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Chapter 1

Introduction

1.1 Foreword

This is a set of lecture notes for the MS level class called Foundations of Data Science
(COM-406) at EPFL. In 2017, 2018, and 2019 this course was called “Information Theory
and Signal Processing (for Data Science)” and it was taught jointly by M. Gastpar, E.
Telatar, and R. Urbanke. The class was first designed for the Fall Semester 2017.

This course discusses topics that are essential for the understanding and design of mod-
ern ML algorithms but are typically not taught in the standard ML courses. These include,
slightly more advanced notions of probability (e.g., useful tail bounds and exponential fami-
lies), basic notions of information theory (which is one of the main tool to derive bounds on
algorithms), estimation and detection (which is equivalent to regression and classification
but assuming that the underlying probabilistic model is known), multi-arm bandits (a basic
version of reinforcement learning), and important notions of signal processing. These topics
themselves are often interconnected. E.g., we will learn that exponential families contain
those probability distributions that maximize the entropy under moment constraints.
Lausanne, Switzerland, September 2025 M. Gastpar
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1.2 Acknowledgments
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to the Lecture Notes.

1.3 Practical Information, Fall 2024, EPFL

Instructor:
Michael Gastpar, michael.gastpar@epfl.ch, Office: INR 130

Teaching Assistants:
Millen Kanabar, millen.kanabar@epfl.ch, Office: INR 033
Yunzhen Yao, @epfl.ch, Office: INR 031

Administrative Assistants:
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Class Meetings:
Tuesdays:

• 11:15-12:30, BC 01 (Lecture)

• 12:30-13:15, Lunch Break

• 13:15-14:30, BC 01 (Lecture)

• 14:30-15:00, BC 01 (Solve HW Problem 1 together)

Wednesdays, 13:15-15:00, GC B3 30 (Exercises)

Class Web Page: We will use Moodle. Please check frequently.

Official Prerequisites:
COM-300 “Modèles stochastiques pour les communications” (or equivalent)
COM-202 “Signal processing” (or equivalent)
CS-233 “Introduction to machine learning”

Homework: We will have weekly homework sets. A part of your homework will be graded.

Midterm Exam: Wednesday, November 12, 2025, 13:15-15:00.

Final Exam: The Final Exam for the course will take place at some point between January
13 and February 1, 2026. The precise date will be decided by EPFL some time in November
2026.

Grading:

• If you do not hand in your final exam your overall grade will be NA.

• Otherwise, your grade will be determined based on the following weighted average:
10% for the Homework, 30% for the Midterm Exam, 60% for the Final Exam.
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1.4 Preliminary Lecture Schedule, Fall 2025, EPFL

Date Topics Reading

Sept 9 General Introduction ; Basics of Probability Chapter 2
Sept 10 Exercise: HW 1

Sept 16 Information Measures Chapter 4
Sept 17 Exercise: HW 2

Sept 23 Information Measures
Sept 24 Lecture (exceptionally) Information Measures Chapter 4

Sept 30 11:15- : Information Measures: Fano method (Millen) Chapter 4
Sept 30 13:15-15:00 : Exceptionally: Exercise: HW2
Oct 1 Exercise: HW 2

Oct 7 Multi-arm Bandits Chapter 5
Oct 8 Exercise: HW 3

Oct 14 Multi-arm Bandits Chapter 5
Oct 15 Exercise: HW 3

Oct 21&22 Fall Break

Oct 28 Detection & Estimation Chapter 6
Oct 29 Exercise: HW 4

Nov 4 Distribution Estimation Chapter 7
Nov 5 Exercise: HW 4

Nov 11 Property Testing Chapter 7
Nov 12 Midterm Exam

Nov 18 Exponential Family Distributions Chapter 8
Nov 19 Exercise: HW 5

Nov 25 Signal Representations Chapters 3 and 9
Nov 26 Exercise: HW 6

Dec 2 Signal Representations Chapter 9
Dec 3 Exercise: HW 6

Dec 9 Compression Chapter 10
Dec 10 Exercise: HW 7

Dec 16 Information Measures and Generalization Behavior Chapter 11
Dec 17 Exercise: HW 7
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Chapter 2

Some Useful Notions from Probability

Perhaps the most important prerequisite is that you are familiar and comfortable with basic
notions of probability. Except for Chapter 9, all chapters heavily use probability. We collect
here some slightly more advanced results that will be useful later. In particular, we discuss
tail bounds for subgaussian and subexponential distributions and we recall basic properties
of conditional expectation.

