Série théorique PoP_s0_th

Méthodes de travail pour le développement du projet

1. Introduction : Grands principes et critéres d’évaluation

Le sujet du projet du semestre de printemps est indépendant du projet précédent. Cependant, la méthode de travail
introduite en section 2 du projet d’automne reste valide. Nous allons reprendre ces éléments et les compléter en
rappelant les bonnes pratiques : mettre en ceuvre les grands principes (abstraction, réutilisation), vérifier par les tests
avec le scaffolding et les stubs, et bien s{r, respecter les conventions de présentation du cours.

Le but du projet de printemps est surtout de se familiariser avec d’autres grands principes, comme la séparation des
fonctionnalités (separation of concerns) et I'encapsulation qui deviennent nécessaires pour structurer un projet
important en modules indépendants et fiables.

Nous mettrons l'accent sur le lien entre module et structure de données, ainsi que sur la robustesse des modules face
aux erreurs (notions de type opaque et de contrat qui seront mis en ceuvre a 'aide de classes en C++).

Par ailleurs, selon le sujet du projet, l'ordre de complexité des algorithmes pourra étre testé avec des fichiers tests plus
exigeants que les autres. L'évaluation du travail portera essentiellement sur la résolution du probleme du point de vue
informatique : structuration des données, modularité du programme, robustesse et ré-utilisabilité des modules,
stratégie de test, ordre de complexité calcul/mémoire des algorithmes mis en oeuvre, compromis
performance/occupation mémoire.

2. Charge de travail et organisation en groupe de deux personnes

Le travail sera réparti en trois rendus. lls seront décrits dans des documents indépendants fournis au fur et a mesure.

Il est important de fournir un travail régulier des la premiere semaine du semestre, car I'effort est concentré sur 12
semaines au lieu de 14. De ce fait, il est logique que la quantité de travail a effectuer par semaine soit plus importante
que celle calculée a partir du nombre de crédits. Prenez ce facteur en compte pour organiser votre semestre.

De plus, donnez-vous un objectif raisonnable et une_limite de temps a consacrer au projet pour atteindre des objectifs
compatibles avec votre niveau, car nous observons régulierement des personnes qui pénalisent leurs autres matieres
parce qu’elles doivent y consacrer un temps plus important que la moyenne. Le bareme est visible dans le document

décrivant chaque rendu.

Le projet doit étre réalisé en groupe de deux personnes, du fait de I'importance du travail a fournir, mais aussi pour
apprendre a maitriser I'organisation d’un tel travail en groupe. En particulier, nous verrons qu’il est possible de travailler
de maniere indépendante sur une composante du projet grace a la compilation séparée et a d’autres outils qui sont
présentés plus loin dans ce document. Si vous décidez d’adopter cette approche, il est important de bien analyser le
probléme pour bien se répartir le travail, puis de faire le point a intervalles réguliers (au minimum une fois par semaine).

Les responsabilités en matiere de sauvegarde du code source doivent étre clairement définies au sein du groupe. Pour le
partage du code, vous pouvez travailler avec un répertoire sur gdrive.epfl.ch. Une alternative est d’utiliser gitlab.epfl.ch,
qui est un outil de développement logiciel (non obligatoire car cela demande du temps pour maitriser cet outil). Un bref
tutoriel en anglais et quelques liens sont disponibles sur Moodle. Dans tous les cas, vous étes responsables de
restreindre 'acces a votre code aux seuls deux membres du groupe.

Enfin, le projet comporte un oral final individuel, pour lequel nous demandons a chague membre du groupe de
comprendre le fonctionnement de I'ensemble du projet. Une performance faible a cet oral peut conduire a un second
oral approfondi et a une possible baisse des notes des rendus pour la personne concernée.

1/9

https://moodle.epfl.ch/pluginfile.php/2747582/mod_resource/content/4/git_tutorial.pdf

3. Le développement de projet dans le monde réel

Le but de cette section est d’introduire les termes utilisés pour désigner les étapes du développement d’un
projet logiciel pour situer vos contributions dans le cadre de ce cours. La Figure 1 donne la liste de ces
étapes, une breve définition et leur cot relatif.

