
PoP Série 0 niveau 0

Exercice 7 (niveau 0) : Un exemple de Makefile

Admettons que l’on ait écrit un programme séparé en modules de la manière suivante :

— Gestion d’un ensemble de fruits, dont les fonctions exportées sont déclarées dans fruits.h (header) et définies
dans le fichier source fruits.cc.

— Gestion d’un ensemble de personnes, avec les fichiers persons.h, persons.cc, qui dépend de fruits.h.

— Le programme principal (comprenant la fonction main()), dans le fichier eatFruit.cc, qui dépend de fruits.h
et de persons.h.

Exercice : Dessinez le graphe des dépendances à partir de ces indications (solution en fin de fichier).

Un fichier Makefile de base contient une règle de dépendance pour chaque fichier objet et une règle supplémen-

taire pour l’exécutable. La syntaxe d’une règle fait apparaître pour chaque cible l’ensemble des fichiers dont elle

dépend ; les fichiers sont séparés par un espace :

cible: dependance1 dependance2 etc.

Nous avons une règle de dépendance pour chaque module, c’est-à-dire une cible par fichier objet résultant de la
compilation du fichier source .cc, et une cible supplémentaire pour lier tous les fichiers objets en un programme
exécutable.

Les dépendances de chacune de ces cibles sont déterminées par les directives d’inclusion présentes dans les fichiers

de déclaration (en-tête .h) et d’implémentation (source .cc).

On ignore les dépendances vers des fichiers que l’on ne peut pas modifier comme par exemple les fichiers en-tête de

la bibliothèque standard du C++.

En résumé, si une dépendance est modifiée alors sa cible doit être remise à jour. Cela est fait avec une ou plusieurs

commandes qui apparaissent sous la règle de dépendance dans le fichier Makefile. Les commandes de compilation

des cibles sont les plus fréquentes mais ce ne sont pas les seules.

Exercice : Récupérez le projet qui se trouve dans le fichier archive "code source eatFruit" (copiez ce répertoire chez

vous). Essayez d’écrire le Makefile sans utiliser de variables macros.

Un Makefile possible pourrait être :

Makefile

all: eatFruit

fruits.o : fruits.cc fruits.h
g++ -c fruits.cc -o fruits.o

persons.o : persons.cc persons.h fruits.h
g++ -c persons.cc -o persons.o

eatFruit.o : fruits.h persons.h eatFruit.cc
g++ -c eatFruit.cc -o eatFruit.o

eatFruit : fruits.o persons.o eatFruit.o
g++ eatFruit.o persons.o fruits.o -o eatFruit

1

PoP – Série 0 niveau 0 20/02/2026

Avec un tel Makefile, notre projet peut dès lors être compilé au moyen de la commande make. On remarque que la

cible all n’est dans ce cas qu’un simple alias pour la cible eatFruit (c’est-à-dire que les deux noms sont équivalents).

Pour construire cette cible, make doit en premier lieu construire les cibles indiquées comme dépendances (aussi

appelées les pré-requis) ; remarquons au passage que make ne (re)construit une cible que si l’une au moins de ses

dépendances est plus récente que la cible elle-même.

C’est ce mécanisme qui permet à make de ne compiler que ce qui est strictement nécessaire. Ainsi, si l’on exécute la

commande make une seconde fois, après la première compilation, le programme signalera :

make: Nothing to be done for `all'.

De la même manière, si l’on venait à modifier le fichier fruits.cc, la commande make ne conduirait qu’à la

recompilation de ce dernier (réalisation de la cible fruits.o, puisque l’un de ses pré-requis, fruits.cc correspond

à un fichier dont la date de modification est postérieure à celle du fichier attaché à la cible), entraînant elle-même la

mise à jour de la cible eatFruit (pour la même raison que précédemment).

Si l’on modifie par contre le fichier fruits.h, ce seront (toutes) les cibles fruits.o, persons.o, eatFruit.o et

eatFruit qui seront mises à jour.

Éléments avancés. Supposons que nous souhaitions systématiquement préciser un certains nombre d’options au

compilateur, pour permettre l’utilisation d’un dévermineur (-g), activer les warnings (-Wall) et rendre le compilateur

plus strict vis-à-vis du standard de C++ utilisé (-std=c++11). De plus, on veut remplacer dans chaque ligne la

commande g++ par une variable.

Plutôt que d’ajouter chacune de ces options à chaque commande de compilation (et devoir à nouveau tout remodifier

lorsque l’on désirera supprimer les informations additionnelles ajoutées pour permettre le déverminage), il serait

plus judicieux d’utiliser une variable (par exemple CFLAGS) pour mémoriser les options à transmettre au compilateur.

