Boolean Methods for Multi-level Logic Synthesis

Giovanni De Micheli
Integrated Systems Centre
EPF Lausanne
Module 1

◆ Objectives

▲ What are Boolean methods

▲ How to compute don’t care conditions
 ▼ Controllability
 ▼ Observability

▲ Boolean transformations
Boolean methods

◆ Exploit Boolean properties of logic functions

◆ Use *don’t care* conditions

◆ More complex algorithms
 ▲ Potentially better solutions
 ▲ Harder to reverse the transformations

◆ Used within most synthesis tools
External *don’t care* conditions

- **Controllability** *don’t care* set CDC_{in}
 - Input patterns never produced by the environment at the network’s input

- **Observability** *don’t care* set ODC_{out}
 - Input patterns representing conditions when an output is not observed by the environment
 - Relative to each output
 - Vector notation
Example

- Inputs driven by a de-multiplexer.
- \(CD_{in} = x'_1 x'_2 x'_3 x'_4 + x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 \).
- Outputs observed when \(\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = 1 \)

\[
\begin{align*}
\text{ODC}_{out} &= \begin{bmatrix}
x'_1 \\
x'_1 \\
x'_4 \\
x'_4
\end{bmatrix}
\end{align*}
\]
Overall external don’t care set

- Sum the controllability don’t cares to each entry of the observability don’t care set vector

\[DC_{ext} = CDC_{in} + ODC_{out} = \begin{bmatrix}
 x'_1 + x_2 + x_3 + x_4 \\
 x'_1 + x_2 + x_3 + x_4 \\
 x'_4 + x_2 + x_3 + x_1 \\
 x'_4 + x_2 + x_3 + x_1
\end{bmatrix} \]
Internal *don’t care* conditions
Internal *don’t care* conditions

- Induced by the network structure

- Controllability *don’t care* conditions:
 - Patterns never produced at the inputs of a sub-network

- Observability *don’t care* conditions
 - Patterns such that the outputs of a sub-network are not observed
Example of optimization with *don’t cares*

- CDC of y includes $ab'x + a'x'$
- Minimize f_y to obtain: $g_y = ax + a'c$
Satisfiability \textit{don’t care} conditions

- Invariant of the network:

\[x = f_x \rightarrow x \neq f_x \subseteq SDC \]

- \(SDC = \sum_{\text{all internal nodes}} x \oplus f_x \)

- Useful to compute controllability \textit{don't cares}
CDC Computation

- Method 1: Network traversal algorithm
 - Consider initial \(\text{CDC} = \text{CDC}_{\text{in}} \) at the primary inputs
 - Consider different cutsets moving through the network from inputs to outputs
 - As the cutset moves forward
 - Consider \(\text{SDC} \) contribution of the newly considered block
 - Remove unneeded variables by consensus
Example
Example

Assume $\text{CDC}_{\text{in}} = x_1' x_4'$

Select vertex v_a
- Contribution of v_a to $\text{CDC}_{\text{cut}} = a \oplus (x_2 \oplus x_3)$
- Updated $\text{CDC}_{\text{cut}} = x_1' x_4' + a \oplus (x_2 \oplus x_3)$
- Drop variables $D = \{x_2, x_3\}$ by consensus:
 - $\text{CDC}_{\text{cut}} = x_1' x_4'$

Select vertex v_b
- Contribution to CDC_{cut}: $b \oplus (x_1 + a)$.
 - Updated $\text{CDC}_{\text{cut}} = x_1' x_4' + b \oplus (x_1 + a)$
- Drop variables x_1 by consensus:
 - $\text{CDC}_{\text{cut}} = b' x_4' + b' a$

...$

$\text{CDC}_{\text{out}} = e' = z_2'$
CDC Computation

\textbf{CONTROLLABILITY}(G_n(V,E), CDC_{in}) \{

C = V;

CDC_{cut} = CDC_{in};

\text{foreach} \text{ vertex } v_x \in V \text{ in topological order} \{

C = C \cup v_x;

CDC_{cut} = CDC_{cut} + f_x \oplus x;

