Problem 1

Given the \(ODC_{out} = [x_1, x_2', x_2, x_3]^T \) and the \(CDC_{in} = x_1' + x_2 x_3 \) for a 3-input 4-output Boolean function:

(a) Compute the \(DC_{ext} \) (give a minimized Boolean expression).

(b) Comment on the meaning of the \(DC_{ext} \) result for each output.

Problem 2

Consider the logic network defined as:
\[
\begin{align*}
 d &= y' \\
 f &= (x + d)' \\
 e &= (zx)' \\
 k &= f \odot e \\
 m &= d \oplus e
\end{align*}
\]

Inputs are \(\{ x, y, z \} \) and outputs are \(\{ k, m \} \). Assume \(CDC_{in} = xyz' \). Compute \(CDC_{out} \). Note that \(\odot \) is the XNOR operator and \(\oplus \) is the XOR operator.

Problem 3

Consider the logic network above of Problem 2. Compute the ODC sets for all internal and input vertices assuming that the outputs are fully observable.