Binary Decision Diagrams

Giovanni De Micheli
Integrated Systems Centre
EPFL Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved
Binary Decision Diagrams (BDD)

1) (RO)BDDs and properties

2) Truth table to (RO)BDD

3) (RO)BDD construction

F = (a+b)c

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Module 1

Objectives:

- Definitions of BDDs, OBDDs and ROBDDs
- Logic operations on BDDs
- The ITE operator
Motivation and history of BDDs

◆ Efficient way to represent logic functions

◆ History

▲ Original idea for BDD due to Lee (1959) and Akers (1978)

▲ Refined, formalized and popularized by Bryant (1986)

▼ Smaller memory footprint

▼ Canonical form – each distinct function correspond to a unique distinct diagram

(c) Giovanni De Micheli
Canonical forms - review

- Each logic function has a unique representation

- Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Sum of minterms

\[a'bc + ab'c + abc \]
Non canonical forms - review

◆ Each function has also multiple representations

◆ Factored form

\[(a+b)c\] \[ac+bc\]

◆ Logic network representation
A Binary Decision Diagram (BDD) is a directed acyclic graph (DAG).

- **Graph**: set of vertices connected by edges
- **Directed**: edges have direction
- **Acyclic**: no path in the graph can lead to a cycle

- Often abbreviated as DAG

- Simplest model:
 - Two leaves (Boolean constants 0 and 1)
 - One root
 - Can degenerate to a decision tree
BDD - example

$F = (a + b) \ c$

1. Each vertex represents a decision on a variable
2. The value of the function is found at the leaves
3. Each path from root to leaf corresponds to a row in the truth table
The size of a BDD is as big as a truth table:

- 1 leaf per row
- Exponential size

Each path from root to leaf evaluates variables in some order:
- But the order is not fixed:
 - (a,b,c) and (a,c,b)
 - Free BDD (FBDD)
1st idea: Ordered BDD (OBDD)

- Choose arbitrary total ordering on the variables
 - Variables must appear in the same order along each path from root to leaves
 - Each variable can appear at most once on a path

Example:

```
a < b < c
```

![Diagram of OBDD with variables a, b, c and their corresponding 0 and 1 values along the paths.](image)
2nd idea: Reduced OBDD (ROBDD)

- Two reduction rules:
 1. Merge equivalent sub-trees
 2. Remove nodes with identical children
1. Merge equivalent sub-trees

before

after
2. Remove node with identical children

before

after
BDD semantics

Cofactor(F,x): the function you obtain when you substitute 1 for x in F
ROBDDs

- ROBDDs are canonical
 - For a given variable order

- ROBDD are more compact than other canonical forms
 - Efficient representation

- ROBDD size depends on the variable order
 - Many useful functions have linear-space (or slightly above) representation

\[F = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \]
A few simple functions

\[F = 0 \]
\[F = 1 \]

\[F = x \]

\[F = (a+b)c \]
\[F = bc \]
\[F = c \]
\[F = 1 \]
A network example
ROBDDs - why do we care?

- Easy to solve some important problems:
 1. Tautology checking
 Just check if BDD is identical to function
 2. Identity checking: $F = G$
 3. Satisfiability:
 Look for a path from root to leaf 1

- All while having a compact representation
 - Use small memory footprint
ROBDD - sharing

We already share subtrees within a ROBDD

...but we can share also among multiple ROBDDS

G = dbc

F = (a+b)c

Order:
d < a < b < c

shared
Logic operations with ROBDDs

1. Cofactor

▲ Given: ROBDD for G

▲ Positive co-factor G_x wrt. x: restrict G to $x = 1$
 Remove every node with label x, redirect incoming edges to node with then edge

▲ Negative co-factor G'_x, wrt. x: restrict G to $x = 0$
 Remove every node with label x, redirect incoming edges to node with else edge
Logic operations with ROBDDs