D = \{v \in C \text{ s.t. all direct successors of } v \text{ are in } C\}

\text{foreach} \text{ vertex } v_y \in D

CDC_{cut} = C_y(CDC_{cut});

C = C - D;

\};

CDC_{out} = CDC_{cut};

\}
Method 2: range or image computation

Consider the function f expressing the behavior of the cutset variables in terms of primary inputs

- CDC_{cut} is the complement of the range of f when $\text{CDC}_{\text{in}} = 0$
- CDC_{cut} is the complement of the image of $(\text{CDC}_{\text{in}})'$ under f

The range and image can be computed recursively

- Terminal case: scalar function
 - The range of $y = f(x)$ is $y + y'$ (any value)
 - unless f (or f') is a tautology and the range is y (or y')
Example

- \(\text{range}(f) = d \text{ range}((b+c)|_{d=bc=1}) + d' \text{ range}((b+c)|_{d=bc=0}) \)

- When \(d = 1 \), then \(bc = 1 \) \(\rightarrow \) \(b + c = 1 \) is \text{TAUTOLOGY}

- If I choose 1 as top entry in output vector:
 - ▲ the bottom entry is also 1.
 - \[
 \begin{bmatrix}
 1 \\
 2
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 \\
 1
 \end{bmatrix}
 \]

- When \(d = 0 \), then \(bc = 0 \) \(\rightarrow \) \(b+c = \{0,1\} \)

- If I choose 0 as top entry in output vector:
 - ▲ The bottom entry can be either 0 or 1.

- \(\text{range}(f) = de + d' (e + e') = de + d' = d' + e \)
Example

\[
f = \begin{bmatrix} f_1^1 \\ f_2^1 \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \end{bmatrix} = \begin{bmatrix} x_1x_4 + a \\ x_1 + x_4 + a \end{bmatrix}
\]
Example

-range(f) = d range(f^2|(x_1x_4 + a)=1) + d’ range(f^2|(x_1x_4 + a)=0)

= d range(x_1 + x_4 + a|(x_1x_4 + a)=1) + d’ range(x_1 + x_4 + a|(x_1x_4 + a)=0)

= d range(1) + d’ range(a’ (x_1 ⊕ x_4))

= de + d’ (e + e’)

= e + d’

◆ CDC_{out} = (e + d’)’ = de’ = z_1z_2’
Example

$$CDC_{in} = x_1' \cdot x_4'$$

\[
f = \begin{bmatrix} f_1' \\ f_2 \\ \end{bmatrix} = \begin{bmatrix} (x_1 + a)(x_4 + a) \\ (x_1 + a) + (x_4 + a) \\ \end{bmatrix} = \begin{bmatrix} x_1x_4 + a \\ x_1 + x_4 + a \\ \end{bmatrix}
\]
Example

\[\text{image}(f) = d \ \text{image}(f^2|_{(x_1x_4 + a)=1}) + d' \ \text{image}(f^2|_{(x_1x_4 + a)=0}) \]

\[= d \ \text{image}(x_1 + x_4 + a|_{(x_1x_4 + a)=1}) + d' \ \text{image}(x_1 + x_4 + a|_{(x_1x_4 + a)=0}) \]

\[= d \ \text{image}(1) + d' \ \text{image}(1) \]

\[= de + d' e \]

\[= e \]

\[\text{\textbf{CDC}}_{\text{out}} = e' = z_2' \]
Observability analysis

◆ Complementary to controllability
 ▲ Analyze network from outputs to inputs

◆ More complex because network has several outputs and observability depends on output

◆ Observability may be understood in terms of perturbations
 ▲ If you flip the polarity of a signal at net x, and there is no change in the outputs, then x is not observable
Observability don’t care conditions

◆ Conditions under which a change in polarity of a signal x is not perceived at the output

◆ If there is an explicit representation of the function, the ODC is the complement of the Boolean difference

$$ODC = (\partial f / \partial x)'$$

◆ Often, the terminal behavior is described implicitly

▲ Applying chain rule to Boolean difference is computationally hard
Tree-network traversal

