Two-level Logic Synthesis and Optimization

Giovanni De Micheli

Integrated Systems Centre

EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved
Module 1

Objectives

- Fundamentals of logic synthesis
- Mathematical formulation
- Definition of the problems
Combinational logic design
Background

◆ Boolean Algebra
 ▲ Quintuple \((B, +, \cdot, 0, 1)\)
 ▲ Binary Boolean algebra \(B = \{ 0, 1 \}\)

◆ Boolean function
 ▲ Single output \(f : B^n \rightarrow B\)
 ▲ Multiple output \(f : B^n \rightarrow B^m\)
 ▲ Incompletely-specified:
 ▼ Don’t care symbol: *
 ▼ \(f : B^n \rightarrow \{ 0, 1, * \}^m\)
The don’t care conditions

◆ We do not care about the value of a function

◆ Related to the environment
 ▲ Input patterns that never occur
 ▲ Input patterns such that some output is never observed

◆ Very important for synthesis and optimization
Definitions

◆ Scalar function:
 ▲ ON-set
 ▼ Subset of the domain such that \(f \) is true
 ▲ OFF-set
 ▼ Subset of the domain such that \(f \) is false
 ▲ DC-set
 ▼ Subset of the domain such that \(f \) is a don’t care

◆ Multiple-output function:
 ▲ ON, OFF, DC-sets defined for each component
Cubical representation
Definitions

- **Boolean variables**
- **Boolean literals:**
 - Variables and their complement
- **Product or cube:**
 - Product of literals
- **Implicant:**
 - Product implying a value of the function (usually 1)
 - Hypercube in the Boolean space
- **Minterm:**
 - Product of all input variables implying a value of the function (usually 1)
 - Vertex in the Boolean space
Tabular representations

◆ Truth table
 ▲ List of all minterms of a function

◆ Implicant table or cover
 ▲ List of implicants sufficient to define a function

◆ Note:
 ▲ Implicant tables are smaller in size as compared to truth tables
Example of truth table

\[x = ab + a'c; \quad y = ab + bc + ac \]

<table>
<thead>
<tr>
<th>abc</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
</tr>
<tr>
<td>001</td>
<td>10</td>
</tr>
<tr>
<td>010</td>
<td>00</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
</tr>
<tr>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
</tr>
<tr>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
</tr>
</tbody>
</table>
Example of implicant table

\[x = ab + a'c; \quad y = ab + bc + ac \]

<table>
<thead>
<tr>
<th>abc</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>10</td>
</tr>
<tr>
<td>*11</td>
<td>11</td>
</tr>
<tr>
<td>101</td>
<td>01</td>
</tr>
<tr>
<td>11*</td>
<td>11</td>
</tr>
</tbody>
</table>
Cubical representation of minterms and implicants

- $f_1 = a' \ b' \ c' + a' \ b' \ c + ab' \ c + abc + abc'$
- $f_2 = a' \ b' \ c + ab' \ c$
Representations

◆ Visual representations
 ▲ Cubical notation
 ▲ Karnaugh maps

◆ Computer-oriented representations
 ▲ Matrices
 ▼ Sparse
 ▼ Various encoding
 ▲ Binary-decision diagrams
 ▼ Address sparsity and efficiency
Module 2

◆ Objectives

▲ Two-level logic optimization
▲ Motivation
▲ Models
▲ Exact algorithms for logic optimization
Two-level logic optimization

motivation

◆ Reduce size of the representation

◆ Direct implementation
 ▲ PLAs reduce size and delay

◆ Other implementation styles
 ▲ Reduce amount of information
 ▲ Simplify local functions and connections
Programmable logic arrays

- Macro-cells with rectangular structure
 - Implement any multi-output function
 - Layout generated by module generators
 - Fairly popular in the seventies/eighties

- Advantages
 - Simple, predictable timing

- Disadvantages
 - Less flexible than cell-based realization
 - Dynamic operation

- Open issue
 - Will PLA structures be useful with new nanotechnologies? (e.g., nanowires)
Programmable logic array

\[f_1 = a' \ b' + b' \ c + ab; \quad f_2 = b' \ c \]
Two-level minimization

Assumptions

- Primary goal is to reduce the number of implicants
- All implicants have the same cost
- Secondary goal is to reduce the number of literals

Rationale

- Implicants correspond to PLA rows
- Literals correspond to transistors
Definitions

◆ Minimum cover
 ▲ Cover of a function with minimum number of implicants
 ▲ Global optimum

◆ Minimal cover or irredundant cover
 ▲ Cover of the function that is not a proper superset of another cover
 ▲ No implicant can be dropped
 ▲ Local optimum

◆ Minimal w.r.to 1-implicant containment
 ▲ No implicant contained by another one
 ▲ Weak local optimum
Example

\[f_1 = a' b' c' + a' b' c + ab' c + abc + abc'; f_2 = a' b' c + ab' c \]
Definitions