2. **Boolean operators** $\star (\cdot, +, \oplus, \ldots)$

▲ Given: two ROBDD for G, H

▲ Find: the ROBDD of $G \star H$

▲ **ite operator:**

\[
\text{ite}(f,g,h) = fg + f'h
\]
\[
\text{If } (f) \text{ then } (g) \text{ else } (h)
\]

▲ **Recursive paradigm**

\[
\text{Exploit the generalized expansion of } G \text{ and } H
\]
\[
\text{ite} (f,g,h) = \text{ite}(x,\text{ite}(f_x,g_x,h_x),\text{ite}(f'_x, g'_x, h'_x))
\]
Boolean operators

◆ Apply **AND** to two ROBDDs: \(f, g \)
 \[fg = \text{ite} (f, g, 0) \]

◆ Apply **OR** to two ROBDDs: \(f, g \)
 \[f+g = \text{ite} (f, 1, g) \]

◆ Similar for other Boolean operators
Boolean operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Equivalent \textit{ite} form</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f \cdot g)</td>
<td>(\text{ite}(f, g, 0))</td>
</tr>
<tr>
<td>(f \cdot g')</td>
<td>(\text{ite}(f, g', 0))</td>
</tr>
<tr>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(f'g)</td>
<td>(\text{ite}(f, 0, g))</td>
</tr>
<tr>
<td>(g)</td>
<td>(g)</td>
</tr>
<tr>
<td>(f \oplus g)</td>
<td>(\text{ite}(f, g', g))</td>
</tr>
<tr>
<td>(f + g)</td>
<td>(\text{ite}(f, 1, g))</td>
</tr>
<tr>
<td>((f + g)')</td>
<td>(\text{ite}(f, 0, g'))</td>
</tr>
<tr>
<td>(f \oplus g)</td>
<td>(\text{ite}(f, g, g'))</td>
</tr>
<tr>
<td>(g')</td>
<td>(\text{ite}(g, 0, 1))</td>
</tr>
<tr>
<td>(f + g')</td>
<td>(\text{ite}(f, 1, g'))</td>
</tr>
<tr>
<td>(f')</td>
<td>(\text{ite}(f, 0, 1))</td>
</tr>
<tr>
<td>(f' + g)</td>
<td>(\text{ite}(f, g, 1))</td>
</tr>
<tr>
<td>((f \cdot g)')</td>
<td>(\text{ite}(f, g', 1))</td>
</tr>
</tbody>
</table>

(c) Giovanni De Micheli
Consider a simple example: compute AND of two ROBDDs

Terminal cases:

\[\text{AND (0,H)} = 0 \]
\[\text{AND (1,H)} = H \]
\[\text{AND (G,0)} = 0 \]
\[\text{AND (G,1)} = G \]
ROBDD construction – recursive step (AND)

- \(G(x, \ldots) = x' G_{x=0} + x G_{x=1}\)
- \(H(x, \ldots) = x' H_{x=0} + x H_{x=1}\)

- \(F = GH = x' G_{x=0} H_{x=0} + x G_{x=1} H_{x=1}\)

Now we have reduced the problem to computing 2 ANDs of smaller functions
One last problem

- Suppose we have computed $G_{x=0} H_{x=0}$ and $G_{x=1} H_{x=1}$

- We need to construct a new node,
 - label: x
 - 0-cofactor($F_{x=0}$): ROBDD of $G_{x=0} H_{x=0}$
 - 1-cofactor($F_{x=1}$): ROBDD of $G_{x=1} H_{x=1}$

- BUT, we need first to make sure that we don’t violate the reduction rules!
The unique table

To obey reduction rule #1:

▲ If $F_{x=0} = F_{x=1}$, the result is just $F_{x=0}$

To obey reduction rule #2:

▲ We keep a *unique table* of all the BDD nodes and check first if there is already a node