Colts
relatifs
1. Spécifications : que veutle client 2
2. Analyse : comment e faire ? décomposition 1/3
3. Codage : developpements indépendants 1/6 |
4. Test unitaire des modules
5. Test du systéme : integration + verification 1/2
6. Test par le client : vaiidation
7. Maintenance : corrections et évolution ultérieure ,

Figure 1 : Co(ts relatifs des étapes du développement d’un projet (de 1 a 6)
Chaque étape produit un résultat qui est utilisé comme entrée de I'étape suivante, et ainsi de suite. En effet,

les grandes compagnies de développement logiciel ont du personnel spécialisé pour chaque étape. Le projet
passe ainsi d’équipe en équipe au cours de son développement.

Ebauche des spécifications

- N Validati
Cascade ou V ? -\ < ¢
E)

Vérification
| Analyse | <= Test Systéme -
3 ¢ inté Construction d’'un
& rototype
[‘Spéciications | '9 : ! -
Spécifications ‘ |
Tests avec Ajustement du

_‘ Le client (ou utilisateur) prototype
[}]
Modele en cascade OK?

* une série d’étapes non
« chaque étape produit un résultat (vérifiable)

« le résultat est la base de I'étape suivante

Test Systéme 1
*Force: divise le probléme en taches claires et gérables

*Faiblesse: parfois nécéssaire de « remonter » Spéclﬁcations finales

oui

Prototype “jetable” <—5— Prototype "évolutif’
Systéme final

Figure 2 : Développement en cascade (gauche-bas) en V (gauche-haut) ou par prototypage (droite)

Pendant de nombreuses années, le développement d’un projet s’est effectué selon I'approche en cascade
(Figure 2, gauche-bas), mais celle-ci est peu efficace car on ne se rend compte d’éventuels probléemes qu’a la
toute fin, lors du test par le client. Lalternative avec le modéle de développement « en V » (Figure 2,
gauche-haut) permet de remonter a certaines étapes antérieures si un probleme de mise en ceuvre est
détecté apres les spécifications.

Une approche récente trés adaptée aux petites structures de développement est le prototypage (Figure 2,
droite), qui consiste a impliquer le client plusieurs fois lors du développement. En effet, grace a la possibilité
d’essayer un prototype partiel du produit, le client peut mieux exprimer ses besoins et ré-ordonner ses
priorités. Les six étapes du développement restent valides dans ce contexte, mais elles opéerent sur une
version réduite des spécifications.

C’est cette approche de prototypage évolutif que nous adoptons en vous faisant réaliser trois versions de plus
en plus complétes du projet.

2/9

Specs
. Item1
. item 2

etc...

3.1 Spécifications
Lobjectif premier des spécifications est de clarifier les besoins du client dans un document de spécifications
(cahier des charges). Il s’agit d’identifier ce que veut le client (Qu’est-ce que ¢a fait ?), sans préciser comment
cela doit étre réalisé. Cela n’est pas toujours possible si certaines caractéristiques techniques sont imposées
(Ex: temps de réponse de 0.1 s).

Les spécifications doivent aussi indiquer comment on peut vérifier/valider qu’elles sont bien remplies lorsque
le client obtient le produit final.

C’est la tache la plus importante car la moindre modification a des conséquences trés importantes : co(t,
échec du projet. Cette tache est ardue car le client ne sait pas toujours ce qu’il veut. Il y aussi un risque
d’écrire des spécifications ambigués qui peuvent étre interprétées différemment de l'intention initiale du
client, d’ou I'importance d’adopter des notations claires et précises.

Dans le cadre du projet, I'enseignant joue le réle du client et la donnée est la spécification du projet. Votre
réle est réduit concernant la définition de cette étape. Cependant, étant donné ce qui vient d’étre mentionné
plus haut, il est possible que certaines parties des spécifications ne soient pas assez claires ou soient mal
comprises. Votre role est alors de poser des questions sur le forum du projet sur Moodle pour améliorer ces
spécifications.

3.2 Analyse
Il est nécessaire d’avoir une connaissance approfondie des spécifications pour
pouvoir se lancer dans la phase d’analyse. Cette étape sert a définir 'architecture du
projet, c’est-a-dire :
1. sa décomposition en modules, chacun associé a une structure de données et
a un ensemble de taches,
2. l'ensemble des relations, encore appelées dépendances, entre les modules.