2.1 Basic Distributions

In the following it will often be convenient to treat continuous and discrete cases together.
So we will assume that we have a space X and a measure ν. Let us list our most important
examples:

1. Reals: Let X = R and let ν be the Lebesgue measure on R; recall that ν assigns to
intervals [a, b], a ≤ b, the measure ν([a, b]) = b− a.

2. Bernoulli: Let X = {0, 1} and let ν be the counting measure on {0, 1}; i.e., ν(∅) = 0,
ν({0}) = ν({1}) = 1, ν({0, 1}) = 2.

3. Poisson: Let X = N and let ν be the counting measure on N; i.e., for S ⊆ N,
ν(S) = |S|, the cardinality of the set S.

In the sequel it will hopefully be clear what the base measure is and so we will typically
not include it in our notation.

Example 2.1 (Gaussian). Let X = R and let ν be the Lebesgue measure on R. Then the
density of the normal distribution with mean µ and variance σ2 can be written as

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

Example 2.2 (Poisson). Let X = N and let ν be the counting measure on X . The density
of the Poisson distribution with parameter λ is

p(x) =
λxe−λ

x!
.

Example 2.3 (Bernoulli). Let X = {0, 1} and let ν be the couting measure on X . The
density of the Bernoulli distribution with P (X = 1) = p is

p(x) = px(1− p)1−x.

11
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Example 2.4 (Multinomial). A generalization of the Bernoulli measure is the multinomial.
Let X = {0, · · · , n}d and let ν be the counting measure on X . The density of the multinomial
distribution with parameter α = (α1, · · · , αd) is

p(x1, · · · , xd) =
(

n

x1, · · · , xd

) d∏

i=1

αxii ,

if x1 + x2 + . . .+ xd = n, and p(x1, · · · , xd) = 0 otherwise.

Example 2.5 (Dirichlet). The Dirichlet distribution of order d ≥ 2 with parameter α =
(α1, · · · , αd), αi > 0, has a density with respect to the Lebesgue measure on Rd−1 of the
form

pα(x) =
1

B(α)

d∏

i=1

xαi−1
i

where x belongs to the (d− 1)-dimensional simplex, i.e.,
∑d

i=1 xi = 1, xi ≥ 0, and where

B(α) =

∏d
i=1 Γ(αi)

Γ(
∑d

i=1 αi)
.

If d = 2 then the Dirichlet distribution is called the Beta distribution.
Note that the (d − 1)-dimensional simplex is the space of all probability distributions

with support of size d. Hence, one of the main uses of the Dirichlet distribution is to provide
a prior on such distributions. We will see an example of this usage in Section 7.1.7.

2.2 Some Basic Inequalities

2.2.1 Jensen’s Inequality

A function f(x) : R → R is called convex if for all x1 and x2 and for all 0 ≤ λ ≤ 1,
λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1− λ)x2). It is called strictly convex if the inequality is
strict for all 0 < λ < 1 (and for all x1 and x2). Examples of convex functions are f(x) = eαx

for any real-valued α and f(x) = − log(x) (for positive values of x).

Theorem 2.1 (Jensen’s Inequality). If f(·) is a convex function and X is a random vari-
able, then

E[f(X))] ≥ f(E[X]). (2.1)

Moreover, if f(·) is strictly convex, we have equality in (2.1) if and only if X = E[X] with
probability 1 (that is, X is a constant).

