
Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

Bivariate data, correlation and simple linear regression

Multiple linear regression

Confidence intervals for a coefficient

Prediction interval for a new observation

Model selection

Influential points

Diagnostics for model assessment

1 / 91

https://moodle.epfl.ch/course/view.php?id=15590


Bivariate data

Measures on two variables ; e.g. X et Y

We will consider the case of continuous variables

We want to explore/discover the relationbetween the two
variables

We will consider sets of variables that are (at least
approximately) bivariate normal
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Scatterplot

Graphical summary of bivariate data

Values of one variable are plotted on the horizontal axis, the
other on the vertical axis

Used to visualize how the values of 2 variables are associated)
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Scatterplot : positive association
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Scatterplot : negative association
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Numerical summaries

Typically, bivariate data are summarized (numerically) with 5
statistics

These give a good summary for oval-shaped scatterplots

We summarize each variable separately : X , sX ;Y , xY

But these values tell us nothing about how X and Y vary
together
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Correlation

For random variables X and Y ,with Var(X ) > 0,Var(Y ) > 0,
the correlation ρ(X ,Y ) is defined as :

ρ(X ,Y ) = Cov(X ,Y )√
Var(X )Var(Y )

ρ is a unitless quantity, −1 ≤ ρ ≤ 1

ρ is a measure of LINEAR ASSOCIATION

Values of ρ close to 1 or -1 indicate a strong linearity between
X and Y , while values close to 0 indicate an absence of a
linear relation

The sign of ρ indicates the direction of association (positive or
negative, corresponding to the slope of the line)

When ρ(X ,Y ) = 0, X and Y are uncorrelated
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Correlation ≠ Causation

We cannot deduce that, for X and Y strongly correlation, X
causes a change in Y

It could be that Y causes X

X and Y could both vary as a function of a third variable,
possibly unknown (whether causal or not, often time)
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r ≈ 0 : random dispersion
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r ≈ 0 : curve
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r ≈ 0 : outliers

obs. 

aberrantes
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r ≈ 0 : parallel lines

12 / 91



r ≈ 0 : two different lines

13 / 91



Simple linear regression

Refers to a special line through a cloud of points in a
scatterplot

Used for 2 objectives :

∎ Explanation
∎ Prediction

The equation for predicting y knowing x :

y = β0 + β1 ∗ x

β0 = l’intercept ; β1 = la slope
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Which line ?
Many possible lines can be drawn through the point cloud
How to choose ?
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Least squares
Q : How do we choose the prediction line ?
R : It is the ‘best’ in the sense that the sum of the squared errors
in the vertical direction (Y ) is the minimum

*

*

*

erreurs

(résidus)

X

Y

*

*
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Parameter interpretation

There are 2 parameters in the regression line :
the slope and the intercept

Theslope is the average (expected) change in Y for a 1 unit
change in X

The intercept is the estimated value of Y when X = 0

If the slope = 0, X does not give (linear) information for
predicting Y
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Another view of the regression line

We can divide the scatterplot into regions (X -bands) based on
values of X

For each X -band, plot the average value of Y

This is the graph of averages

The regression line can be considered as a smoothed version
of the graph of averages
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Scatterplot (again)
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X -bandes
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Graph of means
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Simple linear regression – mathematics

Here, we consider a model where the réponse variable yi is
linearly associated with an explanatoryb (or predictor) variable
xi :

yi = β0 + β1xi + εi , i = 1, . . . ,n,

ε1, . . . , εn are assumed to be random variables :

∎ uncorrelated
∎ expected value = 0
∎ variance = σ2 for all i = 1, . . . ,n (homoscedastic)

xi are supposed constant (measured without error)

→ If the errors are also assumed to be normally distributed,
we can carry out hypothesis tests and make confidence
intervals (CI)
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Homoscedastic, heteroscedastic errors
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Least squares method

The observed data are only a sample (not the entire
population)

