Homework 3

Exercise 1. Let \(n \geq 1, \Omega = \{1, 2, \ldots, n\}, \mathcal{F} = \mathcal{P}(\Omega) \) and \(\mathbb{P} \) be the probability measure on \((\Omega, \mathcal{F})\) defined by \(\mathbb{P}(\{\omega\}) = \frac{1}{n} \) on the singletons and extended by additivity to all subsets of \(\Omega \).

a) Consider first \(n = 4 \). Find three subsets \(A_1, A_2, A_3 \subset \Omega \) such that
\[
\mathbb{P}(A_j \cap A_k) = \mathbb{P}(A_j) \cdot \mathbb{P}(A_k) \quad \forall j \neq k \quad \text{but} \quad \mathbb{P}(A_1 \cap A_2 \cap A_3) \neq \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3)
\]
b) Consider now \(n = 6 \). Find three subsets \(A_1, A_2, A_3 \subset \Omega \) such that
\[
\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3) \quad \text{but} \quad \exists j \neq k \text{ such that } \mathbb{P}(A_j \cap A_k) \neq \mathbb{P}(A_j) \cdot \mathbb{P}(A_k)
\]
c) Consider finally a generic probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and three events \(A_1, A_2, A_3 \in \mathcal{F} \) such that
\[
\mathbb{P}(A_j \cap A_k) = \mathbb{P}(A_j) \cdot \mathbb{P}(A_k) \quad \forall j \neq k \quad \text{and} \quad \mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3)
\]
Show that \(A_1, A_2, A_3 \) are independent according to the definition given in the course.

Exercise 2. Let \(X, Y \) be two discrete random variables, each with values in \(\{0, 1\} \).

a) Show that \(X \perp \perp Y \) if \(\mathbb{P}(\{Y = 1\} | \{X = 0\}) = \mathbb{P}(\{Y = 1\} | \{X = 1\}) \).

Let moreover \(Z = X \oplus Y = \begin{cases} 1, & \text{if } X = 1, Y = 0 \text{ or } X = 0, Y = 1, \\ 0, & \text{otherwise.} \end{cases} \)

b) Show that \(X \perp \perp Z \) if \(\mathbb{P}(\{Y = 1\} | \{X = 0\}) = \mathbb{P}(\{Y = 0\} | \{X = 1\}) \).

c) Which assumption guarantees that both \(X \perp \perp Y \) and \(X \perp \perp Z \)?

d) Assume that none of the 3 random variables \(X, Y, Z \) is constant (i.e., takes a single value with probability 1). Can it be that the collection of the three random variables \((X, Y, Z)\) is independent? Justify your answer.

Exercise 3. Let \(X_1, X_2 \) be two independent and identically distributed (i.i.d.) \(\mathcal{N}(0, 1) \) random variables. Compute the pdf of \(X_1 + X_2 \) (using convolution).

Exercise 4. Let \(X_1, X_2 \) be two i.i.d. random variables such that \(\mathbb{P}(\{X_i = +1\}) = \mathbb{P}(\{X_i = -1\}) = 1/2 \) for \(i = 1, 2 \). Let also \(Y = X_1 + X_2 \) and \(Z = X_1 - X_2 \).

a) Are \(Y \) and \(Z \) independent?

b) Same question with \(X_1, X_2 \) i.i.d. \(\mathcal{N}(0, 1) \) random variables (use here the change of variable formula in order to compute the joint distribution of \(Y \) and \(Z \)).
Exercise 5. Let \(\Omega = \mathbb{R}^2 \) and \(\mathcal{F} = \mathcal{B}(\mathbb{R}^2) \). Let also \(X_1(\omega) = \omega_1 \) and \(X_2(\omega) = \omega_2 \) for \(\omega = (\omega_1, \omega_2) \in \Omega \) and let finally \(\mu \) be a probability distribution on \(\mathbb{R} \). We consider below two different probability measures defined on \((\Omega, \mathcal{F}) \), defined on the “rectangles” \(B_1 \times B_2 \) (Caratheodory’s extension theorem then guarantees that these probability measures can be extended uniquely to \(\mathcal{B}(\mathbb{R}^2) \)).

a) \(\mathbb{P}(1)(B_1 \times B_2) = \mu(B_1) \cdot \mu(B_2) \)

b) \(\mathbb{P}(2)(B_1 \times B_2) = \mu(B_1 \cap B_2) \)

In each case, describe what is the relation between the random variables \(X_1 \) and \(X_2 \).