La durée d'écoute est désormais limitée : sans action de votre part (un simple clic), la diffusion s'arrête au bout d'un temps déterminé selon les stations. En effet, pour nous, diffuser, les technologies actuelles imposent un coût dépendant de la durée et du nombre d'auditeurs. Plusieurs éléments nous indiquent que les internautes ayant accès à l'internet illimité ne coupent pas l'écoute, lorsqu'ils quittent leur ordinateur allumé. Radio France ne peut continuer à financer pour celui qui n'écoute pas. C'est pourquoi nous avons mis en place ce système de confirmation, un peu contraignant, mais qui nous permet de mieux contrôler les coûts de diffusion.
IP Multicast

Unicast = send to one destination
Multicast = send to a *group* of destinations

IP has multicast addresses:
224.0.0.0/4 (i.e. 224.0.0.0 to 239.255.255.255) and ff00::/8

An IP multicast address is used to identify a group:

- **Any Source Multicast (ASM):** the group is identified by the multicast address. Any source can send to this group.

- **Source Specific Multicast (SSM):** the group is identified by \((s, m)\) where \(m\) is a multicast address and \(s\) is a (unicast) source address. Only \(s\) can send to this group.

- By default 232.0.0.0/8 and ff3x::/32 are SSM addresses.
Operation of IP Multicast: destinations need to explicitly join multicast group

1. Source S sends packets to multicast address m; there is no member, the data is simply lost at router R5.
2. A joins the SSM group (s,m).
3. R1 informs the rest of the network that (s,m) has a member at R1 using a multicast routing protocol e.g. PIM-SM; this results in a tree being built. Data sent by S now reach A.
4. B joins the multicast address m.
5. R4 informs the rest of the network that m has a member at R4; the multicast routing protocol adds branches to the tree. Data sent by S now reach both A and B.

Destinations subscribe via IGMP (Internet Group Management Protocol, IPv4) or MLD (Multicast Listener Discovery -- IPv6); **join** messages sent to router routers build distribution tree via a multicast routing protocol (PIM-SM) or by other method packet multiplication is done by routers.

source simply sends one single packet for n destination
Multicast enabled Routers Must Keep Additional State Information

In addition to IP principles #1 and #2, an IP router does **exact match** for multicast groups.

Multicast **state information** is kept in router for every known multicast group:

- \((s, m)\) or \((*,m)\) // id of group
- valid incoming interfaces // for security
- outgoing interfaces // this is the routing info
- other information required by multicast routing protocol
Unicast: R1 has one single entry for all addresses starting with B

Multicast: R1 needs the explicit list of all interfaces on which there is a listener, for every multicast address – since the location of listeners depends on applications and users, not on the network topology.

Multicast addresses are purely logical – no topological information
Is there Multicast ARP?

Recall ARP = find MAC address that corresponds to an IP address; here the target MAC address is a multicast MAC address.

There is no ARP for multicast. IP multicast address is algorithmically mapped to a multicast MAC address.

- Last 23 bits of IPv4 multicast address are used in MAC address
- Last 32 bits of IPv6 multicast address are used in MAC address

Several multicast addresses may correspond to same MAC address

- if needed, operating system removes packets received unnecessarily; it is hoped that this rarely happens

All multicast is handled by MAC layer as ASM (i.e. MAC multicast address depends only on IP multicast IP address m not on source address s, even if m is an SSM address)

<table>
<thead>
<tr>
<th>MAC multicast addr.</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-00-5e-XX-XX-XX</td>
<td>IPv4 multicast</td>
</tr>
<tr>
<td>33-33-XX-XX-XX-XX</td>
<td>IPv6 multicast</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP dest address</th>
<th>229.130.54.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP dest address (hexa)</td>
<td>e5-82-36-cf</td>
</tr>
<tr>
<td>IP dest address (bin)</td>
<td>...-10000010-...</td>
</tr>
<tr>
<td>Keep last 23 bits (bin)</td>
<td>...-00000010-...</td>
</tr>
<tr>
<td>Keep last 23 bits (hexa)</td>
<td>02-36-cf</td>
</tr>
<tr>
<td>MAC address</td>
<td>01-00-5e-03-36-cf</td>
</tr>
</tbody>
</table>
MAC Dest Addr = 01:00:5e:02:36:cf

B listens to 229.130.54.07

C listens to 229.130.54.07

D does not listen to 229.130.54.07

Some (non smart) switches simply treat multicast frames as broadcast.