For a proof, see e.g. [1, Theorem 2.6.2 on p.27].
A function g(·) is called concave if the function f(x) := −g(x) is convex. Theorem 2.1

directly implies that if g(·) is a concave function and X is a random variable, then

E[g(X))] ≤ g(E[X]). (2.2)

Moreover, if g(·) is strictly concave, we have equality in (2.2) if and only if X = E[X] with
probability 1 (that is, X is a constant).
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2.2.2 The Markov Inequality

For any non-negative random variable X, the Markov inequality states that

P(X ≥ a) ≤ E[X]

a
. (2.3)

As a direct corollary, since for any real-valued random variable X, we have that X2 is
non-negative, we can apply the Markov inequality to X2 to get the Chebyshev inequality:

P(X2 ≥ a) ≤ E[X2]

a
. (2.4)

Often, you will see the Chebyshev inequality applied to the random variable |X−µ|, where
µ = E[X]. Then, we can write P(|X − µ| ≥ b) ≤ Var(X)

b2
.

2.3 Subgaussian Random Variables and Tail Bounds

We will often need to bound the tail of random variables. This is typically done via the
Chernoff bound. It will be slightly more convenient to use this bound in a “packaged” form.
This leads us to the notion of subgaussian1 random variables.

Definition 2.1. A random variable X with mean µ is σ2-subgaussian if for all λ ∈ R it
holds that E[eλ(X−µ)] ≤ eλ

2σ2/2.

Definition 2.2. The quantity E[eλ(X−µ)] is called the moment-generating function of the
random variable (X − µ).

Lemma 2.2 (Basic Properties of Subgaussians). Let Xi, i = 1, 2, with means µi, be two
σ2i -subgaussian independent random variables. Then

(i) E[(Xi − µi)
2] ≤ σ2i .

(ii) For all α ∈ R, αXi is (α2σ2i )-subgaussian.

(iii) X1 +X2 is (σ21 + σ22)-subgaussian.

Proof. Pick λ so that λE[Xi] ≥ 0. Then using our assumption in the second step,

1 +
1

2
λ2σ2i +O(λ4) ≥ eλ

2σ2
i /2 ≥ E[eλ(Xi−µi)] ≥ 1 + λE[Xi − µi] +

1

2
λ2E[(Xi − µi)

2] +O(λ3).

Claim (i) follows by letting λ tend to 0. Claim (ii) is true since E[eλ(Xi−µi)] ≤ eλ
2σ2

i /2 implies
E[eλ(α(Xi−µi))] = E[e(λα)(Xi−µi)] ≤ eλ

2α2σ2
i /2 = eλ

2(ασi)
2/2. And to prove claim (iii), note that

E[eλ(X1−µ1+X2−µ2)] = E[eλ(X1−µ1)eλ(X2−µ2)] = E[eλ(X1−µ1)]E[eλ(X2−µ2)] ≤ eλ
2σ2

1/2eλ
2σ2

2/2 =
eλ

2(σ2
1+σ

2
2)/2.

1Unfortunately, the literature is not consistent. We will follow Definition 2.1 and thus, “2-subgaussian”
means that σ2 = 2. However, some authors use “2-subgaussian” to mean that σ = 2, and thus, σ2 = 4. For
this reason, some authors prefer the very explicit (if a bit heavy handed) terminology “subgaussian with
variance proxy σ2.”
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Lemma 2.3 (Tail bound for subgaussian random variables). Let X with mean µ be σ2-
subgaussian. Then, for all η > 0,

P(X − µ ≥ η) ≤ e−
η2

2σ2 , (2.5)

P(X − µ ≤ −η) ≤ e−
η2

2σ2 . (2.6)

Proof. We have

P{X − µ ≥ η} λ>0
= P{eλ(X−µ) ≥ eλη}
Markov inequality

≤ E[eλ(X−µ)]
eλη

σ2−subgaussian
≤ e

1
2
λ2σ2−λη,

which holds for all non-negative λ. Plug in λ = η/σ2 to obtain the claimed bound. (This
can also be shown to be the optimal choice simply by taking derivatives.) Likewise,

P{X − µ ≤ −η} λ>0
= P{e−λ(X−µ) ≥ eλη}
Markov inequality

≤ E[e−λ(X−µ)]
eλη

σ2−subgaussian
≤ e

1
2
λ2σ2−λη,

Again, plug in λ = η/σ2 to obtain the claimed bound.

