Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

- Bivariate data, correlation and simple linear regression
- Multiple linear regression
- Confidence intervals for a coefficient
- Prediction interval for a new observation
- Model selection
- Influential points
- Diagnostics for model assessment

Bivariate data

- Measures on *two* variables; *e.g.* X et Y
- We will consider the case of *continuous* variables
- We want to explore/discover the *relation*between the two variables
- We will consider sets of variables that are (at least approximately) *bivariate normal*

Scatterplot

- Graphical summary of bivariate data
- Values of one variable are plotted on the horizontal axis, the other on the vertical axis
- Used to visualize how the values of 2 variables are associated)

Scatterplot : positive association

Х

> 4回> 4 三> 4 三> 三 9 Q O 4 (01)

Scatterplot : negative association

Х

コト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Numerical summaries

- Typically, bivariate data are summarized (numerically) with 5 statistics
- These give a good summary for oval-shaped scatterplots
- We summarize each variable *separately* : \overline{X} , s_X ; \overline{Y} , x_Y
- But these values tell us nothing about how X and Y vary together

Correlation

For random variables X and Y, with Var(X) > 0, Var(Y) > 0, the correlation ρ(X, Y) is defined as :

$$\rho(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

- ρ is a *unitless quantity*, $-1 \le \rho \le 1$
- ρ is a measure of LINEAR ASSOCIATION
- Values of ρ close to 1 or -1 indicate a strong linearity between X and Y, while values close to 0 indicate an absence of a linear relation
- The sign of p indicates the direction of association (positive or negative, corresponding to the slope of the line)
- When $\rho(X, Y) = 0$, X and Y are uncorrelated

Correlation *≠* Causation

- We cannot deduce that, for X and Y strongly correlation, X causes a change in Y
- It could be that Y causes X
- X and Y could both vary as a function of a third variable, possibly unknown (whether causal or not, often time)

$r \approx 0$: random dispersion

х

 $r \approx 0$: curve

Х

$r \approx 0$: outliers

↓ ◆ E ▶ ◆ E ▶ E り Q ○
11/91

$r \approx 0$: parallel lines

$r \approx 0$: two different lines

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 めんの

Simple linear regression

- Refers to a special line through a cloud of points in a scatterplot
- Used for 2 objectives :
 - Explanation
 - Prediction
- The equation for predicting *y* knowing *x* :

$$y = \beta_0 + \beta_1 * x$$

$$\beta_0 = \mathsf{l}' intercept; \ \beta_1 = \mathsf{la} \ slope$$

Which line?

Many possible lines can be drawn through the point cloudHow to choose?

Least squares

 $\mathsf{Q}:\mathsf{How}$ do we choose the prediction line?

R : It is the 'best' in the sense that the sum of the squared errors in the vertical direction (Y) is the minimum

Parameter interpretation

- There are 2 parameters in the regression line : the *slope* and the *intercept*
- Theslope is the average (expected) change in Y for a 1 unit change in X
- The *intercept* is the estimated value of Y when X = 0
- If the slope = 0, X does not give (linear) information for predicting Y

Another view of the regression line

- We can divide the scatterplot into regions (X-bands) based on values of X
- For each X-band, plot the average value of Y
- This is the graph of averages
- The regression line can be considered as a *smoothed version* of the graph of averages

Scatterplot (again)

Х

X-bandes

Graph of means

イロト イロト イヨト イヨト

Simple linear regression – mathematics

 Here, we consider a model where the réponse variable y_i is linearly associated with an explanatoryb (or predictor) variable x_i :

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \ldots, n,$$

• $\epsilon_1, \ldots, \epsilon_n$ are assumed to be random variables :

uncorrelated

expected value = 0

• variance = σ^2 for all i = 1, ..., n (homoscedastic)

■ *x_i* are supposed constant (measured without error)

■ → If the errors are also assumed to be *normally distributed*, we can carry out *hypothesis tests* and make *confidence intervals (CI)*

