I
T
"1
—

Programmation Orientée Projet
COM-112(a)

Semaine 1

Rafael Pires
rafael.pires@epfl.ch

“PEL Lausanne, 20.02.2026

mailto:rafael.pires@epfl.ch

Présentation

Rafael Pires
Licence et Master en Informatique, Master en Mécatronique (Brésil)
Doctorat en Informatique a I'Université de Neuchatel, 2020
EPFL :
o Postdoc au laboratoire
Scalable Computing Systems (SaCS)

o Enseignant depuis I'’Automne 2024

Objectifs du Cours C++ POP

« Maitrises des bases du C++11 et programmation orientée objet

* Introduction au développement de projets logiciels

» Architecture modulaire

* Mettre en ceuvre une interface graphique (GUI)
» GTKmm 4

Organisation

 2h de cours sur 7 semaines
» 1h MOOC (massive open online course) obligatoire
» 1h ex-cathedra (classe inversée + complément pour le projet)

 2h TP/projet sur 11 semaines

* Postes de travail virtuels :
o Directement en salles CO020, CO021, CO023, CO4 et CO5
o Sur votre machine via https://vdi.epfl.ch
o Machine virtuelle : IC-CO-IN-SC-INJ-2026-Spring (Linux)

» Autre possibilité : installation personnelle sur votre propre
machine. IDEs : Geany, VS Code, Zed etc.

http://plan.epfl.ch/?lang=en&room=CO020
http://plan.epfl.ch/?lang=en&room=CO021
https://plan.epfl.ch/?room==CO%20023
https://plan.epfl.ch/?room==CO%204
https://plan.epfl.ch/?room==CO%205
https://vdi.epfl.ch/

MOOC

Introduction a la programmation orientée objet en C++

« S’inscrire uniquement via le lien fourni

(afin d’éviter les frais Coursera)
« Format de 7 semaines :
usage partiel sur 6 semaines
* Quizz et problémes avec autograder
« Exercices avec leur corrigé
» Gratuit, ainsi que la transcription écrite :
BOOC

Remerciements :

Jamila Sam et Jean-Cédric Chappelier

Sarm ot Viecont Lapetit

INTRODUCTION

A LA PROGRAMMATION
ORIENTEE OBJET

(EN C++)

Jean-Cédric Chappelier,
Jamila Sam et
Vincent Lepetit

https://coursera.org/groups/programmation-orientee-objet-cpp-sf1i3/invitation
https://www.epflpress.org/product/814/9782889143993/introduction-a-la-programmation-orientee-objet-en-c

Documents de cours

* Toutes les informations et liens vers les documents de cours sont
sur Moodle cours COM-112(a)
https://moodle.epfl.ch/course/view.php?id=15698

» Tous les cours sont enregistrés
o Enregistrement a retrouver sur Moodle aprés
o Mais... venez au cours autant que possible !
* Pour vos questions : Ed Discussion
o Posez vos questions sur le cours, les exercices, le miniprojet

o Catégorisez votre question correctement

Remerciements : Ronan Boulic

https://moodle.epfl.ch/course/view.php?id=15698

Projet — Brick Breaker

» Constituer un groupe sur Moodle

» 2 personnes (ni une, ni trois)

« Chaque groupe sera automatiquement affecté a un-e assistant-e / coach
» Des changements sont possibles avec I'accord des assistant-e:s
» Un-e assistant-e ne peut coacher qu'au maximum 11 groupes
0 > A partir de la semaine 2, un groupe se rend toujours au méme
endroit lors des séances de TP, ou se trouvera son coach
: » Les coachs notent les rendus, mais pas ceux de leurs supervisé-e-s

» Pour toute question : EdStem

cPrL

https://moodle.epfl.ch/mod/resource/view.php?id=1362118
https://moodle.epfl.ch/mod/lti/view.php?id=1237629

Programme du cours

projet - rendu 3

03.04 Congé Paques
Ld
dfjegsfaysiel] Je 13

B
- ~ T T

Cours, séries, 24.04 Midterm 24.05 Rendu final
projet - rendus 1 et 2 (45%) du projet
(55%)

Oral aléatoire sur le code du projet (sem 10-14) : convocation par email une semaine a |'avance.
Il s"agira d’expliquer comment fonctionne votre code pour réaliser une partie du projet (sur votre laptop)

cPrL

Planning
Date MOOC : Cours h1 11-12h : Cours h2 12-13h : TP h1 13-14h : TP h2 _

=PrL

10

1"

