Heuristic Two-level Logic Optimization

Giovanni De Micheli
Integrated Systems Centre
EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved
Module 1

Objective

- Data structures for logic optimization
- Data representation and encoding
Some more background

◆ Function $f (x_1, x_2, \ldots, x_i, \ldots, x_n)$

◆ Cofactor of f with respect to variable x_i
 $\Delta f_{x_i} = f (x_1, x_2, \ldots, 1, \ldots, x_n)$

◆ Cofactor of f with respect to variable x_i'
 $\Delta f_{x_i'} = f (x_1, x_2, \ldots, 0, \ldots, x_n)$

◆ Boole’s expansion theorem:
 $\Delta f (x_1, x_2, \ldots, x_i, \ldots, x_n) = x_i f_{x_i} + x_i' f_{x_i'}$

Also credited to Claude Shannon
Example

◆ Function: \(f = ab + bc + ac \)

◆ Cofactors:
 \(\Delta f_a = b + c \)
 \(\Delta f_a' = bc \)

◆ Expansion:
 \(\Delta f = a f_a + a' f_a' = a(b + c) + a' bc \)
Unateness

◆ Function \(f(x_1, x_2, \ldots, x_i, \ldots, x_n) \)

◆ Positive unate in \(x_i \) when:
 \[f_{x_i} \geq f_{x_i}' \]

◆ Negative unate in \(x_i \) when:
 \[f_{x_i} \leq f_{x_i}' \]

◆ A function is positive/negative unate when positive/negative unate in all its variables
Operators

- **Function** $f(\, x_1, x_2, \ldots, x_i, \ldots, x_n)$

- **Boolean difference of** f **w.r.t. variable** x_i:
 $$\frac{\partial f}{\partial x_i} \equiv f_{x_i} \oplus f_{x_i}'$$

- **Consensus of** f **w.r.t. variable** x_i:
 $$C_{x_i} \equiv f_{x_i} \cdot f_{x_i}'$$

- **Smoothing of** f **w.r.t. variable** x_i:
 $$S_{x_i} \equiv f_{x_i} + f_{x_i}'$$
Example
\[f = ab + bc + ac \]

- The Boolean difference \(\partial f / \partial a = f_a \oplus f_a' = b' c + bc' \)
- The consensus \(C_a = f_a \cdot f_a' = bc \)
- The smoothing \(S_a \equiv f_a + f_a' = b + c \)
Generalized expansion

Given:

- A Boolean function f.
- Orthonormal set of functions: $\phi_i, i = 1, 2, \ldots, k$

Then:

- $f = \sum_{i=1}^{k} \phi_i \cdot f_{\phi_i}$
- Where f_{ϕ_i} is a generalized cofactor.

The generalized cofactor is not unique, but satisfies:

- $f \cdot \phi_i \subseteq f_{\phi_i} \subseteq f + \phi_i'$
Example

◆ Function: $f = ab + bc + ac$

◆ Basis: $\phi_1 = ab$ and $\phi_2 = a' + b'$.

◆ Bounds:

$\Delta ab \subseteq f_{\phi_1} \subseteq 1$

$\Delta a' bc + ab' c \subseteq f_{\phi_2} \subseteq ab + bc + ac$

◆ Cofactors: $f_{\phi_1} = 1$ and $f_{\phi_2} = a' bc + ab' c$.

$$f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2}$$

$$= ab1 + (a' + b')(a' bc + ab' c)$$

$$= ab + bc + ac$$
Generalized expansion theorem

◆ Given:
 ▲ Two function \(f \) and \(g \).
 ▲ Orthonormal set of functions: \(\phi_i \), \(i=1,2,\ldots,k \)
 ▲ Boolean operator \(\odot \)

◆ Then:
 ▲ \(f \odot g = \sum_{i}^{k} \phi_i \cdot (f_{\phi_i} \odot g_{\phi_i}) \)

◆ Corollary:
 ▲ \(f \odot g = x_i \cdot (f_{x_i} \odot g_{x_i}) + x_i' \cdot (f_{x_i'} \odot g_{x_i'}) \)
Matrix representation of logic covers

- Representations used by logic minimizers
- Different formats
 - Usually one row per implicant
- Symbols:
 - 0, 1, *, ...
- Encoding:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ø</td>
<td>00</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>*</td>
<td>11</td>
</tr>
</tbody>
</table>
Advantages of positional cube notation

- Use binary values:
 - Two bits per symbols
 - More efficient than a byte (char)

- Binary operations are applicable
 - Intersection – bitwise AND
 - Supercube – bitwise OR