◆ Consider network from outputs to input

◆ At root
 ▲ ODC_{out} is given
 ▲ It may be empty

◆ At internal nodes:
 ▲ Local function $y = f_y(x)$
 ▲ $\text{ODC}_x = (\partial f_y / \partial x)' + \text{ODC}_y$

◆ Observability don’t care set has two components:
 ▲ Observability of the local function and observability of the network beyond the local block
Example

\[e = b + c \]
\[b = x_1 + a_1 \]
\[c = x_4 + a_2 \]

- Assume \(ODC_{out} = ODC_e = 0 \)
- \(ODC_b = (\partial f_e / \partial b)' = (b + c)|_b = 1 \oplus (b + c)|_b = 0 = c \)
- \(ODC_c = (\partial f_e / \partial c)' = b \)
- \(ODC_{x_1} = ODC_b + (\partial f_b / \partial x_1)' = c + a_1 \)
Non-tree network traversal

- General networks have forks and fanout reconvergence
- For each fork point, the contribution to the ODC depends on both paths
- Network traversal cannot be applied in a straightforward way
- More elaborate analysis is needed
Two-way fork

- Compute ODC sets associated with edges
- Recombine ODCs at fork point
- Theorem:
 \[\bigtriangleup \text{ODC}_x = \text{ODC}_{x,y|x=x'} \bigoplus \text{ODC}_{x,z} \]
 \[\bigtriangleup \text{ODC}_x = \text{ODC}_{x,z|x=x'} \bigoplus \text{ODC}_{x,y} \]
- Multi-way forks can be reduced to a sequence of two-way forks
Example

$$\text{ODC}_{c} = \left(b' \right); \quad \text{ODC}_{b} = \left(c' \right);$$

$$\text{ODC}_{a,b} = \left(c' + x_1 \right) = \left(a' x_4' + x_1 \right)$$

$$\text{ODC}_{a,c} = \left(b' + x_4 \right) = \left(a' x_1' + x_4 \right)$$

$$\text{ODC}_{a} = \text{ODC}_{a,b} \mid_{a=a'} \oplus \text{ODC}_{a,c} = \left(x_4' + x_1 \right) \oplus \left(a' x_1' + x_4 \right) = \left(x_1 x_4 \right)$$
Don’t care computation summary

- Controllability *don’t cares* are derived by image computation
 - Recursive algorithms and data structure are applied

- Observability *don’t cares* are derived by backward traversal
 - Exact and approximate computation
 - Approximate methods compute *don’t care* subsets
Transformations with don’t cares

- **Boolean simplification**
 - Generate local DC set for local functions
 - Use heuristic minimizer (e.g., Espresso)
 - Minimize the number of literals

- **Boolean substitution:**
 - Simplify a function by adding one (or more) inputs
 - Equivalent to simplification with *global don’t care* sets
Example – Boolean substitution

◆ Substitute \(q = a + cd \) into \(f_h = a + bcd + e \)

▲ Obtain \(f_h = a + bq + e \)

◆ Method

▲ Compute SDC including \(q \oplus (a+cd) = q' a + q' cd + qa' (cd)' \)
▲ Simplify \(f_h = a + bcd + e \) with \(DC = q' a + q' cd + qa' (cd)' \)
▲ Obtain \(f_h = a + bq + e \)

◆ Result

▲ Simplified function has one fewer literal by changing the support of \(f_h \)
Simplification operator

◆ Cycle over the network blocks
 ▲ Compute local don’t care conditions
 ▲ Minimize

◆ Issues:
 ▲ Don’t care sets change as blocks are being simplified
 ▲Iteration may not have a fixed point
 ▲ It would be efficient to parallelize some simplifications
Optimization and perturbation

- Minimizing a function at a block x is the replacement of a local function f_x with a new function g_x.

- This is equivalent to perturbing the network locally by

$$
\delta_x = f_x \oplus g_x
$$

- Conditions for a feasible replacement

 - Perturbation bounded by local don’t care sets

 - δ_x included in $DC_{ext} + ODC + CDC$

- Smaller, approximate *don’t care* sets can be used

 - But have smaller degrees of freedom
Example

- No external *don’t care* set.