12

13

20 fév

27 fév

6 mars

13 mars

20 mars

27 mars

3 avril

10 avril

17 avril

24 avril

1 mai

8 mai

15 mai

22 mai

29 mai

Inscription MOOC
Sem1: Intro POO
Sem2: Constr./Destr.
Sem3: Surcharge

Semd: Héritage

Semb5: Polymorphisme

Sem6: Héritage mult.
Pas de cours
Pas de cours
Pas de cours
Pas de cours
Pas de cours

Pas de cours

Prog. Modulaire PoP_s0: make et makefile

Vue générale projet, architecture PoP_s1: Donnée projet

Lecture fichier, préprocesseur PoP_s2: Préprocesseur et stubs
Vector, type paramétré PoP_s3: Static, type paramétré
MVC / GTKmm / dessin PoP_s4: MVC et dessin

Modeéle indépendant GTKmm PoP_s5: GTKmm / GUI

GTK idle vs timer / Révisions PoP_s6: GTKmm / événements

Pas de cours
Temps projet
Temps projet
Temps projet

Temps projet

Fin du semestre

Développement projet
Exercices MOOC sem 1
Exercices MOOC sem 2
Exercices MOOC sem 3
Exercices MOOC sem 4

Exercices MOOC sem 5

Exercices MOOC sem 6

Temps projet
Temps projet
Temps projet

Temps projet

Intro méthodes

Donnée disponible

RENDU 1 (29 mars)

TEST ECRIT (45%) dans les salles CE 11 et CO 1 RENDU 2 (26 avril)

Equipe

Assistant.e.s

doctorant.e.s :

Assistant.e.s
étudiant.e.s :

cPrL

Ramya
Prabhu Jacovella

Adam Ben Hamdene

|driss Benjelloun

Maximo Castellari

Alessandro De Zen

Sébastien Dévaud

Blanche Elisa Marie Doussaud

Maxime

Flavien Jaquerod

Stanislas Johann Krainik-Saul
Jan Amitai Livny

Jonas Baptiste David Verbois
Océane Voland

10

Décomposition modulaire

0 Objectifs : maitriser un projet
+» Définir la notion d’architecture logicielle

+» ldentifier et minimiser les dépendances entre modules

0 Plan:

% Un module: 2 fichiers = interface + implémentation

% Graphe des appels

% Graphe des dépendances

<+ Lacommande make et le fichier Makefile

Décomposition modulaire : principe d’abstraction

- Présenter I'idee geneéerale de la solution sans
se perdre dans les détails

main

tache_A tache_B

action_1 action_2

e = =

main() tache A() tache B()
{ { {
tache A(); . action_1();
tache B(); ||} action_2();
3 b

Décomposition modulaire : principe de ré-utilisation

. Reéduire I'effort de mise au point et la taille du
code en ré-utilisant du code

main

tache_C tache_D tache_C

= =

main()

{
tache_C();
tache D();
tache_C();

b

Le graphe des appels de fonctions

entre fonctions:

main()

{
tache_C();
tache_D();
tache_C();

b

main

AN

tache_C tache_D

Offre une vue synthétique des dépendances

main()

{
tache_A();
tache_B();

by

tache A()
{

by

action 1();

main

AN

tache_A tache_B

tache B()
{

action 1();
action_2();

by

L

action_1 action_2

14

Décomposition modulaire

Abstraction

% Vue générale claire, déléguer les sous-problemes
Ré-utilisation

% Fonctions utilitaires (ex. math)

Séparation des fonctionalités

% Unités logicielles cohérentes (module ou groupe de modules)

Encapsulation de type « Boite Noire »

% Minimiser les dépendances entre modules

Concentration des dépendances

% Vis-a-vis de biblioteques externes

15

C’est quoi un module ?

un module = une interface + une implémentation

3 Interface

% Décrit le but ; Contient les prototypes des fonctions exportées

% Fichier en-téte (.h)

% Pour pouvoir appeler ces fonctions dans d’autres modules, il
faut et il suffit d'une directive include pour inclure cette
interface

8 Implémentation

s Définit comment les fonctions sont mises en ceuvre (.cc)

K/

% Une méme interface (.h) peut avoir des implémentations (.cc)
tres différentes

16

C’est quoi un module ?

un module = une interface + une implémentation

m Interface

o Implémentation

module calcul
F | | | | [| [| | | | | | | | | | | | | [] I

calcul.h

int div(int num, int denom);

calcul.cc

#include “calcul.h”
int div(int num, int denom)
{
if(denom != 0)
return num/denom;
return 0;

v

-_—
~

L’architecture logicielle

Décrire les dépendances entre les blocs qui

constituent le projet (modules, bibliotheques)

module nbjour
I Il I S S S S -

date.cc

#include “date.h”
int main()

{

x = date_nb_jour(..);

// ..

b

=)

module date

I date.h

| int date_nb_jour(...);

date.cc

#include “date.h”

{
/]

J

[
| | int date_nb_jour(...)
[
[

18

L’architecture logicielle

module nbjour
I Il I S S S S -

prog.cc

#include “date.h”

/] .
b

Graphe des appels de fonctions

main

date_nb_jour

I
I
int main() |
¢ x = date_nb_jour(..); || ‘
I
I

module date
I Il D D D S S .

