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Power Analysis Using R

S. P. Blomberg

April 29, 2014

Introduction

In a series of papers in the early 20th century, J. Neyman and E. S. Pear-
son developed a decision-theoretic approach to hypothesis-testing (Neyman and
Pearson, 1928a,b, 1933a,b). The theory was later extended and generalised by
Wald (e.g. Wald, 1939, 1950). For a full account of the theory, see Lehmann
and Romano (2005).

A centrepiece of the Neyman-Pearson approach is the idea of there being two
possible types of error when considering rejecting a hypothesis based on data
(See Table 1):

Table 1
H0 False H0 True

Reject H0 Correct Type I Error
Accept H0 Type II Error Correct

Thus, a rational approach to hypothesis testing will seek to reject a hypoth-
esis if it is false and accept a hypothesis when it is true. The two types of
error are rejecting the null hypothesis when it is true (Type I) and accepting
the null hypothesis when it is false (Type II). In the Neyman-Pearson theory, it
is usual to fix the Type I error probability (α) at some constant (often at 0.05,
but not necessarily), and then choose a test which minimises the Type II error
probability (β), conditional on α. The (null) hypothesis is then either rejected
when the associated p-value for the test is less than α, or otherwise accepted.

The Neyman-Pearson theory has come under a lot of criticism since its for-
mulation. (For a recent critique from a biologist and a psychologist, see Hurl-
bert and Lombardi (2009)) Although much maligned, it is still used to justify
and compare statistical testing procedures, whether or not scientists accept the
paradigm for their everyday data analyses. For our purposes, the theory intro-
duces the concept of “power” of a test, where power is defined as P(Reject H0|H0

is false). That is, 1 minus the Type II error probability, or 1 − β. (The first
person to promote power as a concept was “Student” a.k.a W. S. Gosset, head
brewer for the Guinness brewery (Ziliak and McCloskey, 2008). Interestingly,
R. A. Fisher (the other main architect of classical statistics) was against the
whole idea of power (Kruskal, 1980).)
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Factors affecting the Power of a Test

There are several factors affecting the power of a test:

� There is a trade-off between α and β such that greater power can be
gained by accepting a less stringent condition for the Type I error. In
other words, power is increased when α is increased. The shortcoming of
setting a higher α is that Type I errors will be more likely. This may not
be desireable.

� Power can be increased by increasing the effect size. The reasoning is
that any test will have trouble rejecting the null hypothesis if the null
hypothesis is only “slightly” wrong. If the effect size of an experiment
(such as the difference between a treatment and a control) is large, then
it is easier to detect, and the null hypothesis will be soundly rejected.

� The use of covariates or blocking variables can also increase the power of a
test, as “controlling” for other, nuisance, variables can make the test more
precise.

� Increasing the sample size in an experiment or observational study also
increases the power to detect a response.

It is important to carefully consider sample sizes before doing any experimental
work. This is because data are expensive to collect, and may involve an appre-
ciable amount of time and money expended by the researcher. Also, especially
in medical research, there are ethical issues to consider. Experiments should be
designed so that the minimum number of subjects (e.g. rats, dogs, or monkeys)
are used in order to arrive at valid scientific conclusions. For these reasons,
it is important to take a quantitative approach to maximising power in an ex-
periment and to design experimental protocols that are efficient in their use of
resources (subjects).

Power Analysis in R

Here we describe approaches to power analysis and sample size selection using
the freely available R environment for statistical computing and graphics. Be-
cause R is free, researchers can use it anywhere in the world, and are not limited
by restrictive license agreements. Thus, encouraging researchers and students
to use R for statistical analyses effectively democratises the process of study
design and data analysis.

Obtaining R

The easiest way to get R is to download it from the R web site. Upon vis-
iting the official web site, you will see a sidebar with a link to CRAN, the
Comprehensive R Archive Network. Click on it and choose a local mirror site
(e.g. http://cran.ms.edu.au). R is available for Linux, Windows, and MacOS
X. Download and install the appropriate version for your system.

2

http://www.r-project.org/
http://cran.ms.edu.au


Built-in R Functions for Power Analysis

R comes with a wide variety of built-in functions. For power analysis, we need
to look to the stats package that comes with R. Try searching for functions for
power analysis in the stats package. Your output should look approximately
like this:

help.search("power", package="stats")

stats::power Create a Power Link Object

stats::power.anova.test

Power Calculations for Balanced One-Way

Analysis of Variance Tests

stats::power.prop.test

Power Calculations for Two-Sample Test for

Proportions

stats::power.t.test Power calculations for one and two sample t

tests

stats::print.power.htest

Print method for power calculation object

We can see that there are 5 functions with “power” in their name. How-
ever, it is clear that power.anova.test, power.prop.test, and power.t.test

are the most appropriate for our study of power analysis. We first examine
power.t.test.