$(x, F_{x=0}, F_{x=1})$

Otherwise, we build the new node

▲ And add it to the unique table
Putting all together

AND(G,H) {
 if (G==0) || (H==0) return 0;
 if (G==1) return H;
 if (H==1) return G;

 x = top_variable(G,H);
 G1 = G.then; H1 = H.then;
 G0 = G.else; H0 = H.else;
 F0 = AND(G0,H0);
 F1 = AND(G1,H1);
 if (F0 == F1) return F0;
 F = find_or_add_unique_table(x,F0,F1);
 computed_table_insert(G,H,F);
 return F;
}

ITE(F,G,H) {

 if (terminal case) return (r = trivial result);
 cmp = computed_table_lookup(F,G,H);
 if (cmp != NULL) return (r = cmp);

 x = top_variable(F,G,H);
 t = ITE (F_x , G_x , H_x)
 e = ITE (F_x' , G_x' , H_x')

 if (t == e) return (r = t);
 r = find_or_add_unique_table(x,t,e);
 computed_table_insert{(F,G,H),r};
 return (r);

}
Logic operations - summary

- Recursive routines – traverse the DAGs depth first
- Two tables:
 - Unique table – hash table with an entry for each BDD node
 - Computed table – store previously computed partial results
- Time complexity is quadratic in the BDD sizes
Some algorithmic complexities

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Complexity Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking tautology</td>
<td>K time</td>
</tr>
<tr>
<td>Checking identity</td>
<td>K time</td>
</tr>
<tr>
<td>Satisfiability</td>
<td>linear (#vars)</td>
</tr>
<tr>
<td>Binary operators: AND, OR</td>
<td>quadratic</td>
</tr>
<tr>
<td>Smoothing, Consensus</td>
<td>quadratic</td>
</tr>
</tbody>
</table>

(c) Giovanni De Micheli
Motivation - again

◆ Why are ROBDD popular?
 ▲ Several intractable problems can be solved in polynomial time
 ▼ Of the BDD size
 ▲ In several cases, the BDD sizes grow mildly with the problem size
 ▼ Variables

◆ This does not mean that BDD solve intractable problems in polynomial time
 ▲ Few counterexamples exists
Module 2

◆ Objectives:

▲ Variable ordering (static and dynamic)

▲ Other diagrams and applications:
 ▼ Complemented edges
 ▼ Zero-suppressed BDDs (ZDDs)
The importance of variable order

\[F = (a \oplus d)(b \oplus c) \]

\[a < b < c < d \]

\[a < d < b < c \]
Ordering results

<table>
<thead>
<tr>
<th>Function type</th>
<th>Best order</th>
<th>Worst order</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>linear</td>
<td>exponential</td>
</tr>
<tr>
<td>symmetric</td>
<td>linear</td>
<td>quadratic</td>
</tr>
<tr>
<td>multiplication</td>
<td>exponential</td>
<td>exponential</td>
</tr>
</tbody>
</table>

In practice:
- Many common functions have reasonable size
- Can build ROBDDs with millions of nodes
- Algorithms to find good variables ordering
Variable ordering algorithms

◆ *Problem*: given a function F, find the variable order that minimizes the size of its ROBBDs

◆ *Answer*: problem is intractable

◆ *Two heuristics*
 ▲ Static variable ordering (1988)
 ▲ Dynamic variable ordering (1993)
Static variable ordering

- **Variables are ordered based on the network topology**
 - *How:* put at the bottom the variables that are closer to circuit’s outputs
 - *Why:* because those variables only affect a small part of the circuit

\[
\begin{align*}
 a & \quad \text{AND} \quad b \\
 b & \quad \text{AND} \quad c \\
\end{align*}
\]

- *Disclaimer:* it is a heuristic, results are not guaranteed
Dynamic variable ordering

- Changes the variable order on the fly whenever ROBDDs become too big

How: trial and error – *sifting* algorithm

1. Choose a variable
2. Move it in all possible positions of the variable order
3. Pick the position that leaves you with the smallest ROBDDs
4. Choose another variable …
Dynamic variable ordering