I date.h
int date_nb_jour(...);

date.cc

#include “date.h”
int date_nb_jour(...)
{

// ..
b

Architecture logicielle

nbjour

date

19

Code source
texte lisible

Rappel : Production d’'un exécutable

r

01001000 11101001
10110100 00000001

00000000 01000010

DERDRDDD DARAARRD

table des symboles

main - ?2??
printf - ?22°?

Fichier objet
(utilisateur)

Compilation

main - 0x00401000
printf- 0x00401240
exit - 0x00401380

Exécutable

prét a exécuter

Edition de liens

11111110 01001000
10110001 00000000

10101010 00110011
01010101 11001100

main - défini v

printf - défini Vv
Fichier objet
(bibliotheque std)

20

Programmation modulaire - Compilation séparée

-

@ .

Compilation simultanée

/

% Avantage : garantie de cohérence

/

* Inconvénient : durée de compilation

$ g++ prog.cc calcul.cc -o prog

Compilation séparée

Avantage : tests et mises a jour indépendants
Inconvénient : risques d’'incohérence si le code source
est modifié sans recompiler les fichiers dépendants

/

0’0
/7
0’0

$ g++ -c prog.cc
$ g++ -c calcul.cc
$ g++ prog.o calcul.o -o prog

21

| Y & D

Risque d’'incohérence lié a la compilation séparée

add.h
main.cc int addition(int a, int b);

#include “add.nh”
int main() add.cc
{ #include “add.h”

return addition(2, 3); int addition(int a, int b)
3 {

return a + b

add.h

int addition(long a, long b);

add.cc

C_________________J
\ .
1cs
M .

#include “add.h”
int addition(long a, long b)
{

return a + b

—

Compilation séparée

-

Lorsqu’on veut produire un fichier exécutable, il faut considérer
explicitement tous les fichiers utilisés pour produire cet exécutable :

.0 + biblioteques + .h, .cc

. Probleme : gros risque d’incohérence des versions de tous ces

fichiers si on réalise cette gestion « a la main »

. Solution : automatiser les décisions de recompilation avec Ila

commande make du systéme linux

Un graphe de dépendances de tous les fichiers sources et objets est

mémorisé dans un fichier Makefile (Série O)

23

Rappel : L'architecture logicielle

module nbjour
I Il I S S S S -

I I
prog.cc
[#include “date.h” I
I int main() |
{ —>
|| x = date_nb_jour(..); |l
// ..
1|, I
[I

Graphe des appels de fonctions

main

date_nb_jour

module date
I Il D D D S S .

I date.h
int date_nb_jour(...);

date.cc

#include “date.h”
int date_nb_jour(...)

{
b

/]

Architecture logicielle

nbjour

date

24

Graphe des dépendances d’un projet

Exécutable

Objets
Sources = =
lcul alcul.h

25

Graphe des dépendances —» Makefile

prog

cible: dépendance(s)
commande(s)

calcul.o prog.o Makefile

prog: prog.o calcul.o
g++ prog.o calcul.o -o prog

calcul.o: calcul.cc calcul.h
g++ -c calul.cc

prog.o: prog.cc calcul.h

calcul.cc calcul.h prog.cc g++ -C prog.cc
n La commande make examine la 1°'¢ régle
% Siune dépendance est plus récente que la cible
/

++ alors la commande est exécutée

=P

Résumé Cours 1

L

L

Principes justifiant un module : séparation des taches, abstraction, ré-utilisation,

et rassembler des dépendances.

Un module est constitué d’une interface (.h) et d’'une implémentation (.cc)

L'interface (.h) document les prototypes des fonctions pouvant étre appelées dans
d’autres modules. Elle décrit seulement le but de ces fonctions mais pas le

comment car c’est la responsabilité de I'implémentation (.cc)

L’architecture logicielle résume les dépendances entre modules

La commande make permet de maitriser les dépendances entre fichiers

27

yerv

rafael.pires@epfl.ch

EPFL

