1. We want to fit a data set y_i to a polynomial of degree 2: $y_i \approx at_i^2 + bt_i + c$. Is this a linear regression model?

 (a) \(\square \) Yes
 (b) \(\square \) It depends on the score function
 (c) \(\square \) It depends on the data set
 (d) \(\square \) No

2. If the error terms in a fitting model are not homoscedastic, it is better to...

 (a) \(\square \) Use ℓ^1-norm minimization rather than ℓ^2
 (b) \(\square \) Use weights to make the error term homoscedastic
 (c) \(\square \) Use ℓ^2-norm minimization rather than ℓ^1

3. The green estimation is least square fit in y-log-scale. This corresponds to assuming that the relative error terms (blue dot green curve) are...

 (a) \(\square \) iid
 (b) \(\square \) approximately normal
 (c) \(\square \) (a) and (b)
 (d) \(\square \) None

4. We fit the model $Y_i = at_i + b$ using least squares. The obtained line is such that...
(a) □ The average vertical distance from the points to the line is 0.

(b) □ The average square distance from the points to the line is 0.

(c) □ It leaves an equal number of points on each side.

(d) □ None of these.

5. We fit the model \(Y_i = at_i + b \) using \(\ell^1 \) norm minimization. The obtained line is such that...

(a) □ The average vertical distance from the points to the line is 0.

(b) □ The average square distance from the points to the line is 0.

(c) □ It leaves an equal number of points on each side.

(d) □ None of these.

6. We want to estimate some quantity \(\mu \). We have \(m + n \) independent measurements \(X_1, \ldots, X_m \sim \text{iid } N_{\mu, \sigma^2} \) and \(Y_1, \ldots, Y_n \sim \text{iid } N_{\mu, \lambda^2 \sigma^2} \). The term \(\lambda \) is known.

(a) What is the maximum likelihood estimate of \(\mu \)?
 i. □ \(\hat{\mu}_1 = \frac{X_1 + \ldots + X_m + Y_1 + \ldots + Y_n}{m+n} \)
 ii. □ \(\hat{\mu}_2 = \frac{X_1 + \ldots + X_m + \lambda(Y_1 + \ldots + Y_n)}{m+n} \)
 iii. □ \(\hat{\mu}_3 = \frac{X_1 + \ldots + X_m + \frac{Y_1 + \ldots + Y_n}{\lambda}}{m+n} \)
 iv. □ \(\hat{\mu}_4 = \frac{X_1 + \ldots + X_m + \frac{Y_1 + \ldots + Y_n}{\lambda^2}}{m+n} \)

(b) We now assume that the terms \(\sigma \) and \(\lambda \) are unknown but we know that \(\lambda >> 1 \) and \(m \approx n \). Which of the following is the best estimate of \(\mu \)?
 i. □ \(\hat{\mu}_1 = \frac{X_1 + \ldots + X_m}{m} \)
 ii. □ \(\hat{\mu}_2 = \frac{Y_1 + \ldots + Y_n}{n} \)
 iii. □ \(\hat{\mu}_3 = \frac{X_1 + \ldots + X_m + Y_1 + \ldots + Y_n}{m+n} \)

(c) We continue to assume that \(\lambda >> 1 \) and \(m \approx n \), furthermore we assume that the value of \(\lambda \) is known (but \(\sigma \) is not known). Which of the following is the best estimate of \(\mu \)?
 i. □ \(\hat{\mu}_1 = \frac{X_1 + \ldots + X_m}{m} \)
 ii. □ \(\hat{\mu}_2 = \frac{Y_1 + \ldots + Y_n}{n} \)
 iii. □ \(\hat{\mu}_3 = \frac{X_1 + \ldots + X_m + Y_1 + \ldots + Y_n}{m+n} \)
 iv. □ \(\hat{\mu}_4 = \frac{X_1 + \ldots + X_m + \frac{Y_1 + \ldots + Y_n}{\lambda^2}}{m+n} \)
7. We consider the following model for the virus infection data example:

\[
\log Y_i = \log \alpha + \alpha t_i + \varepsilon_i \sim \text{iid } N_{0,\sigma^2}, \ i = 1...I
\]

The goal of this exercise is to apply Theorem 3.3 to this model. To simplify the notation, let \(L_i = \log Y_i \) and \(\ell = \log \alpha \), so that the model is

\[
L_i = \ell + \alpha t_i + \varepsilon_i \sim \text{iid } N_{0,\sigma^2}, \ i = 1...I
\]

It will also be convenient to use \(\bar{t} = \frac{1}{I} \sum_{i=1}^{I} t_i \), \(\bar{L} = \frac{1}{I} \sum_{i=1}^{I} L_i \), \(v = \frac{1}{I} \sum_{i=1}^{I} (t_i - \bar{t})^2 \) (sample variance of \(t \)) and \(c = \frac{1}{I} \sum_{i=1}^{I} (L_i t_i - \bar{t}\bar{L}) \) (sample covariance of \(t \) and \(\log Y \)).

(a) Write the matrix \(X \).

(b) Does assumption (H) hold?

(c) Compute \(X^T X \) as a function of \(\bar{t} \) and \(v \) and verify that it is invertible when \(H \) holds.

(d) Let \(\vec{L} = \begin{pmatrix} L_1 \\ \vdots \\ L_I \end{pmatrix} \). Compute \(X^T \vec{L} \) as a function of \(\bar{t}, \bar{L} \) and \(c \). Compute \(G = (X^T X)^{-1} \) and the maximum likelihood estimates \(\hat{\ell}, \hat{\alpha} \).

(e) Let \(s \) be the rescaled sum of squared residuals (you are not asked to compute \(s \)). Give the formulae, derived from Theorem 3.3, for 95% confidence intervals for \(\ell \) and for \(\alpha \).