- Binary operations are very fast and can be parallelized
Example

\[f = a'd' + a'b + ab' + ac'd \]

\[
\begin{array}{cccc}
10 & 11 & 11 & 10 \\
10 & 01 & 11 & 11 \\
01 & 10 & 11 & 11 \\
01 & 11 & 10 & 01 \\
\end{array}
\]
Cofactor computation

- Cofactor of α w.r. to β
 - Void when α does not intersect β
 - $a_1 + b_1', a_2 + b_2', \ldots, a_n + b_n'$

- Cofactor of a set $C = \{\gamma_i\}$ w.r. to β:
 - Set of cofactors of γ_i w.r. to β
Example \(f = a' b' + ab \)

- **Cofactor w.r. to** \(\begin{array}{cc} 01 & 11 \\ \end{array} \)
 - First row – void
 - \(\begin{array}{cc} 01 & 01 \\ \end{array} \)
 - Second row – \(\begin{array}{cc} 11 & 01 \\ \end{array} \)
 - Cofactor \(f_a = b \)

\[
\begin{array}{cc}
10 & 10 \\
01 & 01 \\
00 & 00 \\
01 & 11 \\
00 & 00 \\
10 & 00 \\
11 & 01 \\
\end{array}
\]

\[\text{void}\]

(c) Giovanni De Micheli
Multiple-valued-input functions

◆ Input variables can take many values

◆ Representations:
 ▲ Literals: set of valid values
 ▲ Function = sum of products of literals

◆ Positional cube notation can be easily extended to mvi

◆ Key fact
 ▲ Multiple-output binary-valued functions represented as mvi single-output functions
Example

◆ 2-input, 3-output function:

\[f_1 = a' b' + ab \]
\[f_2 = ab \]
\[f_3 = ab' + a' b \]

◆ Mvi representation:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
<td>001</td>
</tr>
<tr>
<td>01</td>
<td>10</td>
<td>001</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>110</td>
</tr>
</tbody>
</table>
Module 2

Objective

- Operations on logic covers
- Application of the recursive paradigm
- Fundamental mechanisms used inside minimizers
Operations on logic covers

◆ Recursive paradigm
 ▲ Expand about a mv-variable
 ▲ Apply operation to co-factors
 ▲ Merge results

◆ Unate heuristics
 ▲ Operations on unate functions are simpler
 ▲ Select variables so that cofactors become unate functions

◆ Recursive paradigm is general and applicable to different data structures
 ▲ Matrices and binary decision diagrams
Tautology

◆ Check if a function is always TRUE

◆ Recursive paradigm:
 ▲ Expand about a mvi variable
 ▲ If all cofactors are TRUE, then the function is a tautology

◆ Unate heuristics
 ▲ If cofactors are unate functions, additional criteria to determine tautology
 ▲ Faster decision
Recursive tautology

TAUTOLOGY:

▲ The cover matrix has a row of all 1s. (Tautology cube)

NO TAUTOLOGY:

▲ The cover has a column of 0s. (A variable never takes a value)

TAUTOLOGY:

▲ The cover depends on one variable, and there is no column of 0s in that field

Decomposition rule:

▲ When a cover is the union of two subcovers that depend on disjoint sets of variables, then check tautology in both subcovers
Example
\[f = ab + ac + ab'c' + a' \]

- Select variable \(a \)
- Cofactor w.r. to \(a' \) is
 \[\begin{array}{ccc}
 11 & 11 & 11 \\
 \end{array} \]

- Cofactor w.r. to \(a \) is:
 \[\begin{array}{c|ccc}
 & 01 & 11 & 01 \\
 11 & 11 & 11 & 10 \\
 11 & 11 & 01 & 10 \\
 11 & 10 & 10 & 10 \\
 \end{array} \]
Example (2)

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>01</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

- Select variable b

- Cofactor w.r. to b' is

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>01</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

- No column of 0 - Tautology

- Cofactor w.r. to b:

 Has row of 1s

- Function is a **TAUTOLOGY**
Containment

◆ Theorem:

▲ A cover F contains an implicant α if and only if F_α is a tautology

◆ Consequence:

▲ Containment can be verified by the tautology algorithm
Check covering of $bc : 11 \ 01 \ 01$.