◆ Prime implicant
 ▲ Implicant not contained by any other implicant

◆ Prime cover
 ▲ Cover of prime implicants

◆ Essential prime implicant
 ▲ There exist some minterm covered only by that prime implicant
 ▲ Needs to be included in the cover
Two-level logic minimization

◆ Exact methods
 ▲ Compute minimum cover
 ▲ Often difficult/impossible for large functions
 ▲ Based on Quine-McCluskey method

◆ Heuristic methods
 ▲ Compute minimal covers (possibly minimum)
 ▲ Large variety of methods and programs
 ▼ MINI, PRESTO, ESPRESSO
Exact logic minimization

◆ Quine’s theorem:
 ▲ There is a minimum cover that is prime

◆ Consequence
 ▲ Search for minimum cover can be restricted to prime implicants

◆ Quine-McCluskey method
 ▲ Compute prime implicants
 ▲ Determine minimum cover
Prime implicant table

- **Rows:** minterms
- **Columns:** prime implicants
- **Exponential size**
 - 2^n minterms
 - Up to $3^n / n$ prime implicants
- **Remarks**
 - Some functions have much fewer primes
 - Minterms can be grouped together
 - Implicit methods for implicant enumeration
Example

\[f = a'b'c' + a'b'c + ab'c + abc + abc' \]

Primes:

\[
\begin{array}{c|cc}
\alpha & 00^* & 1 \\
\beta & *01 & 1 \\
\gamma & 1*1 & 1 \\
\delta & 11^* & 1 \\
\end{array}
\]

Table:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Prime implicants of \(f\)

Minimum cover of \(f\)
Minimum cover
early methods

◆ Reduce table
 ▲ Iteratively identify essentials,
 save them in the cover.
 Remove covered minterms

◆ Petrick’s method
 ▲ Write covering clauses in pos form
 ▲ Multiply out pos form into sop form
 ▲ Select cube of minimum size

◆ Remark
 ▲ Multiplying out clauses has exponential cost
Example

- **pos clauses**
 \[(\alpha) (\alpha + \beta) (\beta + \gamma) (\gamma + \delta) (\delta) = 1 \]

- **sop form:**
 \[\alpha\beta\delta + \alpha\gamma\delta = 1 \]

- **Solutions:**
 \{ \alpha \beta \delta \}
 \{ \alpha \gamma \delta \}
Matrix representation

- View table as Boolean matrix: \(A \)
- Selection Boolean vector for primes: \(x \)
- Determine \(x \) such that
 \[A x \geq 1 \]
 Select enough columns to cover all rows
- Minimize norm (1 count) of \(x \)
Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
0 \\
1 \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
2 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]
Covering problem

- Set covering problem:
 - A set S -- minterm set
 - A collection C of subsets (implicant set)
 - Select fewest elements of C to cover S

- Computationally intractable problem

- Exact solution method
 - Branch and bound algorithm

- Several heuristic approximation methods
Example
Edge-cover of a hypergraph
Branch and bound algorithm

- Tree search in the solution space
 ▲ Potentially exponential

- Use bounding function:
 ▲ If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far, then kill the search
 ▲ Bounding function should be fast to evaluate and accurate

- Good pruning may expedite the search
Example

Bound = 6
Kill sub-tree
Branch and bound for logic minimization
Reduction strategies

◆ Use matrix formulation of the problem

◆ Partitioning:
 ▲ If A is block diagonal:
 ▼ Solve covering problems for the corresponding blocks

◆ Essentials
 ▲ Column incident to one (or more) rows with single 1
 ▼ Select column
 ▼ Remove covered row(s) from table
Branch and bound for logic minimization
Reduction strategies

◆ Column (implicant) dominance:
 ▲ If $a_{ki} \geq a_{kj}$ for all k
 ▼ Remove column j (dominated)
 ▲ Dominated implicant (j) has its minterms already covered by
dominant implicant (i)

◆ Row (minterm) dominance:
 ▲ If $a_{ik} \geq a_{jk}$ for all k
 ▼ Remove row i (dominant)
 ▲ When an implicant covers the dominated minterm, it also covers
the dominant one
Example

\[A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix} \]
Example

◆ Fifth row is dominant
◆ Fourth column is essential
◆ Fifth column is dominated
◆ Matrix after reductions:

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
\end{bmatrix}
\]
Branch and bound covering algorithm

\texttt{EXACT_COVER}(A,x,b) \{
 Reduce matrix \(A \) and update corresponding \(x \);
 if (current_estimate \(\geq \) \(|b| \)) return (b);
 if (A has no rows) return(x);
 select a branching column \(c \);
 \(x_c = 1; \)
 \(\tilde{A} = A \) after deleting \(c \) and rows incident to it;
 \(x'^\sim = EXACT_COVER(\tilde{A},x,b); \)
 if (\(|x'^\sim| < |b| \))
 \(b = x'^\sim; \)
 \(x_c = 0; \)
 \(\tilde{A} = A \) after deleting \(c \);
 \(x'^\sim = EXACT_COVER(\tilde{A},x,b); \)
 if (\(|x'^\sim| < |b| \))
 \(b = x'^\sim; \)
 return(b);
\}
Bounding function