Module A

Module B

Module C

Les relations sont précisées en identifiant l'interface de chaque module (fichier .h), c’est-a-dire 'ensemble des
taches qu’il se propose de réaliser => 'ensemble des fonctions gu’il offre a I'extérieur du module. Le module
doit garantir la fiabilité de ces fonctions ; de ce fait, on peut dire que l'interface est une sorte d’'engagement
du module a réaliser ces taches correctement, c’est-a-dire un contrat.

Cette étape est essentiellement une étape de discussion « papier-crayon » pour préciser le réle de chaque
module et établir la /iste des fonctions exportées, de leur but et de leurs éventuels parametres.

Important ! A ce stade on ne se soucie pas de comment réaliser chaque tache avec chaque fonction (ce sera
le but de I'étape suivante, le codage, qui écrit I'implémentation des fonctions). Le détail des structures de
données n'a pas besoin d'étre précisé des le début ; il est identifié par raffinements successifs. Ces choix
peuvent étre liés a des choix stratégiques de traitement algorithmique des données mais sans pour autant
rentrer dans les détails de mise en ceuvre des algorithmes.

Les principes guidant I'analyse sont les suivants :
® Abstraction a I'échelle du module : but du module sans entrer dans les détails d’implémentation
® Ré-utilisation : définition d’un ou de plusieurs modules de fonctions utilitaires de bas-niveau
® Encapsulation (information hiding) : afin de séparer l'interface de I'implémentation
® Séparation des fonctionnalités (separation of concerns)
o Pour nos projets, I'approche Model-View-Controller sera vue en cours
e Et enfin Parcimonie/Simplicité : « la simplicité est la sophistication supréme » selon Léonard de Vinci

Dans le cadre de notre projet, il est fréquent qu’une architecture soit partiellement imposée, ce qui déborde
du cadre des spécifications et constitue une partie du travail d’analyse.
3/9

int £() >
{

} -'P gce Iiiiill
3.3 Codage (implémentation) objet

Lanalyse permet de décomposer le probléeme en une liste de modules indépendants, qui peuvent étre
développés indépendamment les uns des autres dans cette étape du codage. On doit disposer des éléments
suivants :
e Llinterface (fichier.h) des modules est disponible
o donc utilisable dans d’autres modules,
0 ce quiveut dire qu’on peut écrire des appels de fonctions des autres modules
® Pour chaque module : choix de structure de données + stratégie algorithmique
® (si approprié) l'apparence de l'interface graphique et le comportement de l'interaction sont aussi
connus

Le résultat du codage est I'implémentation de chaque module dans le langage de programmation retenu (C++
dans notre cas). A ce stade, on doit s’assurer au minimum que ce code compile.

Une bonne pratique est de recompiler trés fréequemment, chaque fois qu’on ajoute quelques lignes de codes
source, car on est bien plus efficace pour trouver un bug dans ces quelques lignes (depuis la derniéere
compilation réussie) que dans I'ensemble des centaines de lignes de code du module entier.

3.4 Test unitaire des modules

Test data

1]

Le but du test unitaire est de valider chaque fonction de chaque module. Execution D

prog test

Pour cela, on retrouve le concept de scaffolding, qui consiste a écrire des
petits programmes qui appellent les fonctions avec des valeurs de test pour result data
lesquelles on connait le résultat attendu.

i

Attention ! Si on obtient |e résultat espéré, on valide un test particulier mais pas forcément les autres appels
possibles de la fonction. Il faut concevoir une batterie de tests qui couvre I'ensemble des scénarios possibles
d’usage de la fonction car, en général, on ne peut pas tester tous les appels possibles d’une fonction (il y en a
trop !). L'échec d’un test montre que votre fonction n’est certainement pas valide (et vous disposez d’une
piste de recherche pour corriger cet échec). Par contre, le fait de n’avoir aucun échec a votre batterie de tests
ne garantit pas que votre fonction est valide, car votre ensemble de tests pourrait étre incomplet...

« Testing can only show the presence of bugs, not their absence » E. Dijkstra

Le test unitaire d’'un module est particulierement adapté pour trouver les problemes suivants :
® Bugs fréquents de bas niveau (cf bug checklist)

Erreurs de codage indétectables par le compilateur

Oubli d’initialisation

Nombre incorrect de passages dans une boucle

Erreur de codage d’une condition

Données en dehors de leur intervalle autorisé par le probleme

Certaines manipulations de pointeurs

Le résultat du test unitaire est un Module vérifié, c'est-a-dire dont les résultats sont conformes aux
responsabilités identifiées dans la phase d'analyse a partir des spécifications.