Tiny example: \(F = (a+b)c \)

\[\begin{align*}
\text{We want to find the optimal position for variable } c
\end{align*} \]

Initial order:
\[a < b < c \]

Swap \((b, c)\):
\[a < c < b \]

Swap \((a, c)\):
\[c < a < b \]

Final order:
\[c < a < b \]
Variable swapping

\[ITE(x_i, F_1, F_0) = \]
\[= ITE(x_i, ITE(x_{i+1}, F_{11}, F_{10}), ITE(x_{i+1}, F_{01}, F_{00})) \]
\[= ITE(x_{i+1}, ITE(x_i, F_{11}, F_{01}), ITE(x_i, F_{10}, F_{00}))) \]
Dynamic variable ordering

◆ **Key idea**: swapping two variables can be done locally

▲ **Efficient:**
 ▼ It can be done just by sweeping the unique table

▲ **Robust:**
 ▼ It works well on many more circuits

▲ **Warning:**
 ▼ It is still non optimal
 ▼ At convergence, you most probably have found only a local minimum
Improvements of BDDs

- Complement edges (1990)
 - Creates more opportunities for sharing
 - Fewer nodes
 - For every pair \((F,F')\), we
 - Only construct the ROBDD for \(F\)
 - \(F'\) is given by using a complement edge to \(F\)
 - Which do you pick?
 - Then edge must never be complemented
 - Only constant value 1
Complement edges

\[F = x \]

\[F = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \]

\[\text{Still canonical} \]
Other types of Decision Diagram

- Based on different expansion
 - OFDD
 - Ordered functional decision diagrams
 \[F = F_{x=0} \oplus x(F_{x=0} \oplus F_{x=1}) \]

- For discrete functions:
 - ADD
 - Algebraic decision diagrams
Boolean functions and sets of combinations

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean function:

\[F = (a \land b \land \neg c) \lor (\neg b \land c) \]

Set of combinations:

\[F = \{ab, ac, c\} \]

- Operations of combinatorial itemsets can be done by BDD-based logic operations.
 - Union of sets \(\rightarrow \) logical OR
 - Intersection of sets \(\rightarrow \) logical AND
 - Complement set \(\rightarrow \) logical NOT

Observing customers:
- Pasta & tomatoes & (not pesto)
- Pesto & (not tomatoes)

We care about what they take.
ZDDs - Zero-suppressed BDDs

- **ZDDs = BDDs with different reduction rules**
 - Eliminate all nodes whose then-edge points to the 0-leaf and redirect incoming edges to the 0-subgraph
 - Share all equivalent subgraphs

- **If item \(x \) does not appear in any itemset, the ZDD node is eliminated**
 - When average occurrence ratio of each item is 1%, than ZDD are more efficient than BDDs (up to 100 times)
ZDD - example

Itemset \{a,b\}; characteristic function \(F = ab'c' + a'bc' \)

Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming edges to the 0-subgraph
ZDD - UNION

UNION(G,H) {
 if (G=={}) return H;
 if (H=={}) return G;
 if (G==H) return G;
 cmp = computed_table_lookup(G,H);
 if (cmp != NULL) return cmp;

 x = top_variable(G,H);
 G1 = G.subset1; H1 = H.subset1;
 G0 = G.subset0; H0 = H.subset0;
 F0 = UNION(G0,H0);
 F1 = UNION(G1,H1);
 if (F0 == F1) return F0;
 F = find_or_add_unique_table(x,F0,F1);
 computed_table_insert(G,H,F);
 return F;
}
Summary

◆ BDDs
 + Very efficient data structure
 + Efficient manipulation routines

 - A few important functions don’t come out well
 - Variable order can have a high impact on size

◆ Application in many areas of CAD
 ▲ Hardware verification
 ▲ Logic synthesis