Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

- Bivariate data, correlation and simple linear regression
- Multiple linear regression
- Confidence intervals for a coefficient

■ Prediction interval for a new observation
■ Model selection

- Influential points

■ Diagnostics for model assessment

Bivariate data

■ Measures on two variables; e.g. X et Y
■ We will consider the case of continuous variables

- We want to explore/discover the relationbetween the two variables

■ We will consider sets of variables that are (at least approximately) bivariate normal

Scatterplot

- Graphical summary of bivariate data

■ Values of one variable are plotted on the horizontal axis, the other on the vertical axis
■ Used to visualize how the values of 2 variables are associated)

Scatterplot : positive association

Scatterplot : negative association

Numerical summaries

- Typically, bivariate data are summarized (numerically) with 5 statistics
- These give a good summary for oval-shaped scatterplots

■ We summarize each variable separately : $\bar{X}, s_{X} ; \bar{Y}, x_{Y}$
■ But these values tell us nothing about how X and Y vary together

Correlation

■ For random variables X and Y, with $\operatorname{Var}(X)>0, \operatorname{Var}(Y)>0$, the correlation $\rho(X, Y)$ is defined as:

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- ρ is a unitless quantity, $-1 \leq \rho \leq 1$

■ ρ is a measure of LINEAR ASSOCIATION

- Values of ρ close to 1 or -1 indicate a strong linearity between X and Y, while values close to 0 indicate an absence of a linear relation
■ The sign of ρ indicates the direction of association (positive or negative, corresponding to the slope of the line)
■ When $\rho(X, Y)=0, X$ and Y are uncorrelated

Correlation $=$ Causation

■ We cannot deduce that, for X and Y strongly correlation, X causes a change in Y

- It could be that Y causes X

■ X and Y could both vary as a function of a third variable, possibly unknown (whether causal or not, often time)

$r \approx 0$: random dispersion

$r \approx 0$: curve

$r \approx 0$: outliers

$r \approx 0$: parallel lines

$r \approx 0$: two different lines

Simple linear regression

■ Refers to a special line through a cloud of points in a scatterplot

- Used for 2 objectives :
- Explanation
- Prediction
- The equation for predicting y knowing x :

$$
y=\beta_{0}+\beta_{1} * x
$$

- $\beta_{0}=$ l'intercept $; \beta_{1}=$ la slope

Which line?

■ Many possible lines can be drawn through the point cloud
■ How to choose?

Least squares

Q : How do we choose the prediction line?
R : It is the 'best' in the sense that the sum of the squared errors in the vertical direction (Y) is the minimum

Parameter interpretation

■ There are 2 parameters in the regression line : the slope and the intercept

- Theslope is the average (expected) change in Y for a 1 unit change in X
- The intercept is the estimated value of Y when $X=0$

■ If the slope $=0, X$ does not give (linear) information for predicting Y

Another view of the regression line

- We can divide the scatterplot into regions (X-bands) based on values of X
- For each X-band, plot the average value of Y
- This is the graph of averages
- The regression line can be considered as a smoothed version of the graph of averages

Scatterplot (again)

X-bandes

Graph of means

Simple linear regression - mathematics

■ Here, we consider a model where the réponse variable y_{i} is linearly associated with an explanatoryb (or predictor) variable x_{i} :

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n,
$$

■ $\epsilon_{1}, \ldots, \epsilon_{n}$ are assumed to be random variables :
■ uncorrelated

- expected value $=0$

■ variance $=\sigma^{2}$ for all $i=1, \ldots, n$ (homoscedastic)

- x_{i} are supposed constant (measured without error)

■ \rightarrow If the errors are also assumed to be normally distributed, we can carry out hypothesis tests and make confidence intervals (CI)

Homoscedastic, heteroscedastic errors

Least squares method

- The observed data are only a sample (not the entire population)
■ Thus, we need to estimate the values of the population parameters β_{0} (intercept) and β_{1} (slope) :

$$
\hat{y}_{i}=b_{0}+b_{1} x_{i}+\epsilon_{i}
$$

■ According to the least squares principle, we look for the estimators that minimize :

$$
S C(\hat{y})=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n} e_{i}^{2}
$$