Par contre, il existe des problemes qui seront détectés seulement beaucoup plus tard :
e Mauvaise compréhension d’une spécification correcte
e Spécification du module incompléete, ambiguég, erronée

Dans ces cas, le module peut fonctionner correctement mais c’est le but du module qui a été mal défini...

4/9

3.5 Test du Systeme : intégration et vérification

Les modules ayant passé avec succes I'étape du test unitaire sont intégrés progressivement dans le systeme
constituant le produit. Pour chaque ajout de module, le systeme doit étre testé avant d’intégrer un module
supplémentaire.

Une fois tous les modules intégrés, le systéme doit étre vérifié a I'aide d’un ensemble de tests pour s’assurer
qu’il fait bien ce qui a été défini comme buts a I'étape d’analyse. Cette étape est de la responsabilité des
personnes qui ont développé le systéme.

Dans le cadre de notre projet, c’est I'étape des derniers tests par le groupe d’étudiants.
e
3.6 Test par le client : validation Tdt

Le systeme vérifié est fourni au client, qui effectue alors ses propres tests conformément a ce qui a été défini
dans les spécifications. Cela constitue la validation du produit.

Il peut y avoir une différence avec I'étape de vérification si cette derniére est incompléte ou si les
spécifications ont été mal comprises au moment de I'analyse du probléme.

Dans le cadre de notre projet, c’est I'étape des tests par 'enseignant.

4. Méthode proactive de correction d’erreurs : les tests

« to test a program is to try to make it fail » B. Meyer

Lorganisation systématique des tests, du simple au complexe, comme présenté dans les sections 3.4 a 3.6,
permet une meilleure maitrise du développement. Nous complétons ici cette méthodologie.

Les anciens nous ont enseigné que « l'erreur est humaine » ; il est dans notre nature de nous tromper. Peu
importe notre niveau de qualification, on fait des erreurs en codant et il vaut mieux s'armer des bonnes
méthodes pour les trouver que de perdre du temps a s’en émouvoir.

La meilleure méthode est donc de faire des tests, le but étant de trouver des fautes... avant que le client ne
les trouve par hasard (cf les lois de Murphy?, effet démo, etc.).

4.1 Comment choisir les tests

Régle d’or : la pertinence des tests est plus importante que leur nombre. Votre choix doit étre guidé par ces
criteres :

e Maximiser la couverture des comportements distincts du programme :

o Identifier au minimum un cas pour chacune des régles a mettre en ceuvre et leurs
combinaisons
e Identifier les sous-ensembles de données équivalentes ; ne prendre qu’un représentant par
sous-ensemble (tout dépend du contexte ; ex : nb positifs / négatifs)

e Identifier les valeurs limites, et les cas particuliers autour de ces valeurs. Ex: MAX, MIN, -1, 0, 1
Le résultat de la sélection est une batterie de tests (test suite) a exécuter systématiquement lorsqu’on modifie
le programme.

! Anything that can go wrong will go wrong.
5/9

4.2 Refaire tous les tests, encore et toujours

Constat : une méme erreur a tendance a ressurgir plusieurs fois au cours de la mise au point.

Le principe du regression testing consiste a vérifier que ce qui a été corrigé fonctionne toujours normalement,
en s‘assurant que tous les tests continuent a fournir les résultats attendus.

Méthode : Tout bug doit conduire a identifier un test qui sera ajouté a 'ensemble des scénarios de tests, pour
vérifier systématiquement qu’il ne se reproduit plus ultérieurement, par exemple a la suite d’une
modification du code.

Principe d’automatisation des tests : Autant que possible, le code lui-méme doit intégrer des instructions
dédiées aux tests, par ex. en vérifiant que certaines conditions sont effectivement remplies en début ou en

fin d’algorithme.

De méme, du code produisant automatiquement des scénarios de test compléte efficacement les tests
"manuels". C’est un exemple de code supplémentaire de scaffolding.

4.3 Tester les relations entre modules avec des stubs

Module A
La section 3.3 sur le codage a mentionné que I'étape d’analyse ayant fourni
I'interface des modules, on pouvait écrire et compiler des appels de fonctions +
provenant d’autres modules. En effet, on dispose du fichier en-téte (.h), qui est Module B
suffisant pour que le compilateur fasse son travail de production du code
objet. + \ 4

, s s o . . Module C

Cependant, qu’en est-il a I'étape du test unitaire du module (section 3.4), si on

veut aussi exécuter des tests sur un module A qui dépend de fonctions
fournies par un module B ?