Homoscedastic, heteroscedastic errors

Least squares method

- The observed data are only a sample (not the entire population)
- Thus, we need to *estimate* the values of the population parameters β₀ (intercept) and β₁ (slope) :

$$\hat{y}_i = b_0 + b_1 x_i + \epsilon_i$$

According to the *least squares principle*, we look for the estimators that minimize :

$$SC(\hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

Estimation by (ordinary) least squares

Now we have an optimization problem : find the values $\hat{\beta}_0$ et $\hat{\beta}_1$ minimizing

$$SC(\beta_0,\beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

 \blacksquare To solve, differentiate wrt $\beta_{0},\ \beta_{1}$ and find the zeros :

$$\frac{d}{d\beta_0} = \sum_{i=1}^n -2(y_i - \beta_0 - \beta_1 x_i) = 0$$

=> $\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$
=> $\sum_{i=1}^n y_i - n\beta_0 - \beta_1 \sum_{i=1}^n x_i = 0$
=> $\sum_{i=1}^n y_i = n\beta_0 + \beta_1 \sum_{i=1}^n x_i$ (*)

OLS, cont

$$\frac{d}{d\beta_{1}} = \sum_{i=1}^{n} -2x_{i}(y_{i} - \beta_{0} - \beta_{1}x_{i}) = 0$$

=>
$$\sum_{i=1}^{n} (x_{i}y_{i} - \beta_{0}x_{i} - \beta_{1}x_{i}^{2}) = 0$$

=>
$$\sum_{i=1}^{n} x_{i}y_{i} - \beta_{0}\sum_{i=1}^{n} x_{i} - \beta_{1}\sum_{i=1}^{n} x_{i}^{2} = 0$$

=>
$$\sum_{i=1}^{n} x_{i}y_{i} = \beta_{0}\sum_{i=1}^{n} x_{i} + \beta_{1}\sum_{i=1}^{n} x_{i}^{2} \quad (**)$$

Simultaneously solving (*) and (**) yields the OLS estimates

Conditional normal distribution

- Given x, the expected value is $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- Assuming homoscedasticity, the variance of y given x is the same for all x

Multivariate data

Individus	X_1	<i>X</i> ₂		X_j	 Xp
<i>i</i> 1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1j}	 x_{1p}
i ₂	x_{21}	<i>x</i> ₂₂		x_{2j}	 x_{2p}
ii	x_{i1}	x_{i2}	• • •	хij	 х _{ір}
in	x_{n1}	x _{n2}		x _{nj}	 x _{np}

vector of means : $(\overline{x}_1, ..., \overline{x}_p)$ *matrix* of variances-covariances (or *dispersion matrix*) :

$$\left(\begin{array}{cccc} s_1^2 & s_{1,2} & \cdots & s_{1,p} \\ s_{2,1} & s_2^2 & \cdots & s_{2,p} \\ \cdots & s_i^2 & s_{i,j} & \cdots \\ s_{p,1} & s_{p,2} & \cdots & s_p^2 \end{array}\right)$$

28/91

イロト 不得 トイヨト イヨト 二日

Example

- A sample of cherry trees has been cut, and measures have been taken for :
 - Diameter (inches)
 - Height (feet)
 - Volume (cubic feet)
- The goal of of this study is to provide a prediction of volume, given measures of Height and Diameter
- Here we will use a multiple regression model

Matrix algebra for simple regression

The model :

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Multiple regression

We could add additional predictors into the regression equation, for example :

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \epsilon_i, i = 1, \ldots, n$$

We use the same technique to find estimates β_j, j = 1,..., k, that solve the LS optimization problem. Usually this is written in matrix form :

$$\hat{\beta} = (X^T X)^{-1} X^T y,$$

where X is the *design matrix*

(Ordinary) least squares regression

- **y** = $\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$
- Find a solution $\hat{\beta}$ that minimizes the sum of squared residuals (*OLS solution*):

$$\min \sum_{i=1}^{n} e_i^2 \to \frac{\partial \left(\sum_{i=1}^{n} e_i^2\right)}{\partial \hat{\beta}_j} = 0, \quad j = 0, ..., p$$

$$\rightarrow \sum_{i=1}^{n} x_{ij} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p x_{ip}) = 0, \quad j = 0, \dots, p$$

$$\mathbf{X}'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{eta}}) = \mathbf{0}
ightarrow \mathbf{X}'\mathbf{X}\hat{\boldsymbol{eta}} = \mathbf{X}'\mathbf{y}$$

$$ightarrow \hat{eta}$$
 = $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

for X'X nonsingular, where X is the *design matrix* and X' is the transpose of the design matrix X