Estimation by (ordinary) least squares

- Now we have an optimization problem : find the values $\hat{\beta}_{0}$ et $\hat{\beta}_{1}$ minimizing

$$
S C\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

■ To solve, differentiate wrt β_{0}, β_{1} and find the zeros:

$$
\begin{align*}
\frac{d}{d \beta_{0}} & =\sum_{i=1}^{n}-2\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \\
& \Rightarrow \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \\
& \Rightarrow \sum_{i=1}^{n} y_{i}-n \beta_{0}-\beta_{1} \sum_{i=1}^{n} x_{i}=0 \\
& \Rightarrow \sum_{i=1}^{n} y_{i}=n \beta_{0}+\beta_{1} \sum_{i=1}^{n} x_{i} \tag{*}
\end{align*}
$$

OLS, cont

$$
\begin{aligned}
\frac{d}{d \beta_{1}} & =\sum_{i=1}^{n}-2 x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0 \\
& \Rightarrow \sum_{i=1}^{n}\left(x_{i} y_{i}-\beta_{0} x_{i}-\beta_{1} x_{i}^{2}\right)=0 \\
& \Rightarrow \sum_{i=1}^{n} x_{i} y_{i}-\beta_{0} \sum_{i=1}^{n} x_{i}-\beta_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \\
& \Rightarrow \sum_{i=1}^{n} x_{i} y_{i}=\beta_{0} \sum_{i=1}^{n} x_{i}+\beta_{1} \sum_{i=1}^{n} x_{i}^{2} \quad(* *)
\end{aligned}
$$

Simultaneously solving $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ yields the OLS estimates

Conditional normal distribution

- Given x, the expected value is $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x$
- Assuming homoscedasticity, the variance of y given x is the same for all x

Multivariate data

$$
\begin{array}{ccccccc}
\hline \text { Individus } & X_{1} & X_{2} & \ldots & X_{j} & \ldots & X_{p} \\
\hline i_{1} & x_{11} & x_{12} & \ldots & x_{1 j} & \ldots & x_{1 p} \\
i_{2} & x_{21} & x_{22} & \ldots & x_{2 j} & \ldots & x_{2 p} \\
\ldots & & & & & & \\
i_{i} & x_{i 1} & x_{i 2} & \ldots & x_{i j} & \ldots & x_{i p} \\
\ldots & & & & & & \\
i_{n} & x_{n 1} & x_{n 2} & \ldots & x_{n j} & \ldots & x_{n p} \\
\hline
\end{array}
$$

vector of means : $\left(\bar{x}_{1}, \ldots, \bar{x}_{p}\right)$
matrix of variances-covariances (or dispersion matrix) :

$$
\left(\begin{array}{cccc}
s_{1}^{2} & s_{1,2} & \cdots & s_{1, p} \\
s_{2,1} & s_{2}^{2} & \cdots & s_{2, p} \\
\cdots & s_{i}^{2} & s_{i, j} & \cdots \\
s_{p, 1} & s_{p, 2} & \cdots & s_{p}^{2}
\end{array}\right)
$$

Example

- A sample of cherry trees has been cut, and measures have been taken for:
- Diameter (inches)
- Height (feet)
- Volume (cubic feet)
- The goal of of this study is to provide a prediction of volume, given measures of Height and Diameter
- Here we will use a multiple regression model

Exploratory data analysisis is for multivariate data

Matrix algebra for simple regression

- The model :

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}+\left(\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right)
$$

Multiple regression

■ We could add additional predictors into the regression equation, for example :

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{k} x_{k i}+\epsilon_{i}, i=1, \ldots, n
$$