Take the cofactor:

$$
\begin{array}{ccc}
01 & 11 & 11 \\
01 & 11 & 11 \\
10 & 11 & 11 \\
\end{array}
$$

Tautology – bc is contained by f.

\[f = ab + ac + a' \]
Complementation

◆ Recursive paradigm

\[f'' = x f'_x + x' f'_x' \]

◆ Steps:

▲ Select variable

▲ Compute co-factors

▲ Complement co-factors

◆ Recur until cofactors can be complemented in a straightforward way
Termination rules

◆ The cover F is void
 ▲ Hence its complement is the universal cube

◆ The cover F has a row of 1s
 ▲ Hence F is a tautology and its complement is void

◆ The cover F consists of one implicant.
 ▲ Hence the complement is computed by DeMorgan’s law

◆ All implicants of F depend on a single variable, and there is not a column of 0s.
 ▲ The function is a tautology, and its complement is void
Unate functions

◆ Theorem:
 ▲ If f is positive unate in x, then
 \[\nabla f' = f'_x + x' f'_x. \]
 ▲ If f is negative unate in x, then
 \[\nabla f' = x f'_x + f'_x. \]

◆ Consequence:
 ▲ Complement computation is simpler
 ▲ Follow only one branch in the recursion

◆ Heuristics
 ▲ Select variables to make the cofactor unate
Example
\[f = ab + ac + a' \]

- **Select binate variable** \(a \)

- **Compute cofactors**:
 - \(F_{a'} \) is a tautology, hence \(F'_{a'} \) is void.
 - \(F_a \) yields:

 $\begin{bmatrix}
 11 & 01 & 11 \\
 11 & 11 & 01 \\
 11 & 11 & 01
 \end{bmatrix}$
Example (2)

◆ Select unate variable b

◆ Compute cofactors:

△ F_{ab} is a tautology, hence F'_{ab} is void

△ $F_{ab'} = 11\ 11\ 01$ and its complement is $11\ 11\ 10$

◆ Re-construct complement:

△ $11\ 11\ 10$ intersected with $Cube(b') = 11\ 10\ 11$ yields $11\ 10\ 10$

△ $11\ 10\ 10$ intersected with $Cube(a) = 01\ 11\ 11$ yields $01\ 10\ 10$

◆ Complement: $F' = 01\ 10\ 10$
Example (3)

Recursive search:

- $F_{a'} = \text{TAUT}$
 - $\text{COMP} = \emptyset$

- $F_{ab'} = c$
 - $\text{COMP} = c'$

- $F_{ab} = \text{TAUT}$
 - $\text{COMP} = \emptyset$

Complement: $a \ b' \ c'$
Boolean cover manipulation summary

- Recursive methods are efficient operators for logic covers
 - Applicable to matrix-oriented representations
 - Applicable to recursive data structures like BDDs
- Good implementations of matrix-oriented recursive algorithms are still very competitive
 - Heuristics tuned to the matrix representations
Module 3

◆ Objectives

▲ Heuristic two-level minimization
▲ The algorithms of ESPRESSO
Heuristic logic minimization

◆ Provide irredundant covers with “reasonably small” sizes
◆ Fast and applicable to many functions
 ▲ Much faster than exact minimization
◆ Avoid bottlenecks of exact minimization
 ▲ Prime generation and storage
 ▲ Covering
◆ Motivation
 ▲ Use as internal engine within multi-level synthesis tools
Heuristic minimization -- principles

◆ Start from initial cover
 ▲ Provided by designer or extracted from hardware language model

◆ Modify cover under consideration
 ▲ Make it prime and irredundant
 ▲ Perturb cover and re-iterate until a small irredundant cover is obtained

◆ Typically the size of the cover decreases
 ▲ Operations on limited-size covers are fast
Heuristic minimization - operators

- **Expand**
 - Make implicants prime
 - Removed covered implicants

- **Reduce**
 - Reduce size of each implicant while preserving cover

- **Reshape**
 - Modify implicant pairs: enlarge one and reduce the other

- **Irredundant**
 - Make cover irredundant
Example

◆ Initial cover

▲ (without positional cube notation)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Giovanni De Micheli
Set of all primes

\[\begin{array}{cccc}
\alpha & 0 & * & * & 0 & 1 \\
\beta & * & 0 & * & 0 & 1 \\
\gamma & 0 & 1 & * & * & 1 \\
\delta & 1 & 0 & * & * & 1 \\
\epsilon & 1 & * & 0 & 1 & 1 \\
\zeta & * & 1 & 0 & 1 & 1 \\
\end{array} \]
Example of expansion

◆ Expand 0000 to $\alpha = 0^{**}0$.
 ▲ Drop 0100, 0010, 0110 from the cover.

◆ Expand 1000 to $\beta = *0*0$.
 ▲ Drop 1010 from the cover.

◆ Expand 0101 to $\gamma = 01^{**}$.
 ▲ Drop 0111 from the cover.

◆ Expand 1001 to $\delta = 10^{**}$.
 ▲ Drop 1011 from the cover.

