Homework 1

Exercise 1. Let $\Omega = \{1, \ldots, 6\}$ et $\mathcal{A} = \{\{1,2,3\}, \{1,3,5\}\}$.

a) Describe $\mathcal{F} = \sigma(\mathcal{A})$, the σ-field generated by \mathcal{A}.

Hint: For a finite set Ω, the number of elements of a σ-field Ω is always a power of 2.

b) Give the list of non-empty elements G of \mathcal{F} such that

$$
\text{if } F \in \mathcal{F} \text{ and } F \subseteq G, \text{ then } F = \emptyset \text{ or } G.
$$

These elements are called the atoms of the σ-field \mathcal{F} (cf. course). Equivalently, an event $G \in \mathcal{F}$ is not an atom if there exists $F \in \mathcal{F}$ such that $F \neq \emptyset$, $F \subseteq G$ and $F \neq G$.

The atoms of a \mathcal{F} form a partition of the set Ω and they also generate the σ-field \mathcal{F} in this case. (note also that if m is the number of atoms of \mathcal{F}, then the number of elements of \mathcal{F} equals 2^m)

c) Let $X_1(\omega) = 1_{\{1,2,3\}}(\omega)$, $X_2 = 1_{\{1,3,5\}}(\omega)$ and $Y(\omega) = X_1(\omega) + X_2(\omega)$. Does it hold that $\sigma(Y) = \sigma(X_1, X_2)$?

Pseudo-coding Exercise 2. Let $\Omega = \{1, \ldots, n\}$ and $\mathcal{A} = \{A_1, \ldots, A_m\}$ be a collection of subsets of Ω with $m = O(\log(n))$. Design an algorithm that outputs the list of atoms of the σ-field $\sigma(\mathcal{A})$. What is the worst-case time-complexity of your algorithm?

Exercise 3. Let now $\Omega = [0, 1]$ and $\mathcal{F} = \mathcal{B}([0, 1])$ be the Borel σ-field on $[0, 1]$.

a) What are the atoms of \mathcal{F}?

b) Is it true in this case that the σ-field \mathcal{F} is generated by its atoms?

c) Describe the σ-field $\sigma(\{x\}, x \in [0, 1])$.

Exercise 4. Let $\Omega = \{(i, j) : i, j \in \{1, \ldots, 6\}\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and define the random variables $X_1(i, j) = i$ and $X_2(i, j) = j$.

a) What are $\sigma(X_1)$, $\sigma(X_2)$?

b) Is $X_1 + X_2$ measurable with respect to one of these two σ-fields?

Exercise 5. Let \mathcal{F} be a σ-field on a set Ω and X_1, X_2 be two \mathcal{F}-measurable random variables taking a finite number of values in \mathbb{R}. Let also $Y = X_1 + X_2$. From the course, we know that it always holds that $\sigma(Y) \subset \sigma(X_1, X_2)$, i.e., that X_1, X_2 carry together at least as much information as Y, but that the reciprocal statement is not necessarily true.

a) Provide a non-trivial example of random variables X_1, X_2 such that $\sigma(Y) = \sigma(X_1, X_2)$.

b) Provide a non-trivial example of random variables X_1, X_2 such that $\sigma(Y) \neq \sigma(X_1, X_2)$.

c) Assume that there exists $\omega_1 \neq \omega_2$ and $a \neq b$ such that $X_1(\omega_1) = X_2(\omega_2) = a$ and $X_1(\omega_2) = X_2(\omega_1) = b$. Is it possible in this case that $\sigma(Y) = \sigma(X_1, X_2)$?
Exercise 6. Let $\Omega =]-1, 1]$ and $(X_i, i = 1, \ldots, 4)$ be a family of random variables on Ω defined as

$$X_i(\omega) = \begin{cases}
1 & \text{if } \frac{i-1}{4} < \omega \leq \frac{i}{4}, \\
(-1)^i & \text{if } -\frac{i}{4} < \omega \leq -\frac{i-1}{4}, \\
0 & \text{otherwise.}
\end{cases}$$

Describe the σ-field $F = \sigma(X_i, i = 1, \ldots, 4)$ using its atoms.