Notre Makefile, devient alors :

Makefile
CC = g++
CFLAGS = -g -Wall -std=c++11

all: eatFruit

fruits.o : fruits.cc fruits.h
$(CC) $(CFLAGS) -c fruits.cc -o fruits.o

persons.o : persons.cc persons.h fruits.h
$(CC) $(CFLAGS) -c persons.cc -o persons.o

eatFruit.o : fruits.h persons.h eatFruit.cc
$(CC) $(CFLAGS) -c eatFruit.cc -o eatFruit.o

eatFruit : fruits.o persons.o eatFruit.o
$(CC) $(CFLAGS) eatFruit.o persons.o fruits.o -o eatFruit

Ensuite, on veut utiliser une liste pour désigner les fichiers objets. Pour cela on utilise aussi une variable OFILES.

2

PoP – Série 0 niveau 0 20/02/2026

Makefile
CC = g++
CFLAGS = -g -Wall -std=c++11
OFILES = fruits.o persons.o eatFruit.o

all: eatFruit

fruits.o : fruits.cc fruits.h
$(CC) $(CFLAGS) -c fruits.cc -o fruits.o

persons.o : persons.cc persons.h fruits.h
$(CC) $(CFLAGS) -c persons.cc -o persons.o

eatFruit.o : fruits.h persons.h eatFruit.cc
$(CC) $(CFLAGS) -c eatFruit.cc -o eatFruit.o

eatFruit : $(OFILES)
$(CC) $(OFILES) -o eatFruit

La cible particulière clean est responsable de supprimer les fichiers inutiles (objets, exécutables, ...) qui s’accumulent

dans le répertoire courant.

Makefile
CC = g++
CFLAGS = -g -Wall -std=c++11
OFILES = fruits.o persons.o eatFruit.o

all: eatFruit

fruits.o : fruits.cc fruits.h
$(CC) $(CFLAGS) -c fruits.cc -o fruits.o

persons.o : persons.cc persons.h fruits.h
$(CC) $(CFLAGS) -c persons.cc -o persons.o

eatFruit.o : fruits.h persons.h eatFruit.cc
$(CC) $(CFLAGS) -c eatFruit.cc -o eatFruit.o

eatFruit : $(OFILES)
$(CC) $(OFILES) -o eatFruit

clean:
@echo "***EFFACE MODULES OBJET ET EXECUTABLE ***"
@/bin/rm -f *.o *.x *.cc~ *.h~

Variables automatiques. Ce qui a été présenté jusqu’à maintenant est suffisant pour vous permettre d’écrire un

Makefile fonctionnel ; cependant, comme l’illustre l’exemple précédent, cette rédaction reste relativement fastidieuse.

Les informations contenues dans cette section vont vous permettre d’augmenter considérablement le pouvoir expressif

des instructions du Makefile, rendant ainsi sa rédaction plus aisée.

make maintient automatiquement à jour pour nous un certain nombre de variables prédéfinies, en les actualisant

lors de l’exécution de chaque règle, en fonction de la cible concernée et de ses dépendances.

Parmi ces variables, citons :

3

PoP – Série 0 niveau 0 20/02/2026

$@ cible de la règle courante
$< première dépendance (premier pré-requis de la liste des pré-requis)

$? liste de toutes les dépendances (séparées par une espace) plus récentes que la cible courante (les

dépendances impliquant la mise à jour de la cible).

$ˆ liste de toutes les dépendances (séparée par une espace) de la cible. Si un pré-requis est présent plusieurs

fois dans une même liste de dépendance, il ne sera reporté qu’une fois par $ˆ.

$+ liste exacte de toutes les dépendances (séparée par une espace) de la cible (à l’inverse de $ˆ, les pré-requis
sont reportés par $+ autant de fois qu’ils sont indiqués dans la liste des dépendances).

Au vu de ce qui précède, on pourrait donc réécrire comme suit le Makefile :

Makefile
CC = g++
CFLAGS = -g -Wall -std=c++11
OFILES = fruits.o persons.o eatFruit.o

all: eatFruit

fruits.o : fruits.cc fruits.h
$(CC) $(CFLAGS) -c $< -o $@

persons.o : persons.cc persons.h fruits.h
$(CC) $(CFLAGS) -c $< -o $@

eatFruit.o : eatFruit.cc fruits.h persons.h
$(CC) $(CFLAGS) -c $< -o $@

eatFruit : $(OFILES)
$(CC) $(OFILES) -o $@

clean:
@echo " *** EFFACE MODULES OBJET ET EXECUTABLE ***"
@/bin/rm -f *.o *.x *.cc~ *.h~

Solution : Graphe des dépendances.

Figure 1 – Graphe des dépendances

4

	Exercice 7 (niveau 0): Un exemple de Makefile