◆ Expand 1101 to $\epsilon = 1*01$.

◆ Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
Example of reduction

- Reduce $0^{**}0$ to nothing.
- Reduce $\beta = *0*0$ to $\beta' = 00*0$.
- Reduce $\epsilon = 1*01$ to $\epsilon' = 1101$.
- Cover is: $\{\beta', \gamma, \delta, \epsilon'\}$.
Example of reshape

- Reshape $\{\beta', \delta\}$ to: $\{\beta, \delta'\}$.
 - Where $\delta' = 10*1$.
- Cover is: $\{\beta, \gamma, \delta', \varepsilon'\}$.
Example of second expansion

- Expand $\delta' = 10^*1$ to $\delta = 10^{**}$.
- Expand $\varepsilon' = 1101$ to $\varepsilon = 1^*01$.
Example
Summary of the steps taken by MINI

◆ Expansion:
 ▲ Cover: \{\alpha, \beta, \gamma, \delta, \varepsilon\}.
 ▲ Prime, redundant, minimal w.r. to scc.

◆ Reduction:
 ▲ \alpha eliminated.
 ▲ \beta = *0*0 reduced to \beta' = 00*0.
 ▲ \varepsilon = 1*01 reduced to \varepsilon' = 1101.
 ▲ Cover: \{\beta', \gamma, \delta, \varepsilon'\}.

◆ Reshape:
 ▲ \{\beta', \delta\} reshaped to: \{\beta, \delta'\} where \delta' = 10*1.

◆ Second expansion:
 ▲ Cover: \{\beta, \gamma, \delta, \varepsilon\}.
 ▲ Prime, irredundant.
Example
Summary of the steps taken by ESPRESSO

◆ Expansion:
 ▲ Cover: \{\alpha, \beta, \gamma, \delta, \varepsilon\}.
 ▲ Prime, redundant, minimal w.r. to scc.

◆ Irredundant:
 ▲ Cover: \{\beta, \gamma, \delta, \varepsilon\}.
 ▲ Prime, irredundant.
Rough comparison of minimizers

◆ MINI
 ▲ Iterate EXPAND, REDUCE, RESHAPE

◆ Espresso
 ▲ Iterate EXPAND, IRREDUNDANT, REDUCE

◆ Espresso guarantees an irredundant cover
 ▲ Because of the irredundant operator

◆ MINI may return irredundant covers, but can guarantee only minimality w.r.to single implicant containment
Expand
Naïve implementation

◆ For each implicant
 ▲ For each care literal
 ▼ Raise it to don’t care if possible
 ▲ Remove all implicants covered by expanded implicant

◆ Issues
 ▲ Validity check of expansion
 ▲ Order of expansion
Validity check

◆ Espresso, MINI
 ▲ Check intersection of expanded implicant with OFF-set
 ▲ Requires complementation

◆ Presto
 ▲ Check inclusion of expanded implicant in the union of the ON-set and DC-set
 ▲ Reducible to recursive tautology check
Ordering heuristics

◆ Expand the cubes that are unlikely to be covered by other cubes

◆ Selection:
 ▲ Compute vector of column sums
 ▲ *Weight*: inner product of cube and vector
 ▲ Sort implicants in ascending order of weight

◆ Rationale:
 ▲ Low weight correlates to having few 1s in densely populated columns
Example

\[f = a' b' c' + ab' c' + a' bc' + a' b' c \]

DC-set = abc'

\[
\begin{array}{ccc}
10 & 10 & 10 \\
01 & 10 & 10 \\
10 & 01 & 10 \\
10 & 10 & 01 \\
\end{array}
\]

◆ Ordering:

▲ Vector: [3 1 3 1 3 1]^T

▲ Weights: (9, 7, 7, 7)

◆ Select second implicant.
Example (2)

\[\begin{align*}
\alpha & : 10\ 10\ 10 \\
\beta & : 01\ 10\ 10 \\
\gamma & : 10\ 01\ 10 \\
\delta & : 10\ 10\ 01 \\
\text{DC} & : 01\ 01\ 10
\end{align*}\]
Example (3)

◆ OFF-set:

```
01 11 01
11 01 01
```

◆ Expand 01 10 10:

△ 11 10 10 valid.
△ 11 11 10 valid.
△ 11 11 11 invalid.

◆ Update cover to:

```
11 11 10
10 10 01
```

(c) Giovanni De Micheli
Example (4)

\[
\begin{array}{ccc}
11 & 11 & 10 \\
10 & 10 & 01
\end{array}
\]

◆ Expand 10 10 01:
 ▲ 11 10 01 invalid.
 ▲ 10 11 01 invalid.
 ▲ 10 10 11 valid.

