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A paradigm shift in machine learning (ML) applications

◦ Self driving, industry automation, robotic manipulation, trading and finance,...
RL in Practice 

source: unite.ai
source: therobotreport.com

source: ieor8100.github.io source: tradingmarket

© Foundations of Reinforcement Learning | Profs. Niao He & Volkan Cevher, niao.he@inf.ethz.ch, volkan.cevher@epfl.ch 11https://neptune.ai/blog/reinforcement-learning-applications https://www.forbes.com/sites/bernardmarr/2022/12/28/
what-does-chatgpt-really-mean-for-businesses/?sh=27bc344f7d1e
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What is reinforcement learning (RL)?

◦ Classical definitions:

▷ Sutton and Barto, 1998: Reinforcement learning is learning what to do – how to map situations to actions
– so as to maximize a numerical reward signal.

▷ WikipediA, 2023: Reinforcement learning is an area of machine learning concerned with how intelligent
agents ought to take actions in an environment in order to maximize the notion of cumulative reward.
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A common theme in RL

◦ An agent learns to act by interacting with an uncertain environment

Reinforcement Learning 

© Foundations of Reinforcement Learning | Profs. Niao He & Volkan Cevher, niao.he@inf.ethz.ch, volkan.cevher@epfl.ch

An agent learns to act by interacting with the uncertain environment 

5
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A common theme in RL

◦ An agent learns to act by interacting with an uncertain environmentReinforcement Learning

© Foundations of Reinforcement Learning | Profs. Niao He & Volkan Cevher, niao.he@inf.ethz.ch, volkan.cevher@epfl.ch
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Remarkable progress on ML applications

◦ Which one is not due to RL?
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Perceptions of RL

◦ Roughly speaking...

▷ For EE, it is control theory mutatis mutandis

control → action

controller → agent or policy

system or plant → environment

▷ For CS, it is an ML paradigm along with supervised and unsupervised learning.

▷ For others?
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The Multi-facet of RL

© Foundations of Reinforcement Learning | Profs. Niao He & Volkan Cevher, niao.he@inf.ethz.ch, volkan.cevher@epfl.ch
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Challenges to RL

The Myth of ML/RL

© Foundations of Reinforcement Learning | Profs. Niao He & Volkan Cevher, niao.he@inf.ethz.ch, volkan.cevher@epfl.ch 14◦ Theoretical foundations are more important than ever

◦ Common challenges with ML: Robustness, interpretability, scalability, reproducibility,...
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Perceptions of our RL course (EE-618)

◦ Why are you taking this course?

▷ Learn the basics of RL

▷ Gain hands-on experience with RL implementations

▷ Apply RL to my research

▷ Might be useful for my future job

▷ Just need the credits

▷ Other reasons?

▷ Let us know https://go.epfl.ch/rl_form2023
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What are our learning objectives?

◦ By the end of the course, participants will be able to

▷ Define the key features of RL that distinguishes it from standard ML

▷ Identify the strengths and limitations of various RL algorithms

▷ Understand the theoretical properties of RL algorithms

▷ Recognize the common, connecting boundary of optimization and RL

▷ Formulate and solve sequential decision-making problems by applying relevant RL tools

▷ Generalize or discover “new” applications, algorithms, or theories of RL towards conducting research
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What EE-618 is really about: Theory and methods
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What EE-618 is not really about: real-applications

◦ The following important topics are beyond the scope of this course

▷ Coding tricks and super practical implementations of RL

▷ Applications of RL in real-world

▷ RL engineering

▷ Building autonomous robots

▷ Building autonomous driving systems

▷ Building ChatGPT-like systems
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Should I take this course?

◦ This course is right for you, if you...
▷ want to understand the RL theory

▷ have interest in performing RL research

▷ have strong math background

▷ want to gain hands-on experience with RL

◦ This course may not be right for you, if you...
▷ only want to gain hands-on experience with RL

▷ do not have interest in performing RL research

▷ have only basic math background
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What is left for today?