Power of the t-test

Recall that one use of the t-test is used to test for differences between two sample
means, drawn from two Normal populations with unknown variance. The null
hypothesis is that the samples were drawn from a single population. i.e. H0: the
sample means are not different. Now, examine the help page for power.t.test,
part of which is presented below:

?power.t.test

power.t.test package:stats R Documentation

Power calculations for one and two sample t tests

Description:

Compute power of test, or determine parameters to obtain target

power.

Usage:

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,

power = NULL,

type = c("two.sample", "one.sample", "paired"),

alternative = c("two.sided", "one.sided"),

strict = FALSE)
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Notice that power.t.test accepts 8 arguments. Arguments type, alternative
and strict describe the behaviour of the t-test. That is, whether the test is
a two-sample, one-sample, or paired t-test, and whether it is a two-sided or
one-sided test. Further, we are given the option of including both tails in the
power calculation for the two-sided test, by setting strict=TRUE. Note that the
default is strict=FALSE.

The first 5 arguments determine the type of analysis. To use the function,
you specify 4 of the first 5 arguments, and the unspecified argument is the one
that is output from the computation. Here’s an example:

power.t.test(n=6, .2, sd=.1, power=NULL)

Two-sample t test power calculation

n = 6

delta = 0.2

sd = 0.1

sig.level = 0.05

power = 0.8764176

alternative = two.sided

NOTE: n is number in *each* group

Note that we have left the sig.level argument at its default (0.05). We have
specified the sample size, and the two arguments that contribute to the effect
size (delta, the difference between the means and sd, the common standard
deviation. More on effect sizes below). power was set to NULL, as this is the
value we are trying to compute. The output is printed, including the estimated
power (0.88 in this case).

1 Exercises

1. Calculate the power of a two-sample, two-sided t-test when n=12, delta=1.5,
sd=2.3. Use a significance level of 0.05.

2. Using the the same t-test, calculate the sample size needed to attain a
power of 0.85, with delta=6, sd=4.5. Use a significance level of 0.05.

3. power.anova.test: Calculate the sample size needed for a one-way ANOVA
with between-group variance = 3, within-group variance=5, and 4 groups.
Use a significance level of 0.05.

4. Calculate the power of a one-way ANOVA with 4 groups, within-group
variance = 12, between-group variance=4, 20 subjects in each group. Use
a significance level of 0.05.

5. power.prop.test Calculate the power of the test comparing the propor-
tions in two groups (0.5, 0.4), with 20 in each group. Use a significance
level of 0.05.
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6. Calculate the sample size necessary to detect a difference in proportions
where group 1 has a proportion of .6 and group 2 has a proportion of 0.8.
Use power=0.85, and a significance level of 0.01.

Power Analysis in R Add-on Packages

One of the most important aspects of R is its modularity. Currently, there are
over 3000 add-on packages for R on CRAN. The two that we will be dealing
with are packages pwr, which contains more general functions for power analysis
and sample size calculations, and powerSurvEpi, which contains functions for
power and sample size determination for some survival models.

The first step is to install pwr and powerSurvEpi from CRAN. Execute the
following command:

install.packages(c("pwr", "powerSurvEpi"))

You only need to execute this command once, as the install is permanent (al-
though it may only stay on the UQ system for the duration of your computing
session, and will be lost when you log off).

Package pwr

We will consider functions in the pwr package first. Load the package into R
using the following command:

library(pwr)

and then look at the diverse array of functions provided in the package:

help(package=pwr)

The important part of the output is below:

ES.h Effect size calculation for proportions

ES.w1 Effect size calculation in the chi-squared test

for goodness of fit

ES.w2 Effect size calculation in the chi-squared test

for association

cohen.ES Conventional effects size

pwr-package Basic power calculations pwr

pwr.2p.test Power calculation for two proportions (same

sample sizes)

pwr.2p2n.test Power calculation for two proportions

(different sample sizes)

pwr.anova.test Power calculations for balanced one-way

analysis of variance tests

pwr.chisq.test power calculations for chi-squared tests

pwr.f2.test Power calculations for the general linear model

pwr.norm.test Power calculations for the mean of a normal

distribution (known variance)
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pwr.p.test Power calculations for proportion tests (one

sample)

pwr.r.test Power calculations for correlation test

pwr.t.test Power calculations for t-tests of means (one

sample, two samples and paired samples)

pwr.t2n.test Power calculations for two samples (different

sizes) t-tests of means

Notice that there are many more functions for power analysis in pwr than in
built-in package stats. There are additional functions for χ2 tests (pwr.chisq.test),
Pearson’s product-moment correlation (pwr.r.test), and unbalanced two-sample
t-tests (pwr.t2n.test), among others. However, they work in the same way as
the previous examples from stats. You specify the values for all the arguments
except one (which is left as NULL), and that unspecified variable is computed
by the function.