- We use the same technique to find estimates $\hat{\beta}_{j}, j=1, \ldots, k$, that solve the LS optimization problem. Usually this is written in matrix form :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

where X is the design matrix

(Ordinary) least squares regression

- $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$
- Find a solution $\hat{\boldsymbol{\beta}}$ that minimizes the sum of squared residuals (OLS solution) :

$$
\begin{gathered}
\min \sum_{i=1}^{n} e_{i}^{2} \rightarrow \frac{\partial\left(\sum_{i=1}^{n} e_{i}^{2}\right)}{\partial \hat{\beta}_{j}}=0, \quad j=0, \ldots, p \\
\rightarrow \sum_{i=1}^{n} x_{i j}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\cdots-\hat{\beta}_{p} x_{i p}\right)=0, \quad j=0, \ldots, p \\
\mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})=\mathbf{0} \rightarrow \mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y} \\
\rightarrow \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}
\end{gathered}
$$

for $\mathbf{X}^{\prime} \mathbf{X}$ nonsingular, where \mathbf{X} is the design matrix and \mathbf{X}^{\prime} is the transpose of the design matrix \mathbf{X}

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
    Min 1Q Median
                            3Q rr Max
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```


Regression estimation output

```
        > trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)
        > summary(trees.fit)
équation y 
```



```
    Signif. codes: 0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Residual standard error: 3.882 on 28 degrees of freedom
    Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
    F-statistic: }255\mathrm{ on 2 and 28 DF, p-value: < 2.2e-16
```

 Volume \(=-57.99+4.71 \times\) Diameter \(+0.34 \times\) Height

Interpretation of regression coefficients

- The regression coefficients correspond to the expected (average) change in the response variable for a unit increase in an explanatory variable :
- For simple linear regression :
- the slope is the expected change in y when the explanatory variable x increases by 1 unit
■ the intercept is the predicted value of y when $x=0$
- An important distinction in the case of multiple predictor variables :

■ each coefficient $\beta_{1}, \ldots, \beta_{p}$ corresponds to the contribution of one variable when all other variables in the equation are held constant

- the coefficient β_{0} is the predicted value of y when all variables $x_{1}, \ldots, x_{p}=0$

OLS properties : expected value

Dans le cas
$11 E\left(\epsilon_{i}\right)=0, i=1, \ldots, n$;
$2 \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$ (constante);
$3 \operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=\operatorname{Cor}\left(\epsilon_{i}, \epsilon_{j}\right)=0, i \neq j$
on a :

$$
\begin{aligned}
E(\hat{\boldsymbol{\beta}}) & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{E}(\mathbf{y}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

OLS properties: expected value

$$
\begin{aligned}
\operatorname{Var}(\hat{\boldsymbol{\beta}}) & =\operatorname{Var}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\right) \\
& \left.=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{Var} \mathbf{(} \mathbf{y}\right)\left(\left(\mathbf{X}^{\prime} \mathbf{x}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}\left(\left(\mathbf{X}^{\mathbf{X}}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\mathbf{X}}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}^{\prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\mathbf{X}} \mathbf{x}\right)^{-1}
\end{aligned}
$$