◦ A preview of the course...
▶ Dynamic Programming

▶ Value Iteration
▶ Policy Iteration
▶ Monte Carlo Methods
▶ TD, SARSA, Q-learning

▶ Linear Programming
▶ REPS, Proximal Point
▶ Applications to offline RL

▶ Policy-based RL
▶ Policy Gradient Method
▶ Natural Policy Gradient Method
▶ TRPO and PPO

▶ Imitation Learning and Inverse RL
▶ Behavior Cloning, GAIL
▶ Interactive IL (DAgger, SMILe)
▶ Max Margin and Max Entropy IRL

▶ Markov Games
▶ Fictitious Play
▶ Policy Gradient
▶ Nash Q-learning

▶ Robust and Deep RL
▶ Deep Q Network and Extensions
▶ Deep Actor-Critic (A3C, DDPG, TD3)
▶ Robust DDPG/TD3

Theory
Bellman Equations Stochastic Approximation
Policy Gradient Theorems Optimization and Game Theory
Performance Difference Lemma Convergence Analysis
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Markov Decision Processes (MDPs)

◦ MDPs are important for modeling sequential decision making problems.

◦ We can use MDPs to formally describe an environment for RL.

◦ We will use the following roadmap for MDPs [24]:

1. Markov chains

2. Markov reward processes

3. Markov decision processes
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Markov chains

Definition (Markov Chain)
A (time-homogeneous) Markov chain is a stochastic process {X0, X1, . . .}, taking values on a countable
number of states, satisfying the so-called Markov property, i.e.,

P (Xt+1 = j|Xt = i, Xt−1, . . . , X0) = P (Xt+1 = j|Xt = i) = Pij .

Markov Process
Markov process is a tuple ⟨S, P ⟩, where
▶ S is the set of all possible states
▶ Pss′ = P (s′|s): S → S is the transition model
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)

Definition (Stationary distribution)
If a Markov chain is irreducible and aperiodic with finite states (i.e., ergodic), then there exists a unique
stationary distribution d⋆ and {Xt} converges to it, i.e., limt→∞ P t

ij = dj ,∀i, j. We can represent this via
d⋆ = d⋆P where [P ]ij = Pij and d⋆ is a row vector. Hence, d⋆ is the left principal eigenvector of P .
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Markov chains with associated reward values

Markov reward processes
▶ S is the set of all possible states
▶ Pss′ = P (s′|s): S → S is the transition model
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)
▶ r(s): S → R is the expected reward function
▶ γ is the discount factor: γ ∈ [0, 1]
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Markov reward processes with actions

Markov Decision Process
A Markov decision process (MDP) is a Markov reward process with actions.

▶ S is the set of all possible states
▶ A is the set of all possible actions
▶ P a

ss′ = P (s′|s, a): S ×A → S is the tr. model

▶ r(s, a): S ×A → R is the reward function
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)
▶ γ is the discount factor: γ ∈ [0, 1]
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Using MDPs to establish a performance criteria

Definition (Return)
Acting on MDPs results in immediate rewards r(st, at). Accumulating these rewards, we obtain the return.

Finite horizon or fixed time horizon T
▶ Cumulative reward:

E

[
T −1∑
t=0

r(st, at)

]
▶ Average reward:

E

[
1
T

T −1∑
t=0

r(st, at)

]

Infinite horizon
▶ Discounted reward:

E

[
∞∑

t=0

γtr(st, at)

]
▶ Average reward:

lim inf
T →∞

E

[
1
T

T −1∑
t=0

r(st, at)

]
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Finite Horizon vs Infinite Horizon

◦ Does the finite horizon matter?

▶ What is the best action in the MDP below, if we are at t = T − 1 or t = T − 2?

Figure: An example of finite horizon MDP

▶ Think to a basketball match for a real world example.

◦ For sake of simplicity, we focus on the discounted infinite horizon setting in this course.
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Why discounted return?

◦ The discount factor γ routinely appears in MDPs with infinite horizon:

E

[
∞∑

t=0

γtr(st, at)

]

◦ We can use γ ∈ (0, 1) to trade off the importance of past and present rewards.

Observations: ◦ If γ = 1, the total reward may be infinite, e.g., when the Markov process is cyclic.

◦ With γ ∈ (0, 1), assuming bounded rewards, i.e., r <∞, the return will always be finite.
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From MDPs to policies

What is our goal?
Find a behavior or rule to make decisions that maximize the expected return.

◦ A policy selects an action based on the history ht := (s0:t, a0:t−1) := (s0, a0, . . . , st−1, at−1, st)
▶ It is a mapping π : S → A or π : S → ∆(A), where ∆ is the appropriate probability simplex.