Thus, we need to estimate the values of the population
parameters β0 (intercept) and β1 (slope) :

ŷi = b0 + b1xi + εi

According to the least squares principle, we look for the
estimators that minimize :

SC(ŷ) =
n

∑
i=1

(yi − ŷi)2 =
n

∑
i=1

e2i
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Estimation by (ordinary) least squares

Now we have an optimization problem : find the values β̂0 et
β̂1 minimizing

SC(β0, β1) =
n

∑
i=1

(yi − β0 − β1xi)2

To solve, differentiate wrt β0, β1 and find the zeros :

d

dβ0
=

n

∑
i=1

−2(yi − β0 − β1xi) = 0

=>
n

∑
i=1

(yi − β0 − β1xi) = 0

=>
n

∑
i=1

yi − nβ0 − β1
n

∑
i=1

xi = 0

=>
n

∑
i=1

yi = nβ0 + β1
n

∑
i=1

xi (∗)
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OLS, cont

d

dβ1
=

n

∑
i=1

−2xi(yi − β0 − β1xi) = 0

=>
n

∑
i=1

(xiyi − β0xi − β1x2i ) = 0

=>
n

∑
i=1

xiyi − β0
n

∑
i=1

xi − β1
n

∑
i=1

x2i = 0

=>
n

∑
i=1

xiyi = β0
n

∑
i=1

xi + β1
n

∑
i=1

x2i (∗∗)

Simultaneously solving (*) and (**) yields the OLS estimates
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Conditional normal distribution

Given x , the expected value is ŷ = β̂0 + β̂1 x
Assuming homoscedasticity, the variance of y given x is the
same for all x
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Multivariate data

Individus X1 X2 . . . Xj . . . Xp

i1 x11 x12 . . . x1j . . . x1p
i2 x21 x22 . . . x2j . . . x2p

. . .
ii xi1 xi2 . . . xij . . . xip

. . .
in xn1 xn2 . . . xnj . . . xnp

vector of means : (x1, . . . , xp)
matrix of variances-covariances (or dispersion matrix) :

⎛
⎜⎜⎜
⎝

s21 s1,2 ⋯ s1,p
s2,1 s22 ⋯ s2,p
⋯ s2i si ,j ⋯
sp,1 sp,2 ⋯ s2p

⎞
⎟⎟⎟
⎠
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Example

A sample of cherry trees has been cut, and measures have
been taken for :

∎ Diameter (inches)
∎ Height (feet)
∎ Volume (cubic feet)

The goal of of this study is to provide a prediction of volume,
given measures of Height and Diameter

Here we will use a multiple regression model
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Exploratory data analysis for multivariate data

Diameter
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Matrix algebra for simple regression

The model :

⎛
⎜⎜⎜
⎝

y1
y2
⋮
yn

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 x1
1 x2
⋮ ⋮
1 xn

⎞
⎟⎟⎟
⎠
( β0
β1

) +
⎛
⎜⎜⎜
⎝

ε1
ε2
⋮
εn

⎞
⎟⎟⎟
⎠
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Multiple regression

We could add additional predictors into the regression
equation, for example :

yi = β0 + β1x1i + β2x2i + . . . + βkxki + εi , i = 1, . . . ,n

We use the same technique to find estimates β̂j , j = 1, . . . , k ,
that solve the LS optimization problem. Usually this is written
in matrix form :

β̂ = (XTX )−1XT y ,

where X is the design matrix
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(Ordinary) least squares regression

y = Xβ + ε

Find a solution β̂ that minimizes the sum of squared residuals
( OLS solution) :

min
n

∑
i=1

e2i →
∂ (∑n

i=1 e
2
i )

∂β̂j
= 0, j = 0, ...,p

→
n

∑
i=1

xij(yi − β̂0 − β̂1xi1 −⋯ − β̂pxip) = 0, j = 0, ...,p

X′(y −Xβ̂) = 0→ X′Xβ̂ = X′y

→ β̂ = (X′X)−1X′y

for X′X nonsingular, where X is the design matrix and X′ is
the transpose of the design matrix X
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

y                x1 x2
Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877 8.6382  -6.713 2.75e-07 ***