◆ Expanded cover:

\[
\begin{array}{ccc}
11 & 11 & 10 \\
10 & 10 & 11
\end{array}
\]
Expand heuristics in ESPRESSO

◆ Special heuristic to choose the order of literals

◆ Rationale:

▲ Raise literals so that the expanded implicant
 ▼ Covers a maximal set of cubes
 ▼ Overlaps with a maximal set of cubes
 ▼ The implicant is as large as possible

◆ Intuitive argument

▲ Pair implicant to be expanded with other implicants, to check the fruitful directions for expansion
Expand in Espresso

◆ Compare implicant with OFF-set.
 ▲ Determine possible and impossible directions of expansion
◆ Detection of feasibly covered implicants
 ▲ If there is an implicant β whose supercube with α is feasible, expand α to that supercube and remove β
◆ Raise those literals of α to overlap a maximum number of implicants
 ▲ It is likely that the uncovered part of those implicant is covered by some other expanded cube
◆ Find the largest prime implicant
 ▲ Formulate a covering problem and solve it heuristically
Reduce

◆ Sort implicants
 ▲ Heuristics: sort by descending weight
 ▲ Opposite to the heuristic sorting for expand
◆ Maximal reduction can be determined exactly
◆ Theorem:
 ▲ Let \(\alpha \) be in \(F \) and \(Q = F \cup D - \{ \alpha \} \)
 Then, the maximally reduced cube is:
 \(\hat{\alpha} = \alpha \cap \text{supercube} \left(Q' \alpha \right) \)
Example

◆ Expand cover:

\[
\begin{array}{ccc}
11 & 11 & 10 \\
10 & 10 & 11 \\
10 & 10 & 01 \\
11 & 11 & 10 \\
\end{array}
\]

◆ Select first implicant:

▲ Cannot be reduced.

◆ Select second implicant:

▲ Reduced to 10 10 01

◆ Reduced cover:

\[
\begin{array}{ccc}
11 & 11 & 10 \\
10 & 10 & 01 \\
\end{array}
\]
Irredundant cover

\[\begin{align*}
\alpha & : 10 10 11 \\
\beta & : 11 10 01 \\
\gamma & : 01 11 01 \\
\delta & : 01 01 11 \\
\epsilon & : 11 01 10
\end{align*}\]
Irredundant cover

- Relatively essential set E_r
 - Implicants covering some minterms of the function not covered by other implicants
 - Important remark: we do not know all the primes!

- Totally redundant set R^t
 - Implicants covered by the relatively essentials

- Partially redundant set R^p
 - Remaining implicants
Irredundant cover

◆ Find a subset of \mathbb{R}^p that, together with E^r covers the function

◆ Modification of the tautology algorithm
 ▲ Each cube in \mathbb{R}^p is covered by other cubes
 ▲ Find mutual covering relations

◆ Reduces to a covering problem
 ▲ Apply a heuristic algorithm.
 ▲ Note that even by applying an exact algorithm, a minimum solution may not be found, because we do not have all primes.
Example

- $E^r = \{\alpha, \varepsilon\}$
- $R^t = \emptyset$
- $R^p = \{\beta, \gamma, \delta\}$
Example (2)

◆ Covering relations:
 ▲ β is covered by {α, γ}.
 ▲ γ is covered by {β, δ}.
 ▲ δ is covered by {γ, ε}.

◆ Minimum cover: γ U Er
ESPRESSO algorithm in short

- Compute the complement
- Extract essentials
- Iterate
 - Expand, irredundant and reduce
- Cost functions:
 - Cover cardinality φ_1
 - Weighted sum of cube and literal count φ_2
ESPRESSO algorithm in detail

```plaintext
espresso(F,D) {
    R = complement(F U D);
    F = expand(F,R);
    F = irredundant(F,D);
    E = essentials(F,D);
    F = F – E;  D = D U E;
    repeat {
        φ_2 = cost(F);
        repeat {
            φ_1 = |F |;
            F = reduce(F,D);
            F = expand(F,R);
            F = irredundant(F,D);
        } until (|F | ≥ φ_1);
        F = last_gasp(F,D,R);
    } until (cost( F ) ≥ φ_2);
    F = F U E;  D = D – E;
    F = make_sparse(F,D,R);
}
```
Heuristic two-level minimization
Summary

◆ Heuristic minimization is iterative
◆ Few operators are applied to covers
◆ Underlying mechanism
 ▲ Cube operation
 ▲ Unate recursive mechanism
◆ Efficient algorithms