($\left(\mathbf{X}^{\prime} \mathbf{X}\right)$ symmetric $)$

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-6.4065 & -2.6493 & -0.2876 & 2.2003 & 8.4847
\end{tabular}
erreur standard \((\hat{\beta})\)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & -57.9877 & 8.6382 & -6.713 & \(2.75 e-07\) & *** \\
Diameter & 4.7082 & 0.2643 & 17.816 & \(<2 e-16\) ***
\end{tabular}
Height 0.33930 .13020 .6070 .0145 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.882 on 28 degrees of freedom Multiple R-squared: 0.948 Adjisted R-squared: 0.9442 F-statistic: 255 on 2 and 28 DF, \(p\)-value: < \(2.2 \mathrm{e}-16\)
\[
\hat{\sigma}(s) \quad n-p-1
\]
```


Tests/confidence intervals for the coefficients

■ In addition, assuming $\epsilon_{1}, \ldots, \epsilon_{n} \sim$ iid $N\left(0, \sigma^{2}\right)$, we have

$$
\hat{\boldsymbol{\beta}} \sim M V N\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}\right)
$$

- Thus, $\operatorname{Var}\left(\hat{\beta}_{i}\right)=\sigma^{2}\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{\mathbf{- 1}}\right]_{i+1, i+1}$
- A CI with confidence level $100(1-\alpha) \%$ for β_{i} takes the form :

$$
\hat{\beta}_{i} \pm \hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right]_{i+1, i+1}} t_{n-p-1,1-\alpha / 2}
$$

■ To test $H: \beta_{i}=0$ vs. $A: \beta_{i} \neq 0$

$$
t_{o b s}=\frac{\hat{\beta}_{i}}{\hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}\right]_{i+1, i+1}}}
$$

■ We REJECT H if : $\left|t_{o b s}\right|>t_{n-p-1,1-\alpha / 2}$
(equivalently, if the Cl does not contain the value 0)

Prediction interval for a new observation

■ In simple linear regression, a $100(1-\alpha) \%$ prediction interval for a new (single) observation with $x=x_{0}$ is given by :

$$
\hat{\beta}_{0}+\hat{\beta}_{1} \pm \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}} t_{n-2,1-\alpha / 2}
$$

- A PI is wider than a Cl for a given level
- A Cl can be made as narrow as desired by increasing the sample size n
■ The same is NOT true for a PI, since the new observation will be subject to an observation error that is not reduced by increasing n

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-6.4065 & -2.6493 & -0.2876 & 2.2003 & 8.4847 \\
& & \(t\) & \\
Coefficients: \\
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\end{tabular}
(Intercept) \(-57.9877 \quad 8.6382-6.7132 .75 e-07\) *** signification \(\alpha\)
Diameter \(4.70820 .264317 .816<2 e-16\) ***
Height 0.3393 0.1302 2.607 0.0145 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ` ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```


Pythagoren theorem

Least squares geometry

■ Consider \mathbf{y} as a vector in n-dimensional space

- The column vectors of \mathbf{X} form a p-dim subspace
- The predicted values $\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ represents the point in the subspace that is closest to the observations: OLS is the orthogonal projection of \mathbf{y} on the subspace of \mathbf{X}
- The residual $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$ is orthogonal to vectors in the subspace
- $S C E=\sum e_{i}^{2}=\mathbf{e}^{\prime} \mathbf{e}$ is the square of the distance from the vector of obs. to the closest point in the subspace
- Partition y in two orthogonal components :
- $\hat{\mathbf{y}}$ (model subspace, p dims)
- $\hat{\mathbf{y}}-\mathbf{y}$ (error subspace, $n-p$ dims)
- (degrees of freedom correspond to the subspace dims)

Figure 4.2 A geometrical interpretation of least squares.

PAUSE

Analysis of variance table (ANOVA)

- Uses the Pythagorean theorem to partition the total sum of squares (SST)
■ Pythagorean theorem :

$$
\sum_{i=1}^{n} y_{i}^{2}=\sum_{i=1}^{n} \hat{y}_{i}^{2}+\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- equally :

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- We can present this equality in the form of a table :

Tableau d'ANOVA

source	df	$S S$	$M S(=S S / \mathrm{df})$	F	p-value
regression error	p	$S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$	$S S M / p$	$M S R / M S E$	$P\left(F_{o b s}>F_{p, n-p-1}\right)$
total (corr.)	$n-1$	$S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$	$S S E /(n-p-1)\left(=\hat{\sigma}^{2}\right)$		

F-test

- The statistic $F_{o b s}=M S($ source $/ M S E)$ tests the hypothesis $H_{0}: \beta_{1}=\ldots=\beta_{p}=0$ vs. A : at least $1 \beta_{i} \neq 0$
■ The distribution of $F_{o b s}$ when H is true is the Fisher distribution $F_{p, n-p-1}$
- The numerator of $F_{\text {obs }}$ is the variability explained by the regression model
- The denominator contains the residual variance
- Under the null, the expected value of F is 1 and under the alternative the expected value is bigger than 1
$■ \rightarrow$ REJECT the null hypothesis H for large values of F
■ When testing a single coefficient $\left(H: \beta_{i}=0\right), F_{1, n-1}=t_{n-1}^{2}$

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
    Min 1Q Median 3Q Max
-6.4065-2.6493-0.2876 2.2003 8.4847
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
    F
p-valeur
```