Deterministic Policy
▶ Stationary policy π : S → A, at = π(st)
▶ Markov policy πt : S → A, at = πt(st)
▶ History-dependent policy πt : H → A

▶ H is the set of all possible trajectories
▶ at = πt(ht)

Randomized Policy:
▶ Stationary policy π : S → ∆(A), at∼π(·|st)
▶ Markov policy πt : S → ∆(A), at∼πt(·|st)
▶ History-dependent policy πt : H → ∆(A)

▶ H is the set of all possible trajectories
▶ at∼πt(ht)

Remarks: ◦ The infinite horizon objective can be maximized by a stationary policy.

◦ The finite horizon objective needs instead of a Markov policy.
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Value functions: Towards provably “good” decisions

Definition (State-value function)

V π(s) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, π

]

Remarks: ◦ State-value function represents the expected return starting at the state under policy π

◦ For convenience, we may drop the π in RHS when it is clear from the context
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Solving MDPs to determine an optimal policy

The ultimate goal in RL
To find an optimal policy π⋆ ∈ Π such that

V π⋆
(s) = V ⋆(s) := max

π∈Π
V π(s), ∀s ∈ S.

Remark: ◦ The optimal policy may not be unique, while V ⋆ is unique.

Key Questions
▶ Q1: Does the optimal policy π⋆ exist?

▶ Q2: How to evaluate my current policy π, i.e., how to compute V π(s)?

–policy evaluation

▶ Q3: If π⋆ exists, how to improve my current policy π, i.e., how to find π⋆?

–policy improvement
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Bellman optimality conditions

◦ The optimal value function V ⋆ is the fixed point of the following equation:

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ⋆(s′)

]
.

Remarks: ◦ This requirement is also known as Bellman optimality conditions.

◦ Here, we assume that there exists a deterministic optimal policy.

◦ Fixed-point perspective motivates Value Iteration and Policy Iteration methodologies.
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Value Iteration (VI)

Algorithm: Value Iteration (VI) for solving MDPs
Start with an arbitrary guess V0 (e.g., V0(s) = 0 for any s)
for each iteration t do

Update Vt for any s as follows

Vt+1(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)Vt(s′)

]
. (1)

end for

Remarks: ◦ Recall that the optimal value function V ⋆ is the fixed point of the following equation:

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ⋆(s′)

]
.

◦ Value iteration can be therefore viewed as a fixed-point iteration.

◦ The course will go deeper into an operator view of this update.
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Policy Iteration (PI)

Algorithm: Policy Iteration (PI) for solving MDPs
Start with an arbitrary policy guess π0.
for each iteration t do

(Step 1: Policy evaluation) Compute V πt via an option below:
(Option 1) Initialize V and iteratively apply policy value iteration,
V πt (s)← Ea∼πt(·|s)

[
r(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

]
, until convergence;

(Option 2) Use the closed-form solution: V πt = (I − γP πt )−1Rπt .

(Step 2: Policy improvement) Update the current policy πt by the greedy policy

πt+1(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V πt (s′)

]
. (2)

end for

Remarks: ◦ Recall that we assume that there exists a deterministic optimal policy.

◦ Greedy policy achieves the optimal deterministic policy.
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Comparison

Algorithm Value Update Policy Update

Value Iteration (VI) Vt+1 = maxa∈A
[
r(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

]
None

Policy Iteration (PI) Vt+1 = E
[
r(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)|πt

]
Greedy Policy

Algorithm Per iteration cost Number of iterations Output

Value Iteration (VI) O
(
|S|2|A|

)
T = O

(
log(ϵ−1(1−γ))

log γ

)
VT such that ∥VT − V ⋆∥ ≤ ϵ

Policy Iteration (PI) O
(
|S|3 + |S|2|A|

)
T = O

( |S|(|A|−1)
1−γ

)
V ⋆ and π⋆

Observations: ◦ VI and PI are broadly dynamic programming approaches.

◦ PI converges in finite number of iterations [27] whereas VI does not [25].

◦ These solution mythologies assume that the transition dynamics is known!

◦ These solution mythologies are broadly known as model-based RL.
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From dynamic programming to optimization via the Bellman optimality conditions

Lemma
The optimal value function V ⋆(s) is an element of the following set{

V ∈ R|S| : V (s) ≥ r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′)

}
.