MAC Dest Addr = 01:00:5e:02:36:cf

B listens to 229.130.54.07

C listens to 229.130.54.07

D does not listen to 229.130.54.07

Some smarter switches simply listen to IGMP/MLD and overhear who listens – deliver only to intended recipients – but do not distinguish SSM from ASM.
Multicast Routing

There are many multicast routing protocols. In practice, widespread is **PIM**: Protocol Independent Multicast. It supports ASM and SSM and exists in two versions: sparse and dense.

PIM-DM (Dense Mode) makes heavy use of broadcast and can be used only in small, tightly controlled networks.

PIM-SM (Sparse Mode) is more reasonable and is used e.g. for TV distribution.

When used with SSM, PIM-SM is very simple: it uses Reverse Path Forwarding: when a router (such as R1) needs to add a receiver, it sends a PIM/JOIN towards the source, using unicast routing. This creates the distribution tree on the fly.

PIM-SM for ASM is more complicated; it uses one multicast router as Rendez-vous Point (RP): sources sends to RP, RP creates a tree from source (using RPF) destinations create a tree from RP, using RPF. Finally, destinations create trees from sources, using RPF.
Security of IP Multicast

IP multicast makes life easier for attackers (e.g. Denial of Service, witty worm)

- mitigations: limit multicast rate and number of groups; control which multicast group is allowed (access lists)

SSM is safer as routers and destination can reject unwanted sources

IGMP/MLD is not secured and has the same problems as ARP/NDP

- mitigated by same mechanisms: sniffing switches observe all traffic and implement access-lists

Multicast capable networks must deploy exhaustive filtering and monitoring tools to limit potential damage
Multicast in Practice

Multicast is good for sources

► One packet sent for n destinations
► Multiplication is done repeatedly, $O(\log(n))$ times

Multicast suffers from per-flow state in routers

► Scalability problems (non aggregation)
► Possible denial of service attacks

Multicast is not supported everywhere, but is (with PIM-SM):

► At EPFL and other academic networks
► Internet TV distribution
► In some corporate / smart grid networks for news, sensor streaming, time synchronization etc...

Works only with UDP, TCP does not work with multicast IP
a) Say what is true

A. A
B. B
C. C
D. A and B
E. A and C
F. B and C
G. All
H. None
I. I don’t know

A. In order to send to a multicast group a system must first join the group with IGMP or MLD
B. In order to receive from a multicast group a system must first join the group with IGMP or MLD
C. A system can know whether a packet is multicast by analyzing the IP destination address.
b) The destination MAC address is...

A. A group address derived from the last 23 bits of the IPv6 destination address
B. A group address derived from the last 24 bits of the IPv6 destination address
C. A group address derived from the last 32 bits of the IPv6 destination address
D. A broadcast address
E. The MAC address of an ARP server
F. I don’t know
c) Switches handle all multicast as ASM. What is the implication?

A. an SSM receiver may receive unwanted traffic at the MAC layer
B. SSM traffic is not supported
C. A and B
D. None
E. I don’t know
Conclusion

IP multicast came as an after-thought and uses a different principle than IP unicast (exact match versus longest prefix match) – is not widely deployed.

IP multicast addresses cannot be aggregated.

IP multicast require the deployment of a solution to compute the multicast trees between routers (with a multicast routing protocol such as PIM-SM or with a network management application, SDN).