Diameter 4.7082 0.2643  17.816  < 2e-16 ***

Height 0.3393 0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

équation

β̂2

Volume = -57.99 + 4.71 x Diameter + 0.34 x Height

β̂1

β̂0
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Interpretation of regression coefficients

The regression coefficients correspond to the expected
(average) change in the response variable for a unit increase
in an explanatory variable :

For simple linear regression :

∎ the slope is the expected change in y when the
explanatory variable x increases by 1 unit

∎ the intercept is the predicted value of y when x = 0

An important distinction in the case of multiple predictor
variables :

∎ each coefficient β1, . . . , βp corresponds to the
contribution of one variable when all other variables in
the equation are held constant

∎ the coefficient β0 is the predicted value of y when all
variables x1, . . . , xp = 0
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OLS properties : expected value

Dans le cas

1 E(εi) = 0, i = 1, . . . ,n ;

2 Var(εi) = σ2 (constante) ;

3 Cov(εi , εj) = Cor(εi , εj) = 0, i ≠ j

on a :

E(β̂) = (X′X)−1X′E(y)
= (X′X)−1X′Xβ
= β
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OLS properties : expected value

Var(β̂) = Var ((X′X)−1X′y)

= (X′X)−1X′Var(y) ((X′X)−1X′)′

= (X′X)−1X′ σ2I ((X′X)−1X′)′

= σ2 (X′X)−1X′X((X′X)−1)′

= σ2 (X′X)−1

((X′X) symmetric)
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

erreur standard (β)
Coefficients:         

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382 -6.713 2.75e-07 ***

Diameter      4.7082     0.2643 17.816  < 2e-16 ***

Height        0.3393     0.1302 2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

n-p-1^  (s)σ

^
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Tests/confidence intervals for the coefficients

In addition, assuming ε1, . . . , εn ∼ iid N(0, σ2), we have

β̂ ∼MVN (β, σ2 (X′X)−1)

Thus, Var(β̂i) = σ2 [(X′X)−1]
i+1, i+1

A CI with confidence level 100(1−α)% for βi takes the form :

β̂i ± σ̂
√

[(X′X)−1]i+1, i+1 tn−p−1,1−α/2

To test H : βi = 0 vs. A : βi ≠ 0

tobs =
β̂i

σ̂
√

[(X′X)−1]i+1, i+1

We REJECT H if : ∣tobs ∣ > tn−p−1,1−α/2
(equivalently, if the CI does not contain the value 0)
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Prediction interval for a new observation

In simple linear regression, a 100(1 −α)% prediction interval
for a new (single) observation with x = x0 is given by :

β̂0 + β̂1 ± σ̂
¿
ÁÁÀ1 + 1

n
+ (x0 − x̄)2
∑(xi − x̄)2 tn−2,1−α/2

A PI is wider than a CI for a given level

A CI can be made as narrow as desired by increasing the
sample size n

The same is NOT true for a PI, since the new observation will
be subject to an observation error that is not reduced by
increasing n
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816 < 2e-16 ***

Height        0.3393     0.1302   2.607 0.0145 * 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

t p-valeur

niveau de 

signification α
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Pythagoren theorem
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Least squares geometry

Consider y as a vector in n-dimensional space

The column vectors of X form a p-dim subspace

The predicted values ŷ = Xβ̂ represents the point in the
subspace that is closest to the observations : OLS is the
orthogonal projection of y on the subspace of X

The residual e = y − ŷ is orthogonal to vectors in the subspace

SCE = ∑ e2i = e′e is the square of the distance from the vector
of obs. to the closest point in the subspace

Partition y in two orthogonal components :

∎ ŷ (model subspace, p dims)
∎ ŷ − y (error subspace, n − p dims)