Derivation: ◦ Recall the Bellman optimality conditions

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ⋆(s′)

]
.

◦ As a result, for any s, a, we have that

V ⋆(s) ≥

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V ⋆(s′)

]
.

◦ The equality is achieved for maximizing actions only (i.e., V ⋆ is the element-wise minimum).
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Solving MDPs via linear programming (LP)

Primal LP for Finding V ⋆

Let µ(s), s ∈ S be the initial distribution (or any positive weights). We have

min
V

∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′) ∀ s ∈ S, a ∈ A,
(P)

where V ⋆ ← arg min.

Remarks: ◦ The optimal value function V ⋆ is the unique solution to the above LP.

◦ Number of decision variables: |S|, number of constraints: |S| × |A|.
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Towards the dual LP: Occupancy measure

Definition
Given any policy π, we define the occupancy measure of the policy π as:

λ(s, a) = (1− γ)E

[
T∑

t=0

γt1(st = s, at = a)|π

]
. (3)

Remark: ◦ Intuitively it is the discounted visitation frequency of a certain state action pair under policy π.
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Solving MDPs via the dual LP

Dual LP formulation
Given the primal LP (P), its dual can be written as follows:

max
λ∈∆

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = µ(s) + γ
∑

s′∈S,a′∈A

P (s|s′, a′)λ(s′, a′) ∀ s ∈ S (D)

where λ⋆ ← arg max.

Remarks: ◦ Number of decision variables: |S| × |A|, number of constraints: |S|.

◦ The solution λ⋆ to (D) corresponds to the state-action occupancy of the optimal policy.

◦ The LP formulation is due to Manne [16]
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Model-free RL: Basics

◦ When the transition dynamics is unknown, we can use the state-action value function.

Definition (State-action value function/Quality-function)

Qπ(s, a) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, π

]

Remarks: ◦ Given a state action value function, the greedy policy can be determined as follows:

π(s) = argmaxa∈A Q(s, a).

◦ The optimal state-value function Qπ⋆ can be found via Q-Learning (see Lecture 2).

◦ Model-free is arguably more popular than model-based RL in ML.

◦ A new consideration in this setting is the sample complexity (vs. computational complexity)!
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Learning from demonstrations

◦ The reward function is unknown or is difficult to design in real world problems.

◦ It is easier/more natural to use “demonstrations” by experts.
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Imitation learning (IL) vs inverse reinforcement learning (IRL)

◦ Setting:

▶ Given an expert’s demonstrations {(si, πE(si))} (offline trajectories or online queries)

▶ Reward signal is unobserved

▶ Transition model may be known or unknown

◦ Goals and approaches:

▶ Recover the expert’s policy πE directly: imitation learning (IL)

▶ Recover the expert’s latent reward function rE(s, a): inverse reinforcement learning (IRL)
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A historic application

◦ Inverse Reinforcement Learning has been formally introduced by [20].

(a) (b)

Figure: One of the first imitation learning systems using neural networks.

◦ ALVINN: Autonomous Land Vehicle In a Neural Network, 1989 [23].
https://www.youtube.com/watch?v=2KMAAmkz9go&t=205s.
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One of the latests applications

◦ Large language models: ChatGPT

https://www.forbes.com/sites/bernardmarr/2022/12/28/what-does-chatgpt-really-mean-for-businesses/?sh=27bc344f7d1e

◦ The last training step is based on Reinforcement Learning from Human Feedback (RLHF) (see [21]).

◦ A recent work [30] shows a close connection between IRL and RLHF.
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Another variation along the theme: Behavioral cloning and interactive IL

◦ Behavioral cloning (BC) is a supervised learning approach to learning from demonstrations

▶ Given an expert’s demonstrations {(si, π∗(si))} (offline trajectories or online queries)

▶ Fix a loss: L : A → R

▶ Output π⋆ ∈ argminπ

∑N

i
L(ai, π(si)) with ai, si in the dataset provided by the expert.

◦ BC can result in cascading errors

▶ Any error at a state can accumulate over an episode.

▶ It can have catastrophic consequences...