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summarv(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min 10 Median 30
                                 Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
            0.3393 0.1302 2.607 0.0145 *
Height
____
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```

イロト イヨト イヨト ニヨー シック

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
     > summary(trees.fit)
  équation 🥿 🖉
                                 Χ.
                          v
                                                   х,
     Call:
      lm(formula = Volume ~ Diameter + Height, data = trees.dat)
     Residuals:
           Min
                      10 Median 30
                                                   Max
      -6.4065 -2.6493 -0.2876 2.2003 8.4847
      Coefficients:

        Bo
        Estimate Std. Error t Value - (1000)

        A
        (Intercept) -57.9877
        8.6382
        -6.713
        2.75e-07
        ***

        4
        7082
        0.2643
        17.816
        < 2e-16</td>
        ***

B. Height
                      0.3393 0.1302 2.607 0.0145 *
      Signif. codes:
                            `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
                          0
     Residual standard error: 3.882 on 28 degrees of freedom
     Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
     F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
                   Volume = -57.99 + 4.71 x Diameter + 0.34 x Height
```

Interpretation of regression coefficients

- The regression coefficients correspond to the expected (average) change in the response variable for a unit increase in an explanatory variable :
- For simple linear regression :
 - the slope is the expected change in y when the explanatory variable x increases by 1 unit
 - the intercept is the predicted value of y when x = 0
- An important distinction in the case of *multiple* predictor variables :
 - each coefficient β₁,...,β_p corresponds to the contribution of one variable when all other variables in the equation are held constant
 - the coefficient β₀ is the predicted value of y when all variables x₁,..., x_p = 0

OLS properties : expected value

Dans le cas

1
$$E(\epsilon_i) = 0, i = 1, ..., n;$$

2 $Var(\epsilon_i) = \sigma^2$ (constante);
3 $Cov(\epsilon_i, \epsilon_j) = Cor(\epsilon_i, \epsilon_j) = 0, i \neq j$

on a :

$$E(\hat{\beta}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}(\mathbf{y})$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta$$
$$= \beta$$

◆□ → < 団 → < 三 → < 三 → < 三 → ○ Q (~ 37/91

OLS properties : expected value

$$Var(\hat{\boldsymbol{\beta}}) = Var((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y})$$

= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' Var(\mathbf{y}) ((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')'$
= $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \sigma^2 \mathbf{I} ((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')'$
= $\sigma^2 (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}((\mathbf{X}'\mathbf{X})^{-1})'$
= $\sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$

 $((\mathbf{X}'\mathbf{X}) \text{ symmetric})$

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summarv(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min 10 Median
                           30
                                  Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
                    erreur standard (B)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height
            0.3393 0.1302 2.607 0.0145 *
____
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948 Adjusted R-squared: 0.9442
F-statistic:
              255 on 2 and 28 DF,
                                 p-value: < 2.2e-16
                A (s
                                  n-p-1
```

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬゆ

Tests/confidence intervals for the coefficients

In addition, assuming $\epsilon_1, \ldots, \epsilon_n \sim \text{ iid } N(0, \sigma^2)$, we have

$$\hat{\boldsymbol{\beta}} \sim MVN\left(\boldsymbol{\beta}, \sigma^2 \left(\mathbf{X}'\mathbf{X}\right)^{-1}\right)$$

• Thus, $Var(\hat{\beta}_i) = \sigma^2 \left[(\mathbf{X}'\mathbf{X})^{-1} \right]_{i+1, i+1}$

• A CI with confidence level $100(1-\alpha)\%$ for β_i takes the form :

$$\hat{\beta}_i \pm \hat{\sigma} \sqrt{\left[(\mathbf{X}'\mathbf{X})^{-1} \right]_{i+1, i+1}} t_{n-p-1, 1-\alpha/2}$$