- Replace **AND** by wire: \(g_x = a \)

Analysis:

\[\Delta \delta = f_x \oplus g_x = ab \oplus a = ab' \]

\[\Delta \text{ODC}_x = y' = b' + c' \]

\[\Delta \delta = ab' \subseteq \Delta \text{DC}_x = b' + c' \Rightarrow \text{feasible!} \]
Parallel simplification

- Parallel minimization of logic blocks is always possible when blocks are logically independent
 - Partitioned network
- Within a connected network, logic blocks affect each other
- Doing parallel minimization is like introducing multiple perturbations
 - But it is attractive for efficiency reasons
- Perturbation analysis shows that degrees of freedom cannot be represented by just an upper bound on the perturbation
 - Boolean relation model
Example

◆ Perturbations at x and y are related because of the reconvergent fanout at z

◆ Cannot change simultaneously
 ▲ ab into a
 ▲ cb into c
Boolean relation model

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>x, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{00, 01, 10}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{11}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>x, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>10</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>1</td>
<td>01</td>
</tr>
</tbody>
</table>

(c) Giovanni De Micheli
Boolean relation model

- Boolean relation minimization is the correct approach to handle Boolean optimization at multiple vertices

- Necessary steps
 - Derive equivalence classes for Boolean relation
 - Use relation minimizer

- Practical considerations
 - High computational requirement to use Boolean relations
 - Use approximations instead
Parallel Boolean optimization
compatible don’t care sets

- Determine a subset of don’t care sets which is safe to use in a parallel minimization
 ▲ Remove those degrees of freedom that can lead to transformations incompatible with others effected in parallel
- Using compatible don’t care sets, only upper bounds on the perturbation need to be satisfied
- Faster and efficient method
Example

◆ Parallel optimization at two vertices

◆ First vertex \(x \)
 ▲ CODC equal to ODC set
 ▲ \(\text{CODC}_x = \text{ODC}_x \)

◆ Second vertex \(y \)
 ▲ CODC is smaller than its ODC to be safe enough to allow for transformations permitted by the first ODC
 ▲ \(\text{CODC}_y = \text{C}_x (\text{ODC}_y) + \text{ODC}_y \text{ODC}'_x \)

◆ Order dependence
Example

\[\text{CODC}_y = \text{ODC}_y = x' = b' + a' \]
\[\text{ODC}_x = y' = b' + c' \]
\[\text{CODC}_x = C_y(\text{ODC}_x) + \text{ODC}_x(\text{ODC}_y)' \]
\[= C_y(y') + y' x = y' x \]
\[= (b' + c')ab = abc' \]
Example (2)

◆ Allowed perturbation:

\[f_y = bc \rightarrow g_y = c \]
\[\delta_y = bc \oplus c = b' c \subseteq \text{CODC}_y = b' + a' \]

◆ Disallowed perturbation:

\[f_x = ab \rightarrow g_x = a. \]
\[\delta_x = ab \oplus a = ab' \not\subseteq \text{CODC}_x = abc' \]
Boolean methods

Summary

◆ Boolean methods are powerful means to restructure networks
 ▲ Computationally intensive

◆ Boolean methods rely heavily on don’t care computation
 ▲ Efficient methods
 ▲ Possibility to subset the don’t care sets

◆ Boolean method often change the network substantially, and it is hard to undo Boolean transformations
Module 2

◆ Objectives

▲ Testability

▲ Relations between testability and Boolean methods
Testability

- Generic term to mean easing the testing of a circuit
- Testability in logic synthesis context
 - Assume combinational circuit
 - Assume single/multiple stuck-at fault
- Testability is referred to as the possibility of generating test sets for all faults
 - Property of the circuit
 - Related to fault coverage
Test for stuck-at

◆ Net y stuck-at 0
 ▲ Input pattern that sets y to TRUE
 ▲ Observe output
 ▲ Output of faulty circuit differs from correct circuit

◆ Net y stuck-at 1
 ▲ Input pattern that sets y to FALSE
 ▲ Observe output
 ▲ Output of faulty circuit differs from correct circuit

◆ Testing is based on controllability and observability
Test sets – don’t care interpretation