◦ Solution: Interactive IL allows to query the expert policy from a particular state

Figure: https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
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Taxonomy of approaches for learning from demonstrations

Method Reward Access to Interactive Pre-collected

learning environment demonstrations demonstrations

Behavioural Cloning NO NO NO YES

Imitation Learning NO YES NO YES

Interactive IL NO YES YES MAYBE

Inverse RL YES YES NO YES

Remarks: ◦ BC avoids interaction with the environment, but can suffer from cascading errors.

◦ IL helps with the cascading errors but requires (expensive) expert queries

◦ IRL explains the expert’s behavior but has poor sample complexity and scalability.
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Motivation for Robust (I)RL

◦ Mismatches between the settings of the learning and the deployment

◦ Mismatches between the settings of the expert and the learner

◦ Example: transfer the driving skills among different road conditions, traffic dynamics and car brands

Figure: A Toyota Prius1 and Bugatti la voiture noir2 have arguably different dynamics!

1https://www.autobild.de/artikel/toyota-prius-3-hybridauto-als-gebrauchtwagen-16425701.html,
2https://www.autobild.de/artikel/toyota-prius-3-hybridauto-als-gebrauchtwagen-16425701.html
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Application: Noisy action robust reinforcement learning1

1K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, V. Cevher, “Robust Reinforcement Learning via Adversarial Training with Langevin Dynamics” NeurIPS 2020.
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Markov games
◦ A Markov game involves multiple agents, optimizing their individual rewards

◦ State + Ryu’s action + Ken’s action → New State
▶ State ← Fighters’ Positions + Fighters’ Life
▶ Actions for Ryu ← jump, kick, punch,.. (resp. Ken)
▶ Reward for Ryu ← 1 if Ken is KO, 0 otherwise (resp. Ken)

◦ The course will cover algorithms for Markov games and robustness in the context of Nash equilibrium

◦ Also see EE-735: Online Learning in Games
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Sample complexity to solve Markov games

sample complexity
[7] Õ((|A| ∨ |B|)10.75|S|1.25ϵ−12.5)
[28] Õ((|A|3 + |B|3)|S|10.5ϵ−8)
[28] Õ((|A|3 + |B|3)|S|4.5ϵ−4C−10)
Reflected NAC [3] Õ(|S|3(|A| ∨ |B|)3ϵ−4)
Reflected NAC [3] Õ(|S|3(|A| ∨ |B|)ϵ−2)

◦ Sample complexity is a major challenge in Markov games.

◦ It provides a lowerbound for the computational complexity, which is roughly (|A| ∨ |B|)× higher

◦ Developing sample efficient algorithms is an active research direction!
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The critical need for function approximation

Figure: Self-driving car with continuous state/action space3

◦ Lookup tables can only handle small and finite state and action spaces:

▶ The optimal value function V is an array of size |S|.

▶ The optimal Q-function Q is a matrix of size |S| × |A|.

▶ A policy π(a|s) is a matrix of size |S| × |A|.

◦ How can we handle very large or continuous state and action spaces ?

3http://selfdrivingcars.space/?p=68
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Value or Q-function approximation

◦ To handle continuous spaces, V and Q must be approximated using fewer parameters.

◦ We can adapt LP and dynamics methods to use these approximations.

Example (Linear function approximation)
Given an embedding ϕ that maps s ∈ S to Rd with d≪ |S|, we can approximate the value function with a
linear function Vw(s) = w⊤ϕ(s) or Qw(s) = w⊤ϕ(s, a).

Example (Nonlinear function approximation)
We can use neural networks to approximate V or Q [15].

◦ Nonlinear parameterizations can demand sophisticated optimization technologies.

Remark: ◦ We can similarly parameterize the policy πθ with parameters θ.
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Working with the policy functions
◦ We can also write the basic RL objective in terms of policies:

π⋆ = arg max
π:π∈∆

J(π) :=
∑

s

µ(s)V π(s)

▶ µ(s) is the initial state distribution.

Lemma (Performance difference [12])
It holds that for any policies π1, π2 and denoting with λπ1 the occupancy measure of the policy π1:

J(π1)− J(π2) = Es∼λπ1 [⟨Qπ2 (s, ·), π1(·|s)− π2(·|s)⟩] = ⟨Qπ2 (s, ·), π1(·|s)− π2(·|s)⟩λπ1 ,

where ⟨·, ·⟩λ is the weighted inner product.