(degrees of freedom correspond to the subspace dims)
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Geometry of LS
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PAUSE
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Analysis of variance table (ANOVA)

Uses the Pythagorean theorem to partition the total sum of
squares (SST )

Pythagorean theorem :

n

∑
i=1

y2i =
n

∑
i=1

ŷ2i +
n

∑
i=1

(yi − ŷi)2

equally :

n

∑
i=1

(yi − y)2 =
n

∑
i=1

(ŷi − y)2 +
n

∑
i=1

(yi − ŷi)2

We can present this equality in the form of a table :

Tableau d’ANOVA
source df SS MS (=SS/df) F p-value

regression p SSR = ∑
n
i=1(ŷi − y)2 SSM/p MSR/MSE P(Fobs > Fp,n−p−1)

error n − p − 1 SSE = ∑
n
i=1(yi − ŷi )

2 SSE/(n − p − 1)(= σ̂2
)

total (corr.) n − 1 SST = ∑
n
i=1(yi − y)2
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F -test

The statistic Fobs =MS(source/MSE) tests the hypothesis
H0 ∶ β1 = . . . = βp = 0 vs. A ∶ at least 1 βi ≠ 0

The distribution of Fobs when H is true is the Fisher
distribution Fp,n−p−1
The numerator of Fobs is the variability explained by the
regression model

The denominator contains the residual variance

Under the null, the expected value of F is 1 and under the
alternative the expected value is bigger than 1

→ REJECT the null hypothesis H for large values of F

When testing a single coefficient (H ∶ βi = 0), F1,n−1 = t2n−1
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442 

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16

p-valeurFp,n-p-1
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Coefficient of determination R2

The value yi can be decomposed in two parts : one part
explained by the model and one part residual

The dispersion for the data can therefore be decomposed as :

1 variance explained by the regression, and
2 residual (unexplained) variance

The coefficient of determination (or multiple correlation) R2 is
defined as the ratio between the explained and total variance :
SSR/SST

Equally, R2 = 1 − SCE/SCT
In simple linear regression, this is just the square of the
correlation coefficient
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Adjusted R2

The adjusted R2 (R2
aj) takes into account the number of

variables in the model

A principal fault of R2 is that it is non-decreasing in the
number of explanatory variables

Too many variables produces models that are not robust

So we are more interested in the value of R2
adj than R2

R2
adj is not a true ‘square’ – it can even take on negative

values

R2
aj = 1 − SCE/(n − p − 1)

SCT /(n − 1) = 1 − (1 − R2) n − 1

n − p − 1
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Regression estimation output

> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)

> summary(trees.fit)

Call:

lm(formula = Volume ~ Diameter + Height, data = trees.dat)

Residuals:

Min      1Q  Median      3Q     Max 

-6.4065 -2.6493 -0.2876  2.2003  8.4847 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -57.9877     8.6382  -6.713 2.75e-07 ***

Diameter      4.7082     0.2643  17.816  < 2e-16 ***

Height        0.3393     0.1302   2.607   0.0145 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 3.882 on 28 degrees of freedom

Multiple R-squared: 0.948,      Adjusted R-squared: 0.9442

F-statistic:   255 on 2 and 28 DF,  p-value: < 2.2e-16 

R2 R2-ajusté
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R2 or R2-ajusté ?
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Model selection

Could fit all possible effects into a model

∎ BUT : a model that is too big will be difficult to
understand

Instead, remove effects that are not important

HOW?? ?