• To test $H : \beta_i = 0$ vs. $A : \beta_i \neq 0$

$$t_{obs} = \frac{\hat{\beta}_i}{\hat{\sigma} \sqrt{\left[(\mathbf{X}' \mathbf{X})^{-1} \right]_{i+1, i+1}}}$$

■ We REJECT H if : |t_{obs}| > t_{n-p-1,1-α/2} (equivalently, if the CI does not contain the value 0)

Prediction interval for a new observation

In simple linear regression, a 100(1 – α)% prediction interval for a new (single) observation with x = x₀ is given by :

$$\hat{\beta}_0 + \hat{\beta}_1 \pm \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}} t_{n-2,1-\alpha/2}$$

- A PI is wider than a CI for a given level
- A CI can be made as narrow as desired by increasing the sample size n
- The same is NOT true for a PI, since the new observation will be subject to an observation error that is not reduced by increasing n

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summarv(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min 10 Median
                           30
                                  Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
                                              p-valeur
Coefficients:
                                                     niveau de
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
                                                     signification a
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
             0.3393 0.1302 2.607 0.0145 *
Height
____
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```

Pythagoren theorem

Least squares geometry

- Consider **y** as a vector in *n*-dimensional space
- The column vectors of **X** form a *p*-dim subspace
- The predicted values $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ represents the point in the subspace that is closest to the observations : OLS is the *orthogonal projection* of \mathbf{y} on the subspace of \mathbf{X}
- The residual $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$ is *orthogonal* to vectors in the subspace
- SCE = ∑ e_i² = e'e is the square of the distance from the vector of obs. to the closest point in the subspace
- Partition y in two orthogonal components :
 - **\hat{\mathbf{y}}** (model subspace, *p* dims)
 - **\hat{\mathbf{y}} \mathbf{y}** (error subspace, n p dims)

(degrees of freedom correspond to the subspace dims)

Figure 4.2 A geometrical interpretation of least squares.

PAUSE

<ロト < 回 > < 臣 > < 臣 > 三 の Q C 46 / 91

Analysis of variance table (ANOVA)

 Uses the Pythagorean theorem to partition the total sum of squares (SST)

Pythagorean theorem :

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} \hat{y}_i^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

equally :

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

We can present this equality in the form of a table :

Tableau d ANOVA								
source	df	SS	<i>MS</i> (= <i>SS</i> /df)	F	<i>p</i> -value			
regression	р	$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$	SSM/p	MSR/MSE	$P(F_{obs} > F_{p,n-p-1})$			
error	n-p-1	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$SSE/(n-p-1)(=\hat{\sigma}^2)$					
total (corr.)	n – 1	$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$						

Tableau d'ANOVA

F-test

- The statistic $F_{obs} = MS(\text{source}/MSE)$ tests the hypothesis $H_0: \beta_1 = \ldots = \beta_p = 0$ vs. $A: \text{at least } 1 \ \beta_i \neq 0$
- The distribution of F_{obs} when H is true is the Fisher distribution F_{p,n-p-1}
- The numerator of *F*_{obs} is the variability explained by the regression model
- The denominator contains the residual variance
- Under the null, the expected value of F is 1 and under the alternative the expected value is bigger than 1
- \rightarrow REJECT the null hypothesis *H* for *large values of F*
- When testing a single coefficient $(H : \beta_i = 0)$, $F_{1,n-1} = t_{n-1}^2$

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min 10 Median 30
                                  Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
           0.3393 0.1302 2.607 0.0145 *
Height
____
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
                                                      p-valeur
       F<sub>p,n-p-1</sub>
```

49/91

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - めぬゆ

Coefficient of determination R^2

- The value y_i can be decomposed in two parts : one part explained by the model and one part residual
- The dispersion for the data can therefore be decomposed as :
 - 1 variance explained by the regression, and
 - **2** residual (unexplained) variance
- The coefficient of determination (or multiple correlation) R² is defined as the ratio between the explained and total variance : SSR/SST
- Equally, $R^2 = 1 SCE/SCT$
- In simple linear regression, this is just the square of the correlation coefficient

Adjusted R^2

- The adjusted R² (R²_{aj}) takes into account the number of variables in the model
- A principal fault of R² is that it is non-decreasing in the number of explanatory variables
- Too many variables produces models that are not robust
- So we are more interested in the value of R_{adi}^2 than R^2
- R_a²dj is not a true 'square' it can even take on negative values

$$R_{aj}^{2} = 1 - \frac{SCE/(n-p-1)}{SCT/(n-1)} = 1 - (1 - R^{2})\frac{n-1}{n-p-1}$$

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)</pre>
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
   Min
           10 Median
                           30
                                   Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
             0.3393 0.1302 2.607 0.0145 *
Height
____
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
              255 on 2 and 28 DF, p-value: < 2.2e-16
F-statistic:
                                                         R<sup>2</sup>-ajusté
              R<sup>2</sup>
```