Cela remet-il en question la possibilité du développement indépendant des modules ? En fait, pas totalement.
La solution est de fournir le minimum permettant de simuler I'implémentation du module B tant qu’il n‘est
pas encore finalisé : on retrouve le concept de stub déja rencontré pour le projet d'automne (section 2).

On procede donc en écrivant un stub pour chacune des fonctions exportées par B. Il s'agit d’écrire un
squelette minimal de cette fonction qui :
® respecte son prototype
e contient dans le corps de la fonction, au choix :
o Rien (si la fonction est de type void) ou seulement un return compatible avec le type de la
fonction
o Fait un affichage dans le terminal indiquant la nature de I'action de la fonction
o Fournit une version simplifiée de sa tache

La plupart du temps, cela suffit pour vérifier que les fonctions du module A font correctement ce qu’elles
doivent faire a I'échelle du test unitaire. Il revient a I'étape d’intégration et de vérification (section 3.5) de

finaliser les tests lorsque tous les modules ont passé leur étape de test unitaire.

Exemple : Une interface utilitaire.h indique que son module doit fournir une fonction qui renvoie un angle
entre deux vecteurs, dont le type est appelé S2D pour cet exemple :

double util_angle(S2D a, S2D b);

6/9

En attendant que cette fonction soit validée, le module utilitaire doit mettre en place une implémentation
minimale qui permette d’appeler les fonctions décrites dans utilitaire.h (sans faire planter le programme).
Voici un stub qui pourrait étre écrit pour cette fonction :

double util_calcul_angle(S2D a, S2d b)

{
cout << "util_calcul_angle not yet implemented" << endl;
return 0. ;

}

A l'exécution, il y aura affichage d’'un message, ce qui permettra de savoir que cette fonction a bien été
appelée, voire de savoir combien de fois elle I'a été. De plus, la fonction renvoie une valeur compatible avec
son type, qui permet au niveau appelant de poursuivre son exécution pour le scénario correspondant a cette
valeur. On peut changer la valeur renvoyée pour enrichir les tests du niveau appelant.

5. Méthode réactive de correction d’erreurs imprévues : les bugs ¢,

Malgré tous nos soins dans les tests, il peut arriver qu’une erreur survienne sans
prévenir : c’est le bug. Parfois, I'indice qui semble indiqué par I'arrét du programme
n‘aide pas a trouver 'origine du probleme. C’est souvent le cas avec les problémes de
pointeurs.

Alors, comment trouver la cause du bug ? @
Voici une méthode d’analyse et de verbalisation qui a fait ses preuves :
1. Décrire le comportement anormal observé et le noter pour ne pas l'oublier.
2. Formuler le comportement attendu a la place.

3. Verbaliser la différence entre 1) et 2), puis l'interpréter par un mécanisme plausible avec des

"1

phrases comme : "c'est comme si...". Plusieurs hypothéses sont possibles.
4. Faire une liste des hypothéses possibles, de la plus probable a la moins probable.

5. Avoir le courage de se remettre en question. C’est probablement I'obstacle le plus grand dans cette
recherche de bug, car on renacle a I'idée de devoir revenir sur du code qui nous a pris du temps a
écrire. On est donc sans cesse tenté de fermer les yeux sur certaines faiblesses du code.

6. Analyser le code pour éliminer les hypotheses de cause :

a. Une seule hypothése/modification du code a la fois

b. Tester avec des jeux de données dont on connait le résultat

Le fait de verbaliser, de parler a voix haute, est important pour le succeés de la méthode, car cette activité
nous stimule pour nous représenter mentalement le probléme ; souvent, on le résout par soi-méme.

7/9

6. Exercices

Ces quelques questions visent a vérifier que vous savez distinguer les étapes du développement d’un projet
logiciel, ainsi que les éléments traités a chaque étape, et que vous comprenez les implications vis-a-vis du

travail en groupe de deux personnes.