Coefficient of determination R^{2}

- The value y_{i} can be decomposed in two parts : one part explained by the model and one part residual
■ The dispersion for the data can therefore be decomposed as :
1 variance explained by the regression, and
2 residual (unexplained) variance
- The coefficient of determination (or multiple correlation) R^{2} is defined as the ratio between the explained and total variance : SSR/SST
- Equally, $R^{2}=1$ - SCE/SCT
- In simple linear regression, this is just the square of the correlation coefficient

Adjusted R^{2}

- The adjusted $R^{2}\left(R_{a j}^{2}\right)$ takes into account the number of variables in the model
- A principal fault of R^{2} is that it is non-decreasing in the number of explanatory variables
- Too many variables produces models that are not robust
- So we are more interested in the value of $R_{\text {adj }}^{2}$ than R^{2}
- $R_{a}^{2} d j$ is not a true 'square' - it can even take on negative values

$$
R_{a j}^{2}=1-\frac{S C E /(n-p-1)}{S C T /(n-1)}=1-\left(1-R^{2}\right) \frac{n-1}{n-p-1}
$$

Regression estimation output

```
> trees.fit <- lm(Volume ~ Diameter + Height, trees.dat)
> summary(trees.fit)
Call:
lm(formula = Volume ~ Diameter + Height, data = trees.dat)
Residuals:
    Min 1Q Median 3Q Max
-6.4065-2.6493-0.2876 2.2003 8.4847
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Diameter 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
    R2

\section*{\(R^{2}\) or \(R^{2}\)-ajusté?}

\section*{UTILISEZ LE R² AJUSTÉ!}

MARRE DUR2? Comme monsieur Statos, optez pour une qualité de régression plus sûre !!!
« Avant, j'utilisais un \(R^{2}\) normal, j'étais fatigué et ça se voyait sur mon visage ; depuis que j'ai decouvert le \(R^{2}\) ajusté, ma vie a complètement changé \(t »\)


\section*{Model selection}
- Could fit all possible effects into a model
- BUT : a model that is too big will be difficult to understand
- Instead, remove effects that are not important

■ HOW ? ? ?
- A good model should
- fit the data reasonably well

■ be as simple as possible for its intended purpose (e.g. descriptive, explanatory, prediction)
- be interpretable
- Tradeoff : between fit and complexity of the model

\section*{Criteria for model comparison}
- F-tests for individual effects

■ Beware : the order of the terms in the model can make a difference (nonorthogonal designs)
- Information Criteria (AIC, BIC)

■ xIC \(=\) Deviance + Complexity
- Deviance \(=-2 \times \log\) Likelihood \(=\) measure of goodness of fit
- Complexity : gives a penalty for including more parameters

\section*{Choosing a model}

■ Compare models using \(F\)-tests, AIC, BIC
■ If the number of variables is small enough, could compare all possible models
■ Usually this is not practical, use automatic procedures
- forward selection
- backward elimination
- stepwise selection

\section*{Marginality restriction}
- Lower order terms are marginal to higher order terms
- Need to keep terms in the model that are marginal to other terms

■ if include polynomial term e.g. \(x^{2}\), need to also keep \(x\) in the model
- if include interaction term, need to keep all primary variables and lower order interactions in the model