◆ **Stuck-at 0 on net \(y \)**

\(\uparrow \{ \text{Input vector } t \text{ such that } y(t) \text{ ODC’ } y(t) = 1 \} \)

◆ **Stuck-at 1 on net \(y \)**

\(\uparrow \{ \text{Input vector } t \text{ such that } y’(t) \text{ ODC’ } y(t) = 1 \} \)
Using testing methods for synthesis

◆ Redundancy removal

▲ Use ATPG to search for untestable fault

◆ If stuck-at 0 on net y is untestable:

▲ Set $y = 0$

▲ Propagate constant

◆ If stuck-at 1 on net y is untestable

▲ Set $y = 1$

▲ Propagate constant

◆ Iterate for each untestable fault
Example
Redundancy removal and perturbation analysis

◆ **Stuck-at 0 on** \(y \)

\(\uptriangleleft y \) set to 0. Namely \(g_x = f_x|_{y=0} \)

\(\uptriangleleft \) Perturbation:

\[\nabla \delta = f_x \oplus f_x|_{y=0} = y \cdot \frac{\partial f_x}{\partial y} \]

◆ **Perturbation is feasible \(\iff \) fault is untestable**

\(\uptriangleleft \) No input vector \(t \) can make \(y(t) \cdot ODC_y' (t) \) true

\(\uptriangleleft \) No input vector \(t \) can make \(y(t) \cdot ODC_x' (t) \cdot \frac{\partial f_x}{\partial y} \) true

\(\nabla \) Because \(ODC_y = ODC_x + (\frac{\partial f_x}{\partial y})' \)

(c) Giovanni De Micheli
Redundancy removal and perturbation analysis

- Assume untestable stuck-at 0 fault.
- $y \cdot ODC_x' \cdot \partial f_x / \partial y \subseteq SDC$
- Local don’t care set:
 \[\Delta DC_x \supseteq ODC_x + y \cdot ODC_x' \cdot \partial f_x / \partial y \]

- Perturbation $\delta = y \cdot \partial f_x / \partial y$
 \[\Delta \text{Included in the local don’t care set} \]
Rewiring

◆ Extension to redundancy removal
 ▲ Add connection in a circuit
 ▲ Create other redundant connections
 ▲ Remove redundant connections

◆ Iterate procedure to reduce network
 ▲ A connection corresponds to a wire
 ▲ Rewiring modifies gates and wiring structure
 ▲ Wires may have specific costs due to distance
Example

(c) Giovanni De Micheli
Synthesis for testability

◆ Synthesize fully testable circuits
 ▲ For single or multiple stuck-at faults

◆ Realizations
 ▲ Two-level forms
 ▲ Multi-level networks

◆ Since synthesis can modify the network properties, testability can be addressed during synthesis
Two-level forms

◆ Full testability for single stuck-at faults:
 ▲ Prime and irredundant covers

◆ Full testability for multiple stuck-at faults
 ▲ Prime and irredundant cover when
 ▼ Single output function
 ▼ No product-term sharing
 ▼ Each component is prime and irredundant
Example \[f = a' b' + b' c + ac + ab \]
Multiple-level networks

◆ Consider logic networks with local functions in sop form

◆ Prime and irredundant network
 ▲ No literal and no implicant of any local function can be dropped
 ▲ The AND-OR implementation is fully testable for single stuck-at faults

◆ Simultaneous prime and irredundant network
 ▲ No subsets of literals and no subsets of implicants can be dropped
 ▲ The AND-OR implementation is fully testable for multiple stuck-ats
Synthesis for testability

- Heuristic logic minimization (e.g., Espresso) is sufficient to insure testability of two-level forms
- To achieve fully testable networks, simplification has to be applied to all logic blocks with full don’t care sets
- In practice, don’t care sets change as neighboring blocks are optimized
- Redundancy removal is a practical way of achieving testability properties
Summary – Synthesis for testability

◆ There is synergy between synthesis and testing
 ▲ Don’t care conditions play a major role in both fields
◆ Testable network correlate to a small area implementation
◆ Testable network do not require to slow-down the circuit
◆ Algebraic transformations preserve multi-fault testability, and are preferable under this aspect