◦ This perspective is a building block towards developing gradient-based policy optimization algorithms:

RL Optimization
π x
J(π) f(x)
Qπ(s, a) ∇f(x)
J(π⋆)− J(π) = 1

1−γ
⟨Qπ , π⋆ − π⟩λ⋆ [13] f(x⋆)− f(x) ≥ ⟨f(x), x⋆ − x⟩
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RL vs. optimization

RL Optimization
Natural policy gradient [2], Policy mirror descent [13] Mirror Descent [18, 5, 17]
Conservative policy iteration (CPI) [12] Frank-Wolfe [8, 11]
Politex [1] Dual averaging [19]
Actor-critic [29] Two-time scale GDA [14, 9]

Natural actor-critic [10] Two-time scale GDA with
entropic setup in the primal [14, 9, 5, 17]

REPS/Q-REPS [22, 4] Proximal point in the dual LP [26, 18, 17]

◦ Challenges to optimization in finding the optimal policy π⋆ in RL:

▶ Exact computation of value functions V π , Qπ not practical.
▷ The algorithms need to work with state transition samples (st, at, st+1, at+1).

▶ Samples are heavily coupled: i.e., Markovian data [6].
▷ iid assumption of stochastic optimization does not hold.

▶ For policy optimization, objective J(π) is a non-convex function of π even in the tabular case [2].

◦ Optimization-based RL has advantages: Mirror descent obtains O
(

|S||A|
(1−γ)4ϵ2

)
-sample complexity [13].
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What’s Beyond?

▶ Episodic RL

▶ Strategic Exploration in RL

▶ Batch and Offline RL

▶ Safety in RL

▶ Multi-task RL

▶ Preference-based RL

▶ Causal RL

▶ Partially Observable Markov Decision Process (POMDP)

▶ ... ...
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Where to go from here?
◦ Recent workshops:
▶ Deep Reinforcement Learning Workshop, NeurIPS 2021, December 13

https://sites.google.com/view/deep-rl-workshop-neurips2021
▶ Offline Reinforcement Learning Workshop, NeurIPS 2021, December 14

https://offline-rl-neurips.github.io/2021/
▶ Ecological Theory of Reinforcement Learning Workshop, NeurIPS 2021, December 14

https://sites.google.com/view/ecorl2021/
▶ Political Economy of Reinforcement Learning Systems, NeurIPS 2021, December 14

https://perls-workshop.github.io/
▶ Decision Awareness in Reinforcement Learning, ICML 2022, July 22

https://icml.cc/virtual/2022/workshop/13463
▶ Responsible Decision Making in Dynamic Environments, ICML 2022, July 23

https://icml.cc/virtual/2022/workshop/13453
▶ 3rd Offline Reinforcement Learning Workshop: Offline RL as a "Launchpad", NeurIPS 2022, December 2

https://nips.cc/virtual/2022/workshop/49971
▶ Deep Reinforcement Learning Workshop, NeurIPS 2022, December 9

https://nips.cc/virtual/2022/workshop/49989
▶ European Workshop on Reinforcement Learning, 2022, 19-21 September

https://ewrl.wordpress.com/ewrl15-2022/
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Where to go from here? (Continued)

◦ Seminars:
▶ RL Theory Virtual Seminar: https://sites.google.com/view/rltheoryseminars/
▶ Control Meets Learning: https://sites.google.com/view/control-meets-learning/

◦ Simons Institute RL Program:
▶ Theory of RL: https://simons.berkeley.edu/programs/rl20
▶ Learning and Games: https://simons.berkeley.edu/programs/games2022
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Logistics

▷ Credits: 3

▷ Lectures: Thursday 9:00-12:00 (INM011)

▷ Project hours: Thursday 09:00-12:00 (INM011)

▷ Prerequisites: Previous coursework in optimization, probability theory, and linear algebra is required (i.e.,
EE-556 Math of Data). Familiarity with deep learning and programming in python is useful.

▷ Grading: Project (cf., syllabus)
▷ Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-618

syllabus & course outline & project examples
▷ TA’s: Luca Viano (head TA), Angeliki Kamoutsi, Yongtao Wu, Zhenyu Zhu, Andrej Janchevski, Leello

Dadi, Pedro Abranches, Fabian Latorre.
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