Exercise 1: Hopfield network with probabilistic update

So far we have studied Hopfield networks with deterministic activity dynamics. That is, for the same input potential \(h \) a neuron always takes the same state:

\[
S_i(t+1) = \text{sign}(h_i(t)) \quad (1)
\]

In this exercise we model stochastic neurons by replacing that equation with a probabilistic state update:

\[
P\{S_i(t+1) = 1 | h_i(t)\} = g(h_i(t)) \quad (2)
\]

Let’s say we have stored \(M \) patterns \(p^\mu \) in a network of \(N \) neurons. We then set the network to an initial state \(S(t_0) \) that has significant overlap with the third pattern and no overlap with other patterns: \(m^{\mu \neq 3}(t_0) = 0 \). For the deterministic update (eq. 1) we know (either from the textbook or from the proof done last week) we would retrieve pattern \(p^3 \) in a single update: \(m^3(t_0 + 1) = g(m^3(t_0)) = 1 \).

We now study how that result changes in the presence of noisy neurons (eq. 2). Look at figure 1 to get an intuition about the stochastic update.

Figure 1: For the analysis of the overlap \(m^3(t + 1) \) it helps to rearrange pattern \(p \) and state \(S \) such that we can identify four sub-populations in the last row. We first split the neurons \(S_i(t) \) into those that \textit{should} be active and those that \textit{should not} be active. All neurons in the same sub-population share the same probabilistic activity dynamics. In the last row, we see four groups of neurons which we label \(\{p_i/S_i(t + 1)\} \): \{on/on\}, \{on/off\}, \{off/on\}, \{off/off\}.

1.1 Derive the overlap \(m^3(t_0 + 1) \) (eq. 3) under the state dynamics of eq. 2. Assume that there’s only overlap with pattern \(p^3 \), and that for each pixel of the pattern 3, the probability to be on is \(P[p^3_i = 1] = 0.5 \)
\[m^3(t_0 + 1) = g(m^3(t_0)) - g(-m^3(t_0)) \]

(3)

Hints:

1. Use a result we derived earlier: \(h_i(t_0) = p_i^3 m^3(t_0) \).
2. For each of the four groups (see figure 1) find the probabilities for \(P(S_i(t+1)|h_i(t_0)) \).
3. Recall the definition of the overlap \(m^3 \):
 \[m^3(t_0 + 1) = \frac{1}{N} \sum_{i=1}^{N} p_i^3 S_i(t_0 + 1) \]
4. For large \(N \) we can use the expected number of neurons in each of the four sub populations to express (the expected) overlap \(m^3(t_0 + 1) \).

1.2

(a) In equation 2, what properties should the transfer function \(g \) have?

(b) Use \(g(h) = \frac{1}{2}(\tanh(h) + 1) \) in equation 3. Simplify it, plot the function graph and discuss it.

Exercise 2: Hopfield, asynchronous update and the energy picture

Consider a Hopfield network of \(N \) neurons with an **asynchronous** update regime. That is, only one randomly selected neuron \(k \) is updated at each step according to equation 4:

\[
\begin{align*}
S_k(t+1) &= g(h_k(t)) = \text{sign}\left(\sum_{j}^{N} w_{kj} S_j(t) \right) & \text{for exactly one randomly chosen neuron } k \\
S_i(t+1) &= S_i(t) & \text{for all other neurons, } i \neq k
\end{align*}
\]

(4)

For each state \(S \) of a Hopfield network, we can compute a scalar value, known as the **energy** \(E \) of the network:

\[E := -\sum_{i}^{N} \sum_{j}^{N} w_{ij} S_i S_j. \]

(5)

The evolution of the network state and the change of energy are related in an interesting way:

When a network is updated asynchronously then the energy function \(E(S(t)) \) does either decrease or stays at a (local) minimum.

We will now prove this property:

In the trivial case of \(S_k(t+1) = S_k(t) \ \forall k \) the network has reached a stable state and therefore the energy function is stable too: \(\Delta E = E(t+1) - E(t) = 0 \).

Now consider the case of one neuron \(k \) changing its state and proof, in steps 4.1 to 4.3, that the energy decreases:

2.1 The energy \(E(t) \) in eq. 5 is summed over all pre- and post- synaptic neurons \(i \) and \(j \). Rewrite that sum such that the contribution of neuron \(k \) to the total energy \(E \) appears explicitly.

Hint: To simplify the resulting expression, remember that in a Hopfield network, the weight are symmetric: \(w_{ij} = w_{ji} \) and there are no self recurrent connections: \(w_{kk} = 0 \)

2.2 Write the change in energy \(\Delta E = E(t+1) - E(t) \) when exactly one neuron \(k \) does changes its state.

2.3 Proof that \(\Delta E < 0 \) when exactly one neuron \(k \) does changes its state under the dynamics of eq. 4.
Exercise 3: Binary codes and spikes

A Hopfield model is specified by a binary variable $S_i \in \{-1, +1\}$, the weights (eq. 6) and the update dynamics (eq. 7).

\[w_{ij} = c \sum_{\mu=1}^{M} p_i^\mu p_j^\mu \quad \text{with} \quad c = \frac{1}{N} \quad (6) \]

\[S_i(t+1) = \text{sign} \left(\sum_{j=1}^{N} w_{ij} S_j(t) \right) \quad (7) \]

For an interpretation in terms of spikes it is, however, more appealing to work with a binary variable σ_i which is zero or 1.

3.1 Rewrite the Hopfield model in terms of $\sigma_i \in \{0, 1\}$, $S_i = 2\sigma_i - 1$.

3.2 Assume that the patterns have the property $\sum_{i=1}^{N} p_i^\mu = 0 \quad \forall \mu$. Discuss that condition and use it to simplify the update dynamics found in the previous question.

3.3 Assume low-activity patterns $w_{ij} = \sum_{\mu} (\xi_i^\mu - b)(\xi_j^\mu - a)$, where $\xi_i^\mu \in \{0, 1\}$. Can you restrict the weights to excitation only and move negative interaction into a group of inhibitory neurons?