R^2 or R^2 -ajusté?

UTILISEZ LE R² AJUSTÉ !

MARRE DUR²? Comme monsieur Statos, optez pour une qualité de régression plus sûre !!!

« Avant, j'utilisais un R² normal, j'étais fatigué et ça se voyait sur mon visage ; depuis que j'ai découvert le R² ajustó, ma vie a complètement changé ! »

Dépêchez-vous l

Model selection

Could fit all possible effects into a model

- BUT : a model that is too big will be difficult to understand
- Instead, remove effects that are not important
- HOW ? ? ?
- A good model should
 - fit the data reasonably well
 - be as simple as possible for its intended purpose (*e.g.* descriptive, explanatory, prediction)
 - be interpretable
- Tradeoff : between *fit* and *complexity* of the model

Criteria for model comparison

- F-tests for individual effects
 - Beware : the order of the terms in the model can make a difference (nonorthogonal designs)
- Information Criteria (AIC, BIC)
 - xIC = Deviance + Complexity
 - Deviance = -2 × log Likelihood = measure of goodness of fit

イロト 不得 トイヨト イヨト 二日

 Complexity : gives a penalty for including more parameters

Choosing a model

- Compare models using *F*-tests, AIC, BIC
- If the number of variables is small enough, could *compare all possible models*
- Usually this is not practical, use *automatic procedures*
 - forward selection
 - backward elimination
 - stepwise selection

Marginality restriction

- Lower order terms are marginal to higher order terms
- Need to keep terms in the model that are marginal to other terms
 - if include *polynomial* term *e.g.* x², need to also keep x in the model
 - if include *interaction* term, need to keep all primary variables and lower order interactions in the model

Model (variable) selection procedures I

Forward Selection

- start with no variables in the model
- in successive steps, add in the 'best' unselected variable/term
- stop when have the best model according to the chosen criterion, e.g. F, AIC, BIC

Backward Elimination

- start with all variables/terms in the model
- in successive steps, take out the 'worst' included variable/term
- stop when have the best model according to the chosen criterion, e.g. F, AIC, BIC

Model (variable) selection procedures II

Stepwise Selection

- start with the *full* model
- use Backward Elimination to see if any term can be removed
- use Forward Selection to see if a term can be added
- iterate (Backward Forward Backward *etc.*)
- stop when model doesn't change

Selection procedures : problems

The methods are *automatic*

- do not take into account scientific knowledge
- do not take effect size into account can include a significant variable with an effect size that is not interesting or important
- can lead to model that are not meaningful or unrealistic
- Not guaranteed to find the optimum
 - Stepwise : try multiple times, starting with a different model each time
- All models are wrong, but some are useful

HOWTO : Model Selection

- Use scientific/problem-specific knowledge to suggest important variables/terms for potential inclusion
- Then, can try automatic procedures (stepwise selection, *F*-tests, *etc.*)
- Observe marginality
- If you use F-tests/ANOVA tables, remember that the order of inclusion of variables matters – try different orders
- Better to use stepAIC function in the R package MASS
- (see handout, Section 6.8 in the MASS book)

Model assessment

Important model assumptions :

- Independent observations
- Normally distributed errors
- Constant error variance
- Additive effects
- If the assumptions do not hold (at least approximately), then the results of the analysis will generally not be meaningful
- \Rightarrow Check assumptions !!