\section*{Model (variable) selection procedures I}

■ Forward Selection
- start with no variables in the model

■ in successive steps, add in the 'best' unselected variable/term
- stop when have the best model according to the chosen criterion, e.g. F, AIC, BIC
- Backward Elimination

■ start with all variables/terms in the model
■ in successive steps, take out the 'worst' included variable/term
- stop when have the best model according to the chosen criterion, e.g. F, AIC, BIC

\section*{Model (variable) selection procedures II}
- Stepwise Selection

■ start with the full model
■ use Backward Elimination to see if any term can be removed
■ use Forward Selection to see if a term can be added
■ iterate (Backward - Forward - Backward - etc.)
- stop when model doesn't change

\section*{Selection procedures : problems}

■ The methods are automatic
- do not take into account scientific knowledge
- do not take effect size into account - can include a significant variable with an effect size that is not interesting or important
- can lead to model that are not meaningful or unrealistic

■ Not guaranteed to find the optimum
■ Stepwise : try multiple times, starting with a different model each time
- All models are wrong, but some are useful

\section*{HOWTO : Model Selection}

■ Use scientific/problem-specific knowledge to suggest important variables/terms for potential inclusion
- Then, can try automatic procedures (stepwise selection, \(F\)-tests, etc.)
- Observe marginality

■ If you use \(F\)-tests/ANOVA tables, remember that the order of inclusion of variables matters - try different orders
- Better to use stepAIC function in the R package MASS
- (see handout, Section 6.8 in the MASS book)

\section*{Model assessment}
- Important model assumptions:

■ Independent observations
- Normally distributed errors
- Constant error variance
- Additive effects
- If the assumptions do not hold (at least approximately), then the results of the analysis will generally not be meaningful
■ \(\Rightarrow\) Check assumptions!!

\section*{Testing submodels}

■ Full model : \((\Omega): y=\beta_{0}+\beta_{1}+\ldots+\beta_{p}\)
■ Submodel : \((\omega): y=\beta_{0}+\beta_{1}+\ldots+\beta_{q}, q<p\)
■ \(H: \beta_{q+1}=\cdots=\beta_{p}=0\) vs. \(A\) : at least \(1 \beta_{i} \neq 0, q+1 \leq i \leq p\)
ANOVA table
\begin{tabular}{|c|c|c|c|}
\hline source & df & \(\operatorname{SS}\) & \(M S(=S S / \mathrm{df})\) \\
\hline\(\omega\) & \(q\) & \(\operatorname{SSM(\omega )}\) & \(\operatorname{SSM} / q\) \\
suppl. terms & \(p-q\) & \(\operatorname{SSE}(\omega)-\operatorname{SSE}(\Omega)\) & \((\operatorname{SSE}(\omega)-\operatorname{SSE}(\Omega)) /(p-q)\) \\
errorr & \(n-p-1\) & \(\operatorname{SSE}(\Omega)\) & \(\operatorname{SSE}(\Omega) /(n-p-1)\) \\
\hline total (corr.) & \(n-1\) & \(\operatorname{SST}\) & \\
\hline
\end{tabular}

■ The \(F\)-statistic for testing the significance of the extra terms in \(\Omega\) is :
\[
F_{o b s}=\frac{(\operatorname{SSE}(\omega)-\operatorname{SSE}(\Omega)) /(p-q)}{\operatorname{SSE}(\Omega) /(n-p-1)} \sim F_{p-q, n-p-1} \text { under } H
\]

■ We REJECT \(H\) when \(F_{o b s}>F_{p-q, n-p-1}(1-\alpha)\)

\section*{Another regression estimation output}
```