2 Exercises

7. Calculate the power of the Pearson’s product moment correlation test,
where r = 0.8, n = 20, and significance level is 0.05.

8. Calculate the sample size necessary to detect a correlation of r = 0.6, with
a power of 0.85 and significance level = 0.05.

Effect Sizes

It was mentioned previously that increasing the effect size (the standardised
“difference” between treatment groups) results in an increased power. However,
calculation of effect sizes varies from test to test, depending on the underlying
distribution of the test statistic. Frequently, we do not know the likely effect
size that may occur in an experiment. The best approach is then to do a pilot
experiment on a small scale to estimate the likely effect size. In the absence of
pilot data, Cohen (1988) provides standard measures of effect size, classified as
“small”, “medium”, and “large” for a variety of tests. These effect sizes are built
into the pwr package, using the function cohen.ES. Although these “standard”
effect sizes are somewhat arbitrary, they can provide a first guide for sample size
estimation. Note, however, that a pilot experiment is the recommended way to
estimate effect sizes for an experimental study.

3 Exercises

9. Use cohen.ES to extract “small”, “medium”, and “large” effect sizes for χ2,
Pearson’s r and proportion tests.

10. Use the above effect sizes to calculate sample sizes with power = 0.8,
and sig.level = 0.05, using the following functions from the pwr package:
pwr.chisq.test, pwr.r.test, pwr.p.test.

11. Calculate the power of the above tests with sample sizes 10, 50, 100.
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12. Calculate the detectable effect size for the above tests when power = 0.8
and n = 10, 50, 100.

Power Curves

Calculating specific values of power, sample size or effect size can be illu-
minating with regard to the statistical restrictions on experimental design and
analysis. But frequently a graph tells the story more completely and succinctly.
Here we show how to draw power, sample size, and effect size curves using the
above functions in R:

nvals <- seq(2, 100, length.out=200)

powvals <- sapply(nvals, function (x) power.t.test(n=x, delta=1)$power)

plot(nvals, powvals, xlab="n", ylab="power",

main="Power curve for\n t-test with delta = 1",

lwd=2, col="red", type="l")
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If we are unsure
of our effect size, we can also alter delta to see the effect of both effect size and
sample size on power:

deltas <- c(0.2, 0.4, 0.8)

plot(nvals, seq(0,1, length.out=length(nvals)), xlab="n", ylab="power",

main="Power Curve for\nt-test with varying delta", type="n")

for (i in 1:3) {

powvals <- sapply(nvals, function (x) power.t.test(n=x, delta=deltas[i])$power)

lines(nvals, powvals, lwd=2, col=i)

}

legend("topleft", lwd=2, col=1:3, legend=c("0.2", "0.4", "0.8"))
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4 Exercises

13. Make a graph of the relationship between effect size and power, for a
sample size of 5, 10, and 20, using power.anova.test. Use 4 groups, with
the within-group variance equal to 1, and the between-group variance
varying between 0.1 and 1.2.

5 Power of Cox Regression

In an important paper, statistician Sir David Cox developed an approach to sur-
vival analysis which did not depend on the precise form of the baseline hazard
function (Cox, 1972). Instead, Cox made a far weaker assumption: that the haz-
ard functions were proportional for different treatment groups over the duration
of the study. That is, he assumed proportional hazards. Hence, Cox’s method
is often referred to as Cox Proportional Hazards regression, or Cox regression.

Consider the following survival curves based on recurrences of bladder cancer
in 85 patients (Wei et al., 1989). The curves look quite similar, although the
black curve looks like it could be steeper than the other three.

library(survival)

tst <-coxph(Surv(stop, event) ~ strata(enum), bladder)
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plot(survfit(tst), col=1:4, main="Bladder Cancer Recurrences",

mark.time=FALSE)
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How many subjects do we need for such a survival study? We can answer this
question using the function powerCT in package powerSurvEpi. The function
only works for two groups, so we use only the groups corresponding to the black
and red lines as a pilot data set, for illustration. We are interested in the power
of the study with 100 Experimental subjects and 100 Control subjects, and
we assume a relative risk (hazard ratio) of 1.6. That is, our effect size is 1.6,
corresponding to the treatment group having a 1.6 times the expected risk of
dying, compared to the control group:

library(powerSurvEpi)

bl2 <- bladder[bladder$enum==1|bladder$enum==2,]

bl2$enum2 <- ifelse(bl2$enum==1, "C", "E")

bl3 <- bl2[,c("stop", "event", "enum2")]

PCT100 <- powerCT(Surv(stop, event)~enum2, dat=bl3, nE=100,

nC=100, RR=1.6)

print(PCT100$power)

[1] 0.7507715

It seems our power is quite low. What if we increase the sample size in each
treatment by 50?