Les questions de a) a f) portent sur le cas général (dans le monde réel), tandis que les questions g) portent sur

la mise en ceuvre de notre projet, avec ses adaptations a un cours de niveau introductif.

a) Spécifications

® Les spécifications contiennent-elles une description des éléments suivants ?
o les actions que doit réaliser le programme
o la maniére de tester si ces actions sont correctement effectuées
o les structures de données a utiliser
o les algorithmes a employer
o la décomposition du projet en modules

e Dans l'approche de développement par prototypage, est-il encore nécessaire

de distinguer les six étapes du développement ?

b) Analyse
e Quelle est la différence entre l'interface et I'implémentation d’un module ?

o Lequel des deux éléments précédents doit étre précisé dans cette phase ?
e (Qu’est-ce que l'architecture du projet ?
e A-t-on besoin du compilateur pour cette étape ?
e Pourquoi dit-on que I'interface d’un module est un contrat ?
c) Codage

e Dans un module A, peut-on écrire des appels a une fonction définie dans un
module B et compiler pour obtenir le code objet du module A ?
® Quand est-il recommandé de compiler :
o quand le module est totalement écrit ?
o chaque fois qu’une fonction est totalement écrite ?
o pour chaque groupe de quelques lignes de code ?
o achaque nouvelle ligne de code ?
e ['étape du codage détecte-t-elle les erreurs syntaxiques ou sémantiques ?

d) Tests Unitaires
® Puis-je tester I'exécution du Module A s’il dépend de fonctions du module B et
gue ce module B n’est pas encore finalisé et testé ?
e Comment définiriez-vous un test utile ?
® Y a-t-il un ordre particulier a respecter pour effectuer les tests unitaires ?
e Ce travail peut-il étre effectué indépendamment et en paralléle par différentes
personnes pour tous les modules ?

e) Intégration et Vérification
® Y a-t-il un ordre particulier a respecter pour intégrer les modules ?
e Pourquoi dois-je refaire tous les tests a chaque étape de l'intégration ?

f) Validation
e Comment se pourrait-il que la validation donne un résultat différent de la
vérification ?

g) Travail en groupe de deux personnes

8/9

Module B

Module €

int £()

(=

chjet

—
Test data
Execution
prog test

result data

Execution
projet

result datal

(o

Quelles sont les étapes du développement ou il faut travailler ensemble, et
celles ol on peut travailler indépendamment de I'autre membre du groupe ?

Identifier les faiblesses possibles de I'étape d’analyse pouvant induire des
pertes de temps a I'étape du codage.

En supposant que les deux membres d’un groupe se sont répartis le codage de
deux modules A et B, dans quels cas une personne est-elle cliente de l'autre
personne ? Quel contrat les lie ?

Dans quel contexte est-il recommandé d'effectuer I'étape du codage
ensemble ? Pourquoi ?

Questions avancées (semaine 2) : Le présent document a surtout souligné

que linterface exportait des fonctions. Cependant, il est aussi possible
d’exporter des structures (le cours précisera qu’on parle alors d’'un type
concret) ou des classes.

o0 Supposons qu’une personne soit responsable d’'un module C dont
I'interface exporte des fonctions et les modeles des structures
manipulées par ces fonctions (comme parametres ou résultats).

* Le module C est-il fiable? En d’autres termes, la personne
responsable de ce module peut-elle garantir que les fonctions
exportées dans I'interface fonctionnent toujours
correctement ?

* Supposons que la personne responsable du module C décide
de changer le type d’'un champ d’un modele de structure. Cela
peut-il avoir des conséquences pour les autres modules qui
exploitent I'interface du module C ?

o0 Supposons qu’une personne soit responsable d’'un module D dont
I'interface exporte SEULEMENT des fonctions (pas de
classe/structure).

* Le module D peut-il étre fiable? En d’autres termes, la
personne responsable de ce module peut-elle garantir que les
fonctions exportées dans linterface fonctionnent toujours
correctement ?

* Supposons que la personne responsable du module D décide
de changer le type d’un champ d’'un modéle de structure dans
I'implémentation du module D. Cela peut-il avoir des
conséquences pour les autres modules qui exploitent
I'interface du module D ?

9/9

	Série théorique PoP_s0_th
	Méthodes de travail pour le développement du projet
	1. Introduction : Grands principes et critères d’évaluation
	2. Charge de travail et organisation en groupe de deux personnes
	4. Méthode proactive de correction d’erreurs : les tests
	4.1 Comment choisir les tests
	4.2 Refaire tous les tests, encore et toujours
	4.3 Tester les relations entre modules avec des stubs