- Estimate lower bound on covers that can be derived from current solution vector x

- The sum of the 1s in x, plus bound of cover for local A

 ▲ Independent set of rows
 ▼ No 1 in the same column
 ▼ Require independent implicants to cover

 ▲ Construct graph to show pairwise independence

 ▲ Find clique number
 ▼ Size of the largest clique

▲ Approximation (lower) is acceptable
Example

- Row 4 independent from 1,2,3
- Clique number and bound is 2

\[
A = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]
Example

There are no independent rows

- Clique number is 1 (one vertex)
- Bound is 1+1= 2

Because of the essential already selected

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
Example
Branching on the cyclic core

◆ Select first column
 ▲ Recur with \(\tilde{A} = [11] \)
 ▼ Delete one dominated column
 ▼ Take other column (essential)
 ▲ New cost is 3

◆ Exclude first column
 ▲ Find another solution with cost equal to 3.
 ▲ Discard

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]
Espresso-exact

- Exact 2-level logic minimizer
- Exploits iterative reduction and branch and bound algorithm on cyclic core
- Compact implicant table
 - Rows represent groups of minterms covered by the same implicants
- Very efficient
 - Solves most benchmarks
Example

After removing the essentials

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>ε</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000,0010</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

α 0 ** 0 1
β * 0 * 0 1
γ 0 1 ** 1
δ 1 0 ** 1
ε 1 * 0 1 1
ζ * 1 0 1 1
Exact two-level minimization

◆ There are two main difficulties:
 ▲ Storage of the implicant table
 ▲ Solving the cyclic core

◆ Implicit representation of prime implicants
 ▲ Methods based on binary decision diagrams
 ▲ Avoid explicit tabulation

◆ Recent methods make 2-level optimization solve exactly almost all benchmarks
 ▲ Heuristic optimization is just used to achieve solutions faster
Module 3

Boolean Relations

- Motivation of using relations
- Optimization of realization of Boolean relation
- Comparisons to two-level optimization
Boolean relations

◆ Generalization of Boolean functions
◆ More than one output pattern may correspond to an input pattern
 ▲ Multiple-choice specifications
 ▲ Model inner blocks of multi-level circuits
◆ Degrees of freedom in finding an implementation
 ▲ More general than don’t care conditions
◆ Problem:
 ▲ Given a Boolean relation, find a minimum cover of a compatible Boolean function that can implement the relation
Example

- Compare:
 - \(a + b > 4 \)?
 - \(a + b < 3 \)?
Example

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_0</th>
<th>b_1</th>
<th>b_0</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{ 000, 001, 010 }</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{ 000, 001, 010 }</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{ 000, 001, 010 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{ 000, 001, 010 }</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>{ 000, 001, 010 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{ 000, 001, 010 }</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>{ 011, 100 }</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>{ 101, 110, 111 }</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>{ 101, 110, 111 }</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>{ 101, 110, 111 }</td>
</tr>
</tbody>
</table>

Note that output 111 cannot be $a+b$ but can be considered as a don’t care.
Example

- Circuit is no longer an adder

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_0</th>
<th>b_1</th>
<th>b_0</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td>010</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>0</td>
<td>*</td>
<td>010</td>
</tr>
<tr>
<td>1</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td>100</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>001</td>
</tr>
</tbody>
</table>
Minimization of Boolean relations

- Since there are many possible output values (for any input), there are many logic functions implementing the relation

 ▲ Compatible functions

- Problem

 ▲ Find a minimum compatible function

- Do not enumerate all compatible functions

 ▲ Compute the primes of the compatible functions
 ▼ C-primes

 ▲ Derive a logic cover from the c-primes
Binate covering

◆ Covering problem is more complex
 ▲ As compared to minimizing logic functions.

◆ In classic Boolean minimization we just need enough implicants to cover the minterm
 ▲ Covering clause is \textit{unate} in all variables
 ▲ Any additional implicant does not hurt

◆ In Boolean relation optimization, we need to pick implicants to realize a compatible function
 ▲ Some implicants cannot be taken together
 ▲ Covering clause is \textit{binate} (implicant mutual exclusion)
 ▲ Non-compact Boolean space
Solving binate covering

◆ Binate cover can be solved with branch and bound
 ▲ In practice much more difficult to solve, because it is harder to bound effectively

◆ Binate cover can be reduced to min-cost SAT
 ▲ SAT solvers can be used

◆ Binate cover can be also modeled by BDDs

◆ Several approximation algorithms for binate cover
Summary: Boolean Relations

◆ Generalization of Boolean functions
 ▲ More degrees of freedom than don’t care sets
◆ Useful to represent multiple choice
◆ Useful to model internals of logic networks
◆ Elegant formalism, but computationally-intensive solution method