A good model should

∎ fit the data reasonably well
∎ be as simple as possible for its intended purpose (e.g.

descriptive, explanatory, prediction)
∎ be interpretable

Tradeoff : between fit and complexity of the model
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Criteria for model comparison

F -tests for individual effects

∎ Beware : the order of the terms in the model can make
a difference (nonorthogonal designs)

Information Criteria (AIC, BIC)

∎ xIC = Deviance + Complexity
∎ Deviance = -2 × log Likelihood = measure of goodness

of fit
∎ Complexity : gives a penalty for including more

parameters
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Choosing a model

Compare models using F -tests, AIC, BIC

If the number of variables is small enough, could compare all
possible models

Usually this is not practical, use automatic procedures

∎ forward selection
∎ backward elimination
∎ stepwise selection
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Marginality restriction

Lower order terms are marginal to higher order terms

Need to keep terms in the model that are marginal to other
terms

∎ if include polynomial term e.g. x2, need to also keep x
in the model

∎ if include interaction term, need to keep all primary
variables and lower order interactions in the model
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Model (variable) selection procedures I

Forward Selection

∎ start with no variables in the model
∎ in successive steps, add in the ‘best’ unselected

variable/term
∎ stop when have the best model according to the chosen

criterion, e.g. F , AIC, BIC

Backward Elimination

∎ start with all variables/terms in the model
∎ in successive steps, take out the ‘worst’ included

variable/term
∎ stop when have the best model according to the chosen

criterion, e.g. F , AIC, BIC
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Model (variable) selection procedures II

Stepwise Selection

∎ start with the full model
∎ use Backward Elimination to see if any term can be

removed
∎ use Forward Selection to see if a term can be added
∎ iterate (Backward - Forward - Backward - etc.)
∎ stop when model doesn’t change
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Selection procedures : problems

The methods are automatic

∎ do not take into account scientific knowledge
∎ do not take effect size into account – can include a

significant variable with an effect size that is not
interesting or important

∎ can lead to model that are not meaningful or unrealistic

Not guaranteed to find the optimum

∎ Stepwise : try multiple times, starting with a different
model each time

All models are wrong, but some are useful
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HOWTO : Model Selection

Use scientific/problem-specific knowledge to suggest
important variables/terms for potential inclusion

Then, can try automatic procedures (stepwise selection,
F -tests, etc.)

Observe marginality

If you use F -tests/ANOVA tables, remember that the order of
inclusion of variables matters – try different orders

Better to use stepAIC function in the R package MASS

(see handout, Section 6.8 in the MASS book)
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Model assessment

Important model assumptions :

∎ Independent observations
∎ Normally distributed errors
∎ Constant error variance
∎ Additive effects

If the assumptions do not hold (at least approximately), then
the results of the analysis will generally not be meaningful

⇒ Check assumptions ! !
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Testing submodels

Full model : (Ω) : y = β0 + β1 + . . . + βp
Submodel : (ω) : y = β0 + β1 + . . . + βq, q < p

H ∶ βq+1 = ⋯ = βp = 0 vs. A ∶ at least 1 βi ≠ 0, q + 1 ≤ i ≤ p

ANOVA table
source df SS MS (=SS/df)

ω q SSM(ω) SSM/q
suppl. terms p − q SSE(ω) − SSE(Ω) (SSE(ω) − SSE(Ω))/(p − q)

errorr n − p − 1 SSE(Ω) SSE(Ω)/(n − p − 1)

total (corr.) n − 1 SST

The F -statistic for testing the significance of the extra terms
in Ω is :

Fobs =
(SSE(ω) − SSE(Ω))/(p − q)

SSE(Ω)/(n − p − 1) ∼ Fp−q,n−p−1 under H

We REJECT H when Fobs > Fp−q,n−p−1(1 − α)
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Another regression estimation output

> trees.fit1 <- lm(Volume ~ Diameter, trees.dat)

> summary(trees.fit1)

Call:

lm(formula = Volume ~ Diameter, data = trees.dat)

Residuals:

Min     1Q Median     3Q    Max 

-8.065 -3.107  0.152  3.495  9.587 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -36.9435     3.3651  -10.98 7.62e-12 ***

Diameter      5.0659     0.2474   20.48  < 2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1 

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353,     Adjusted R-squared: 0.9331 

