
Programmation Orientée Projet
COM-112(a)

Semaine 1

Rafael Pires
rafael.pires@epfl.ch

Lausanne, 20.02.2026

mailto:rafael.pires@epfl.ch

Présentation

2

Artificial
Intelligence

• Rafael Pires
• Licence et Master en Informatique, Master en Mécatronique (Brésil)

• Doctorat en Informatique à l’Université de Neuchâtel, 2020

• EPFL :

o Postdoc au laboratoire

Scalable Computing Systems (SaCS)

o Enseignant depuis l’Automne 2024

Objectifs du Cours C++ POP

3

Artificial
Intelligence

• Maîtrises des bases du C++11 et programmation orientée objet

• Introduction au développement de projets logiciels

Ø Architecture modulaire

• Mettre en œuvre une interface graphique (GUI)

Ø GTKmm 4

Organisation

4

• 2h de cours sur 7 semaines
Ø 1h MOOC (massive open online course) obligatoire

Ø 1h ex-cathedra (classe inversée + complément pour le projet)

• 2h TP/projet sur 11 semaines

• Postes de travail virtuels :

o Directement en salles CO020, CO021, CO023, CO4 et CO5
o Sur votre machine via https://vdi.epfl.ch

o Machine virtuelle : IC-CO-IN-SC-INJ-2026-Spring (Linux)

• Autre possibilité : installation personnelle sur votre propre
machine. IDEs : Geany, VS Code, Zed etc.

http://plan.epfl.ch/?lang=en&room=CO020
http://plan.epfl.ch/?lang=en&room=CO021
https://plan.epfl.ch/?room==CO%20023
https://plan.epfl.ch/?room==CO%204
https://plan.epfl.ch/?room==CO%205
https://vdi.epfl.ch/

MOOC
Introduction à la programmation orientée objet en C++

5

• S’inscrire uniquement via le lien fourni
(afin d’éviter les frais Coursera)

• Format de 7 semaines :

usage partiel sur 6 semaines

• Quizz et problèmes avec autograder

• Exercices avec leur corrigé

• Gratuit, ainsi que la transcription écrite :

BOOC

Remerciements :

Jamila Sam et Jean-Cédric Chappelier

https://coursera.org/groups/programmation-orientee-objet-cpp-sf1i3/invitation
https://www.epflpress.org/product/814/9782889143993/introduction-a-la-programmation-orientee-objet-en-c

Documents de cours

6

• Toutes les informations et liens vers les documents de cours sont

sur Moodle cours COM-112(a)

https://moodle.epfl.ch/course/view.php?id=15698

• Tous les cours sont enregistrés
o Enregistrement à retrouver sur Moodle après

o Mais… venez au cours autant que possible !

• Pour vos questions : Ed Discussion
o Posez vos questions sur le cours, les exercices, le miniprojet

o Catégorisez votre question correctement

Remerciements : Ronan Boulic

https://moodle.epfl.ch/course/view.php?id=15698

Projet – Brick Breaker

7

• Constituer un groupe sur Moodle

Ø 2 personnes (ni une, ni trois)

• Chaque groupe sera automatiquement affecté à un·e assistant·e / coach

Ø Des changements sont possibles avec l’accord des assistant·e·s

Ø Un·e assistant·e ne peut coacher qu’au maximum 11 groupes

Ø À partir de la semaine 2, un groupe se rend toujours au même

endroit lors des séances de TP, où se trouvera son coach

Ø Les coachs notent les rendus, mais pas ceux de leurs supervisé·e·s

• Pour toute question : EdStem

https://moodle.epfl.ch/mod/resource/view.php?id=1362118
https://moodle.epfl.ch/mod/lti/view.php?id=1237629

Programme du cours

8

51 3 4 6 8 97 10 11 12 13 142

24.04 Midterm
(45%)

24.05 Rendu final
du projet

(55%)

Pâques

Cours, séries,
projet - rendus 1 et 2

03.04 Congé projet - rendu 3

Oral aléatoire sur le code du projet (sem 10-14) : convocation par email une semaine à l’avance.
Il s’agira d’expliquer comment fonctionne votre code pour réaliser une partie du projet (sur votre laptop)

Planning

9

Equipe

10

Ramya
Prabhu

Maxime
Jacovella

Adam Ben Hamdene
Idriss Benjelloun
Maximo Castellari
Alessandro De Zen
Sébastien Dévaud
Blanche Elisa Marie Doussaud

Flavien Jaquerod
Stanislas Johann Krainik-Saul
Jan Amitai Livny
Jonas Baptiste David Verbois
Océane Voland

Assistant.e.s
doctorant.e.s :

Assistant.e.s
étudiant.e.s :

Décomposition modulaire

11

§ Objectifs : maîtriser un projet
v Définir la notion d’architecture logicielle

v Identifier et minimiser les dépendances entre modules

§ Plan :
v Un module : 2 fichiers = interface + implémentation
v Graphe des appels

v Graphe des dépendances

v La commande make et le fichier Makefile

Décomposition modulaire : principe d’abstraction

12

§ Présenter l’idée générale de la solution sans
se perdre dans les détails

tache_A tache_B

main()
{
tache_A();
tache_B();

}

main

tache_A()
{
…

}

tache_B()
{
action_1();
action_2();

}

action_1 action_2

Décomposition modulaire : principe de ré-utilisation

13

§ Réduire l’effort de mise au point et la taille du
code en ré-utilisant du code

tache_C tache_D

main()
{
tache_C();
tache_D();
tache_C();