PCT150 <- powerCT(Surv(stop, event)~enum2, dat=bl3, nE=150,

nC=150, RR=1.6)

print(PCT150$power)
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[1] 0.8978767

This is a good improvement! We can also use the ssizeCT function to compute
sample sizes, again based on pilot data. We assume that there are to be equal
numbers in each group. ie k=1:

ss <- ssizeCT(Surv(stop, event)~enum2, dat=bl3,

power=0.85, RR=1.6, k=1)

print(ss$ssize)

nE nC

130 130

So if we are to have a relative risk of 1.6 and a power of 0.85, then we need at
least 130 subjects in each treatment to detect a difference at α = 0.05.

6 Exercises

14. Construct a graph of the relationship between power and sample size using
the pilot data (bl3), for a relative risk of 0.8, 1.4, 1.8. and sample sizes
ranging from 10 to 200.

15. Balanced designs (equal numbers in treatment groups) have more power
than unbalanced designs. Test the effect of having different numbers in
each group by examining the relationship between power and sample size
for different values of k.

Power Analysis by Simulation

Frequently, the complexity of our experimental designs means that we must
go far beyond what can be accomplished with standard software, such as the
built-in power functions and the pwr package. Fortunately, R can be easily pro-
grammed to produce power analyses for any experimental design. The general
approach is:

1. Simulate data under the null hypothesis (for checking Type I error prob-
abilities) and also for different effect sizes, to estimate power.

2. Fit the model to the simulated data.

3. Record whether the analysis of the simulated data set was significant,
using the usual tests.

4. Store the significance level in a vector.

5. Repeat from step 1. a large number of times.

6. Tabulate how many simulations produced a significant result, and hence
calculate power.

Here is an example: Suppose we wish to conduct a study with two fixed factor,
leading us to a 2-way analysis of variance (ANOVA), with two levels for each
factor. We could simulate data under the null hypothesis (no difference between
means) using the following code:
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## First set up the design

reps <- 1000

design <- expand.grid(A=c("a", "b"), B=c("c","d"), reps=1:10)

pvals <- vector("numeric", length=reps)

## simulate data under the null hypothesis.

for (i in 1:reps) {

design$response <- rnorm(40) # random data with zero mean

## fit the model

fit <- aov(response~A*B, data=design)

## record the p-value for the interaction term.

## You could record other values.

## Save the p value

pvals[i] <- summary(fit)[[1]][[5]][3]

}

Type1 <- length(which(pvals < 0.05))/reps

print(Type1)

[1] 0.057

It appears that the Type I error rate is acceptable for the 2-factor ANOVA
interaction term. Now to calculate some power statistics. We will calculate
power for a difference between means of 2 units, for sample sizes 5, 10, 20.

ssize <- c(5, 10, 20)

pvals <- matrix(NA, nrow=reps, ncol=3)

## First set up the design

for (j in 1:3) {

reps <- 1000

design <- expand.grid(reps=1:ssize[j], A=c("a", "b"), B=c("c","d"))

## simulate data under the null hypothesis.

for (i in 1:reps) {

design$response <- c(rnorm(3*ssize[j]), rnorm(ssize[j], mean=2))

## fit the model

fit <- aov(response~A*B, data=design)

## record the p-value for the interaction term.

## You could record other values.

## Save the p value

pvals[i,j] <- summary(fit)[[1]][[5]][3]

}

}

Power <- apply(pvals, 2, function (x) length(which(x < 0.05))/reps)

names(Power) <- as.character(ssize)

print(Power)

5 10 20

0.559 0.876 0.992

We see that the power is too low for a sample size of 5, but it increases to an
acceptable level for 10 replicates per treatment.
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7 Exercises

16. Construct a graph of the relationship between power and sample size for a
multiple regression model with 3 predictor variables, over a range of 1 to
10 for each predictor. For the effect size, let the residual error have σ = 5,
and β1 = 0.1, β2 = 1 and β3 = 5. Try varying the effect size to examine
its effects on power in this case.

Further Reading

Cohen (1988) is the classic text for non-statisticians. Hoenig and Heisey (2001)
provides cautionary advice against doing post hoc power analyses. Further read-
ings are below, but are mostly of historical interest.
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