> trees.fit1 <- lm(Volume ~ Diameter, trees.dat)
> summary(trees.fit1)
Call:
lm(formula = Volume ~ Diameter, data = trees.dat)
Residuals:
Min 1Q Median 3Q Max
-8.065 -3.107 0.152 3.495 9.587
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -36.9435 3.3651 -10.98 7.62e-12 ***
Diameter 5.0659 0.2474 20.48 < 2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' '
1
Residual standard error: 4.252 on 29 degrees of freedom
Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331
F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

```

Influential points: example 1


Influential points: example 2
Scatterplot of \(y\) vs \(x\)


Influential points : example 2 without red point
Scatterplot of \(y\) vs \(x\)


\section*{Influential points : results comparison 2}
With red point:
Model Summary
\begin{tabular}{rrrrrr} 
S & R-sq & R-sq(adj) & R-sq (pred) & \\
4.71075 & 91.018 & 90.538 & 89.618 & \\
\\
Coefficients \\
& & & & & \\
Term & Coef & SE Coef & T-Value & P-Value & VIF \\
Constant & 2.96 & 2.01 & 1.47 & 0.157 & \\
x & 5.037 & 0.363 & 13.86 & 0.000 & 1.00
\end{tabular}

Regression Equation
\(y=2.96+5.037 x\)

\section*{Without red point:}

Model Summary
\begin{tabular}{rrrr} 
S & \(R-s q\) & \(R-3 q(a d j)\) & \(R-s q\) (pred) \\
2.59199 & \(97.32 \%\) & \(97.17 \%\) & \(96.63 \%\)
\end{tabular}

Coefficients
\begin{tabular}{lrrrrr} 
Term & Coef & SE Coef & T-Value & P-Value & VIF \\
Constant & 1.73 & 1.12 & 1.55 & 0.140 & \\
x & 5.117 & 0.200 & 25.55 & 0.000 & 1.00
\end{tabular}

Regression Equation
\(y=1.73+5.117 x\)

\section*{Influential points : example 3}

Scatterplot of y vs x


Influential points : example 2 without red point


\section*{Influential points : results comparison 3}
With red point:
Model Summary
\begin{tabular}{rrrrrr} 
S & R-sq & R-sq(adj) & R-sq(pred) & \\
4.71075 & 91.018 & \(90.53 \%\) & 89.618 & \\
\\
& & & & & \\
Coefficients \\
& & & & \\
Term & Coef & SE Coef & I-Value & P-Value & VIF \\
Constant & 2.96 & 2.01 & 1.47 & 0.157 & \\
x & 5.037 & 0.363 & 13.86 & 0.000 & 1.00
\end{tabular}

Regression Equation
\(y=2.96+5.037 x\)

\section*{Without red point:}

Model Summary
\begin{tabular}{rrrr} 
S & \(R-s q\) & \(R-3 q(a d j)\) & \(R-s q\) (pred) \\
2.59199 & \(97.32 \%\) & \(97.17 \%\) & \(96.63 \%\)
\end{tabular}

Coefficients
\begin{tabular}{lrrrrr} 
Term & Coef & SE Coef & T-Value & P-Value & VIF \\
Constant & 1.73 & 1.12 & 1.55 & 0.140 & \\
x & 5.117 & 0.200 & 25.55 & 0.000 & 1.00
\end{tabular}

Regression Equation
\(y=1.73+5.117 x\)

\section*{Influential points : example 4}

Scatterplot of y vs x


Influential points : example 2 without red point


\section*{Influential points : results comparison 4}
With red point:
Model Summary
\begin{tabular}{rrrrrr} 
S & R-sq & R-sq(adj) & R-sq(pred) & \\
4.71075 & 91.018 & \(90.53 \%\) & 89.618 & \\
\\
& & & & & \\
Coefficients \\
& & & & \\
Term & Coef & SE Coef & I-Value & P-Value & VIF \\
Constant & 2.96 & 2.01 & 1.47 & 0.157 & \\
x & 5.037 & 0.363 & 13.86 & 0.000 & 1.00
\end{tabular}

Regression Equation
\(y=2.96+5.037 x\)

\section*{Without red point:}

Model Summary
\begin{tabular}{rrrr} 
S & \(R-s q\) & \(R-3 q(a d j)\) & \(R-s q\) (pred) \\
2.59199 & \(97.32 \%\) & \(97.17 \%\) & \(96.63 \%\)
\end{tabular}

Coefficients
\begin{tabular}{lrrrrr} 
Term & Coef & SE Coef & T-Value & P-Value & VIF \\
Constant & 1.73 & 1.12 & 1.55 & 0.140 & \\
x & 5.117 & 0.200 & 25.55 & 0.000 & 1.00
\end{tabular}

Regression Equation
\(y=1.73+5.117 x\)

\section*{Leverage}

■ We can write the OLS prediction for \(y\) as \(\hat{y}=H y\), where \(H\) is the 'hat matrix' \(\left(X^{\prime} X\right)^{(-1)} X^{\prime}\)
■ Each predicted response can be written as \(\hat{y}_{i}=h_{i 1} y_{1}+h_{i 2} y_{2}+\cdots+h_{i i} y_{i}+\cdots+h_{i n} y_{n}, \quad i=1, \ldots, n\)
- Therefore, the leverage \(h_{i i}\) quantifies the influence that the observed response \(y_{i}\) has on its predicted value \(y_{i}\)