F-statistic: 419.4 on 1 and 29 DF,  p-value: < 2.2e-16 
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Influential points : example 1

65 / 91



Influential points : example 2
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Influential points : example 2 without red point
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Influential points : results comparison 2

With red point:                                             Without red point:
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Influential points : example 3

69 / 91



Influential points : example 2 without red point
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Influential points : results comparison 3

With red point:                                             Without red point:
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Influential points : example 4
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Influential points : example 2 without red point
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Influential points : results comparison 4

With red point:                                             Without red point:
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Leverage

We can write the OLS prediction for y as ŷ = Hy , where H is
the ‘hat matrix’ (X ′X )( − 1)X ′

Each predicted response can be written as
ŷi = hi1y1 + hi2y2 +⋯ + hiiyi +⋯ + hinyn, i = 1, . . . ,n

Therefore, the leverage hii quantifies the influence that the
observed response yi has on its predicted value yi

The leverage depends only on the predictor values xij

Whether the data point is influential or not also depends on
the observed value of the reponse yi
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Outliers

One way to identify (y−) outliers by considering standardized
residuals :

ri =
ei

SE(ei)
= y − ŷ√

MSE(1 − hii)
Thus, the standardized residuals are represented in the
number of standard deviations away from the mean

Some might consider points whose standardized residual ri
larger than 2 or 3 to be outliers
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Studentized residuals for identifying outliers

A better way to identify (y−) outliers by considering
studentized residuals :

ti =
e(i)

SE(e(i))
= ei√

MSE(i)(1 − hii)
,

where e(i) is the residual obtained when observation i is left
out : y − ŷ(i)
In general, studentized residuals are going to be more effective
for detecting outlying Y observations than standardized
residuals

Observation with studentized residual larger than 3 (in
absolute value) can be considered as outliers
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Trees example : studentized residuals
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Cook’s distance

Another useful diagnostic is Cook’s distance :

Dk =
1

(p + 1)σ̂2
n

∑
i=1

(ŷi(k) − yi)2

These values assess the impact of the kth observation on the
estimated regression coefficients β̂i

Values of Dk larger than 1 are suggestive that the
corresponding observation has undue influence on the
estimated coefficients
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Trees example : Cook’s distance
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Other diagnostic plots

In addition to the exploratory plots you make at the beginning
of the analysis, you will also need additional diagnostic plots
in the model assessment phase

There should not be any structure in the residuals

Plot residuals against predicted values, variables in the model,
variables not in the model (e.g. to see if some important
variable is left out, assess dependence), normal QQ-plot

Look for outliers, constant variance, patterns, normality
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Some diagnostic plots
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QQ-plot
Quantile-quantile plot
Used to determine whether a sample follows a particular
distribution (e.g. normal) or to compare 2 samples
A graphical method for the identification of outliers when the
data are approximately normal
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Typical deviations from a straight line

Outliers

Curvature at both extremes (long or short tails)

Convexe/concave curvature (asymmetry)

Horizontal segments (discretization)
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Outliers
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Long tails
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Short tails
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Asymmetry
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Discretization
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Dealing with problematic data points

Check for obvious errors and correct them

Consider the possibility that you might have misformulated
your regression model : do you need additional predictors or
interaction terms ?

Decide whether or not deleting data points is warranted –
BUT : must have objective reason

If you do delete any data after you’ve collected it, justify and
describe it in your reports

If you are not sure what to do about a data point, analyze the
data twice – once with and once without the data point – and
report the results of both analyses

Use common sense and knowledge about the specific context
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Pitfalls in regression

Regression effect/regression fallacy

∎ It is unlikely to have a very high/low value in X
∎ The associated Y value is more likely to be closer to

the mean (‘regression toward the mean’)
∎ The regression fallacy consists in thinking that this

regression effect needs a special theory to explain it

Correlation is not causation

Extrapolation – relation may not continue to hold outside the
range where it is estimated

Nonlinearity

Missing variables, confounding
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