Testing submodels

- Full model : (Ω) : $y = \beta_0 + \beta_1 + \ldots + \beta_p$
- Submodel : (ω) : $y = \beta_0 + \beta_1 + \ldots + \beta_q$, q < p
- $H: \beta_{q+1} = \cdots = \beta_p = 0$ vs. A: at least 1 $\beta_i \neq 0, q+1 \le i \le p$

ANOVA table

source	df	SS	<i>MS</i> (= <i>SS</i> /df)
ω	q	$SSM(\omega)$	SSM/q
suppl. terms	p – q	$SSE(\omega) - SSE(\Omega)$	$(SSE(\omega) - SSE(\Omega))/(p-q)$
errorr	n - p - 1	$SSE(\Omega)$	$SSE(\Omega)/(n-p-1)$
total (corr.)	<i>n</i> – 1	SST	

The F-statistic for testing the significance of the extra terms in Ω is :

$$F_{obs} = \frac{(SSE(\omega) - SSE(\Omega))/(p-q)}{SSE(\Omega)/(n-p-1)} \sim F_{p-q,n-p-1} \text{ under } H$$

• We REJECT *H* when $F_{obs} > F_{p-q,n-p-1}(1-\alpha)$

Another regression estimation output

```
> trees.fit1 <- lm(Volume ~ Diameter, trees.dat)</pre>
> summarv(trees.fit1)
Call:
lm(formula = Volume ~ Diameter, data = trees.dat)
Residuals
  Min 10 Median 30 Max
-8.065 -3.107 0.152 3.495 9.587
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
Diameter 5.0659 0.2474 20.48 < 2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` '
1
Residual standard error: 4.252 on 29 degrees of freedom
```

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331 F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

Influential points : example 1

・ロト・日本・日本・日本・日本・日本

Influential points : example 2

Influential points : example 2 without red point

Influential points : results comparison 2

With red point:

Without red point:

Model	Summary
-------	---------

Model Summary

Coefficients

Constant 1.73

Term

х

S	R-sq	R-sq(adj)	R-sq(pred)	5	P-ea	P-eg(adi)	R-sq(pred)
4.71075	01 018	90.53%	89.61%	5	K-by	K-Sy(auj)	K-ad (bren)
4./10/5	91.014	90.53%	23.014	2.59199	97.32%	97.17%	96.63%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	2.96	2.01	1.47	0.157	
x	5.037	0.363	13.86	0.000	1.00

Regression Equation

Regression Equation

5.117

Coef SE Coef T-Value P-Value

0.200 25.55

1.55

1.12

y = 2.96 + 5.037 x

y = 1.73 + 5.117 x

VIF

0.140

0.000 1.00

Influential points : example 3

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Influential points : example 2 without red point

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Influential points : results comparison 3

With red point:

Without red point:

		-			
4	S .71075	R-sq 91.01%	R-sq(adj) 90.53%	R-sq(pred) 89.61%	

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	2.96	2.01	1.47	0.157	
x	5.037	0.363	13.86	0.000	1.00

Regression	Equation

y = 2.96 + 5.037 x

Model Summary

S R-sq R-sq(adj) R-sq(pred) 2.59199 97.32% 97.17% 96.63%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	1.73	1.12	1.55	0.140	
x	5.117	0.200	25.55	0.000	1.00

Regression Equation

y = 1.73 + 5.117 x

Influential points : example 4

Influential points : example 2 without red point

73/91

Influential points : results comparison 4

With red point:

Without red point:

Model Su	ummary				Model Summary					
S 4.71075		R-sq(adj) R-sq(pred) 90.53% 89.61%			S 2.59199		R-sg(adj) 97.17%	R-sq(pred) 96.63%		
Coeffici	ients				Coefficients					
Tarm	Conf	SE Coof 1	-Value D-Value	UTE						

lerm	Coer	SE COEI	I-Value	P-Value	VIE	Term	Coef	SE Coef	T-Value	P-Value	VIE
Constant	2 96	2 01	1 47	0 157							
						Constant	1.73	1.12	1.55	0.140	
x	5.037	0.363	13.86	0.000	1.00		E 117	0 200	25 55	0.000	1 00
						A	3.11/	0.200	23.33	0.000	1.00