}

main

tache_C

Le graphe des appels de fonctions

14

§ Offre une vue synthétique des dépendances
entre fonctions:

tache_C

main()
{
tache_C();
tache_D();
tache_C();

}

tache_D

main

main()
{
tache_A();
tache_B();

}

tache_A()
{
action_1();

}

tache_B()
{
action_1();
action_2();

}
tache_A tache_B

main

action_1 action_2

Décomposition modulaire

15

§ Abstraction
v Vue générale claire, déléguer les sous-problèmes

§ Ré-utilisation
v Fonctions utilitaires (ex. math)

§ Séparation des fonctionalités
v Unités logicielles cohérentes (module ou groupe demodules)

§ Encapsulation de type « Boîte Noire »
v Minimiser les dépendances entre modules

§ Concentration des dépendances
v Vis-à-vis de bibliotèques externes

C’est quoi un module ?

16

§ Interface
v Décrit le but ; Contient les prototypes des fonctions exportées
v Fichier en-tête (.h)
v Pour pouvoir appeler ces fonctions dans d’autres modules, il

faut et il suffit d’une directive include pour inclure cette
interface

§ Implémentation
v Définit comment les fonctions sont mises enœuvre (.cc)
v Une même interface (.h) peut avoir des implémentations (.cc)

très différentes

un module = une interface + une implémentation

C’est quoi un module ?

17

§ Interface

§ Implémentation

un module = une interface + une implémentation

int div(int num, int denom);

#include “calcul.h”
int div(int num, int denom)
{
if(denom != 0)
return num/denom;

return 0;
}

calcul.h

calcul.cc

module calcul

L’architecture logicielle

18

#include “date.h”
int main()
{
x = date_nb_jour(…);
// …

}

date.cc

module nbjour

int date_nb_jour(…);

#include “date.h”
int date_nb_jour(…)
{
// …

}

date.h

date.cc

module date

§ Décrire les dépendances entre les blocs qui
constituent le projet (modules, bibliothèques)

L’architecture logicielle

19

#include “date.h”
int main()
{
x = date_nb_jour(…);
// …

}

prog.cc

module nbjour

int date_nb_jour(…);

#include “date.h”
int date_nb_jour(…)
{
// …

}

date.h

date.cc

module date

date_nb_jour

main

date

nbjour

Graphe des appels de fonctions Architecture logicielle

Rappel : Production d’un exécutable

20

Compilation Edition de liens

Programmation modulaire → Compilation séparée

21

$ g++ prog.cc calcul.cc –o prog

$ g++ -c prog.cc
$ g++ -c calcul.cc
$ g++ prog.o calcul.o –o prog

§ Compilation simultanée
v Avantage : garantie de cohérence
v Inconvénient : durée de compilation

§ Compilation séparée
v Avantage : tests et mises à jour indépendants
v Inconvénient : risques d’incohérence si le code source

est modifié sans recompiler les fichiers dépendants

Risque d’incohérence lié à la compilation séparée

22

#include “add.h”
int main()
{

return addition(2, 3);
}

main.cc int addition(int a, int b);

#include “add.h”
int addition(int a, int b)
{

return a + b
}

add.h

add.cc

int addition(long a, long b);

#include “add.h”
int addition(long a, long b)
{

return a + b
}

add.h

add.cc

main.o add.o

add.o

Edit
ion

de

lie

ns

Compilation séparée

23

§ Lorsqu’on veut produire un fichier exécutable, il faut considérer
explicitement tous les fichiers utilisés pour produire cet exécutable :
.o + bibliotèques + .h, .cc

§ Problème : gros risque d’incohérence des versions de tous ces
fichiers si on réalise cette gestion « à la main »

§ Solution : automatiser les décisions de recompilation avec la
commande make du système linux

Un graphe de dépendances de tous les fichiers sources et objets est
mémorisé dans un fichier Makefile (Série 0)

Rappel : L’architecture logicielle

24

#include “date.h”
int main()
{
x = date_nb_jour(…);
// …

}

prog.cc

module nbjour

int date_nb_jour(…);

#include “date.h”
int date_nb_jour(…)
{
// …

}

date.h

date.cc

module date

date_nb_jour

main

date

nbjour

Graphe des appels de fonctions Architecture logicielle

Graphe des dépendances d’un projet

25

calcul.o prog.o

calcul.cc calcul.h prog.cc

prog

Compilation

Edition de liens

Exécutable

Objets

Sources

Graphe des dépendances → Makefile

26

calcul.o prog.o

calcul.cc calcul.h prog.cc

prog

prog: prog.o calcul.o
g++ prog.o calcul.o –o prog

calcul.o: calcul.cc calcul.h
g++ -c calul.cc

prog.o: prog.cc calcul.h
g++ -c prog.cc

cible: dépendance(s)
commande(s)

Makefile

§ La commande make examine la 1ère règle
v Si une dépendance est plus récente que la cible
v alors la commande est exécutée

Résumé Cours 1

27

• Principes justifiant un module : séparation des tâches, abstraction, ré-utilisation,
et rassembler des dépendances.

• Un module est constitué d’une interface (.h) et d’une implémentation (.cc)

• L’interface (.h) document les prototypes des fonctions pouvant être appelées dans

d’autres modules. Elle décrit seulement le but de ces fonctions mais pas le
comment car c’est la responsabilité de l’implémentation (.cc)

• L’architecture logicielle résume les dépendances entre modules

• La commande make permet de maîtriser les dépendances entre fichiers

rafael.pires@epfl.ch

Merci 28

