Problem 1

Given the Boolean function F:

$$F = c'd' + ac'd + a'b'c'd + a'bcd + cd' + acd$$

(a) Draw the min-terms on the cube.

(b) List all the primes (also on the cube).

(c) List all the essential primes.

Problem 2

(a) Check if F is negative/positive unate in variables a, b, c, d.

(b) Is F negative/positive unate?

Problem 3

Given F:

(a) Find a minimum cover using McCluskey’s method (prime implicant table, branch and bound).

(b) Find a minimum cover using Petrick’s method (primes in pos, transform in sop).

(c) Show the obtained cover on the cube.
Problem 4

Given the Boolean function F, suppose the variable b is in the *don’t care* (DC) set (b does not affect the functionality of F due to internal flexibilities in the logic network embedding F).

(a) What value for b (0 or 1) is the most convenient to reduce the F cover complexity? In other words, which value for b allows us to find the smallest implicant cover? Show why this is the case.

(b) Find a minimum cover (visually from the cube graphical representation).