1^1 p_1^\mu p_j^1 p_j^\mu).$$

\(^1\)by “having overlap with prototype μ” we mean with “having non-zero scalar product with p^μ"
Hint: Start with the dynamics equation 4. Use the definition of the weights w_{ij} to express the update in terms of the patterns.

Hint: You can always multiply a term with 1. In particular, with $1 = p_i^1 p_i^1$.

3.2 In equation 5, formulate the condition for which S_i will change its state. That is, $S_i(t = 1) \neq S_i(t = 0)$.

3.3 Using the analogy for the sum as a random walk, show that the term $\sum_{\mu \neq 1}^{P} \sum_{j}^{N} \frac{1}{N} p_i^\mu p_i^j p_i^1 p_i^j$ can be approximated by a Gaussian random variable, $N(0, (P - 1)/N)$.
Hint: Specify mean and variance of the distribution of the random variable $X = p_i^1 p_i^j p_i^1 p_i^j$. Then use the central limit theorem to approximate the sum by a Gaussian.

3.4 Show that the probability that a given neuron i will flip ($S_i(t = 1) \neq S_i(t = 0)$) is given by

$$P_{\text{error}} = \frac{1}{2} \left[1 - \text{erf}\left(\sqrt{\frac{N}{2(P - 1)}}\right)\right]$$

where erf is the error function, defined by

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x'^2} dx'^2.$$

3.5 How many random patterns can you store, if you accept on average at most 1 bit to be wrong? Consider erf(2.6) = 0.9998.

3.6 In many real application, patterns to be stored are not totally random and have substantial overlap. Rewrite the retrieval equation 5 as a function of overlap terms, $m^{\mu\nu} = \frac{1}{N} \sum_{i} p_i^\mu p_i^\nu$.

3.7 Assume that the overlap between different patterns is 0.1 for all pairs. How many patterns can you store now, allowing on average only one wrong bit?

![Figure 2: Error probability: $P(x \leq -1)$](image-url)