Regression Equation

Regression Equation

v = 2.96 + 5.037 x

y = 1.73 + 5.117 x

Leverage

- We can write the OLS prediction for y as $\hat{y} = Hy$, where H is the 'hat matrix' $(X'X)^{(-1)}X'$
- Each predicted response can be written as $\hat{y}_i = h_{i1}y_1 + h_{i2}y_2 + \dots + h_{ii}y_i + \dots + h_{in}y_n$, $i = 1, \dots, n$
- Therefore, the leverage h_{ii} quantifies the influence that the observed response y_i has on its predicted value y_i
- The leverage depends only on the predictor values x_{ij}
- Whether the data point is influential or not also depends on the observed value of the reponse y_i

Outliers

One way to identify (y-) outliers by considering standardized residuals :

$$r_i = \frac{e_i}{SE(e_i)} = \frac{y - \hat{y}}{\sqrt{MSE(1 - h_{ii})}}$$

- Thus, the standardized residuals are represented in the number of standard deviations away from the mean
- Some might consider points whose standardized residual r_i larger than 2 or 3 to be *outliers*

Studentized residuals for identifying outliers

A better way to identify (y-) outliers by considering studentized residuals :

$$t_i = \frac{e_i(i)}{SE(e_i(i))} = \frac{e_i}{\sqrt{MSE_{i(i)}(1-h_{ii})}},$$

where $e_{(i)}$ is the residual obtained when observation i is left out : $y - \hat{y}_{(i)}$

- In general, *studentized* residuals are going to be more effective for detecting outlying Y observations than standardized residuals
- Observation with studentized residual larger than 3 (in absolute value) can be considered as *outliers*

Trees example : studentized residuals

t Quantiles

Cook's distance

Another useful diagnostic is Cook's distance :

$$D_{k} = \frac{1}{(p+1)\hat{\sigma}^{2}} \sum_{i=1}^{n} (\hat{y}_{i(k)} - y_{i})^{2}$$

- These values assess the impact of the kth observation on the estimated regression coefficients β_i
- Values of D_k larger than 1 are suggestive that the corresponding observation has undue influence on the estimated coefficients

Trees example : Cook's distance

э

Other diagnostic plots

- In addition to the *exploratory plots* you make at the beginning of the analysis, you will also need *additional diagnostic plots* in the model assessment phase
- There should not be any structure in the residuals
- Plot residuals against predicted values, variables in the model, variables *not* in the model (*e.g.* to see if some important variable is left out, assess dependence), normal QQ-plot
- Look for outliers, constant variance, patterns, normality

Some diagnostic plots

4.0

3.5

Fitted values

0.00

0.05

0.10

Leverage

2.5 3.0

0.15

82 / 91

QQ-plot

- Quantile-quantile plot
- Used to determine whether a sample follows a particular distribution (*e.g.* normal) or to compare 2 samples
- A graphical method for the identification of outliers when the data are approximately normal

Typical deviations from a straight line

イロト 不得 トイヨト イヨト 二日

Outliers

- Curvature at both extremes (long or short tails)
- Convexe/concave curvature (asymmetry)
- Horizontal segments (discretization)

Outliers

85 / 91

メロト メヨト メヨト メヨト

Long tails

86/91

メロン スピン メヨン メヨン

Short tails

≡ ♥) Q (♥ 87 / 91

メロト メヨト メヨト メヨト

Asymmetry

メロト メロト メヨト メヨト

Discretization

89/91

Dealing with problematic data points

- Check for obvious errors and correct them
- Consider the possibility that you might have misformulated your regression model : do you need additional predictors or interaction terms?
- Decide whether or not deleting data points is warranted BUT : must have *objective* reason
- If you do delete any data after you've collected it, *justify and describe it* in your reports
- If you are not sure what to do about a data point, analyze the data twice – once with and once without the data point – and report the results of both analyses
- Use common sense and knowledge about the specific context

Pitfalls in regression

Regression effect/regression fallacy

- It is unlikely to have a very high/low value in X
- The associated Y value is more likely to be closer to the mean ('regression toward the mean')
- The regression fallacy consists in thinking that this regression effect needs a special theory to explain it
- Correlation is not *causation*
- Extrapolation relation may not continue to hold outside the range where it is estimated
- Nonlinearity
- Missing variables, confounding