- The leverage depends only on the predictor values \(x_{i j}\)
- Whether the data point is influential or not also depends on the observed value of the reponse \(y_{i}\)

\section*{Outliers}

■ One way to identify ( \(y-\) ) outliers by considering standardized residuals:
\[
r_{i}=\frac{e_{i}}{S E\left(e_{i}\right)}=\frac{y-\hat{y}}{\sqrt{M S E\left(1-h_{i i}\right)}}
\]
- Thus, the standardized residuals are represented in the number of standard deviations away from the mean
- Some might consider points whose standardized residual \(r_{i}\) larger than 2 or 3 to be outliers

\section*{Studentized residuals for identifying outliers}

■ A better way to identify \((y-)\) outliers by considering studentized residuals :
\[
t_{i}=\frac{e_{(i)}}{\left.S E\left(e_{( } i\right)\right)}=\frac{e_{i}}{\sqrt{M S E_{(i)}\left(1-h_{i i}\right)}},
\]
where \(\left.e_{( } i\right)\) is the residual obtained when observation \(i\) is left out : \(y-\hat{y}_{(i)}\)
■ In general, studentized residuals are going to be more effective for detecting outlying \(Y\) observations than standardized residuals
- Observation with studentized residual larger than 3 (in absolute value) can be considered as outliers

\section*{Trees example: studentized residuals}


\section*{Cook's distance}

■ Another useful diagnostic is Cook's distance :
\[
D_{k}=\frac{1}{(p+1) \hat{\sigma}^{2}} \sum_{i=1}^{n}\left(\hat{y}_{i(k)}-y_{i}\right)^{2}
\]

■ These values assess the impact of the \(k\) th observation on the estimated regression coefficients \(\hat{\beta}_{i}\)
- Values of \(D_{k}\) larger than 1 are suggestive that the corresponding observation has undue influence on the estimated coefficients

\section*{Trees example : Cook's distance}


\section*{Other diagnostic plots}
- In addition to the exploratory plots you make at the beginning of the analysis, you will also need additional diagnostic plots in the model assessment phase
- There should not be any structure in the residuals
- Plot residuals against predicted values, variables in the model, variables not in the model (e.g. to see if some important variable is left out, assess dependence), normal QQ-plot
■ Look for outliers, constant variance, patterns, normality

\section*{Some diagnostic plots}


\section*{QQ-plot}
- Quantile-quantile plot
- Used to determine whether a sample follows a particular distribution (e.g. normal) or to compare 2 samples
- A graphical method for the identification of outliers when the data are approximately normal


\section*{Typical deviations from a straight line}
- Outliers

■ Curvature at both extremes (long or short tails)
- Convexe/concave curvature (asymmetry)
- Horizontal segments (discretization)

\section*{Outliers}


\section*{Long tails}


\section*{Short tails}


\section*{Asymmetry}


\section*{Discretization}


\section*{Dealing with problematic data points}

■ Check for obvious errors and correct them
- Consider the possibility that you might have misformulated your regression model : do you need additional predictors or interaction terms?
- Decide whether or not deleting data points is warranted BUT : must have objective reason
■ If you do delete any data after you've collected it, justify and describe it in your reports
- If you are not sure what to do about a data point, analyze the data twice - once with and once without the data point - and report the results of both analyses
■ Use common sense and knowledge about the specific context

\section*{Pitfalls in regression}
- Regression effect/regression fallacy

■ It is unlikely to have a very high/low value in \(X\)
- The associated \(Y\) value is more likely to be closer to the mean ('regression toward the mean')
- The regression fallacy consists in thinking that this regression effect needs a special theory to explain it
■ Correlation is not causation
- Extrapolation - relation may not continue to hold outside the range where it is estimated
- Nonlinearity

■ Missing variables, confounding```