Lemma 2.4 (Zero-mean Gaussian is subgaussian). Let X be a Gaussian random variable
with mean zero and variance σ2. Then X is σ2-subgaussian.

Proof. By Lemma 2.2 we can assume that σ2 = 1. We then have

E[eλX ] =
1√
2π

∫
eλxe−x

2/2dx

=
1√
2π

∫
eλx−x

2/2dx

= eλ
2/2 1√

2π

∫
e−

1
2
(λ−x)2dx

= eλ
2/2.

Lemma 2.5 (Zero-mean RV with finite range is subgaussian). Let X be a zero-mean random
variable with X ∈ [a, b]. Then X is (b− a)2/4-subgaussian.

Proof. This is an important and very convenient example. You will do this proof in the
homework.

Lemma 2.6 (Hoeffding’s Bound). Assume that X1 − µ, · · · , Xm − µ are zero-mean inde-
pendent σ2-subgaussian random variables. Let µ̂ be the empirical mean µ̂ = 1

m

∑m
i=1Xi.

Then µ̂ satisfies

P{µ̂ ≥ µ+ ϵ} ≤ exp{−mϵ
2

2σ2
},

P{µ̂ ≤ µ− ϵ} ≤ exp{−mϵ
2

2σ2
}.
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Proof. Using Lemma 2.2, we infer that 1
m

∑m
t=1(Xt−µ) is σ2

m -subgaussian. The lemma now
follows from the standard tail bound for subgaussians given in Lemma 2.3.

2.4 Subexponential Random Variables and Tail Bounds

Although many random variables are subgaussian there are important random variables that
are not. E.g., let X be a zero-mean, unit-variance Gaussian random variable and consider

Y = X2. Note that p(x) = 1√
2π
e−

x2

2 . Hence P{Y ≤ α} = P{X2 ≤ α} =
∫ √

α

−√
α
p(x)dx.

Therefore, p(y) = dP{Y≤y}
dy = 2p(x)|x=√

y × 1
2
√
y = 1√

2πy
e−

y
2 . Note that E[Y ] = E[X2] = 1,

i.e., Y has mean 1.
The moment generating function of Y − 1 is

E[eλ(Y−1)] =

∫

y≥0
eλ(y−1) e

−y/2
√
2πy

dy = e−λ
∫

y≥0

e−y(1/2−λ)√
2πy

dy

=
1√
2π

∫

x
eλ(x

2−1)e−x
2/2dx =

1√
2π
e−λ

∫

x
e−x

2(1/2−λ)dx
λ< 1

2=
e−λ√
1− 2λ

.

For λ ≥ 1
2 the moment generating function does not exist. Hence Y is not subgaussian.

Definition 2.3 (Subexponential RV). We say that a rv X with mean µ is subexponential
with parameters (ν, b) if

E[eλ(X−µ)] ≤ eν
2λ2/2, ∀|λ| < 1

b
.

Let us go back to Y = X2, where X is a zero-mean, unit-variance Gaussian. We have

e−λ√
1− 2λ

≤ e2λ
2
, ∀|λ| < 1

4
.

Therefore, we see that Y is subexponential with parameters (ν, b) = (2, 4). Subexponential
random variables will appear for example in Section 10.2.2 below.

For subexponential random variables we can derive concentration bounds in a similar
manner as for subgaussian random variables.

Lemma 2.7 (Tail Bound for Subexponential RVs).

P{X − µ ≥ t} ≤
{
e−

t2

2ν2 , 0 ≤ t ≤ ν2/b,

e−
t
2b , t > ν2/b.

Proof. Without essential loss of generality we can assume that X has zero mean. Using our
standard approach we then have

P{X ≥ t} ≤ E[eλX ]e−λt ≤ e−λt+
λ2ν2

2 ,

for all 0 ≤ λ < 1/b. In order to find the best bound it remains to determine the best
parameter λ for any fixed t. This is easily done.

If we ignore at first the bound on λ then we see that the optimal value of λ = t/ν2.
This is feasible as long as t/ν2 < 1/b, or, t < ν2/b, and we get a bound of e−t

2/(2ν2).
And for t ≥ ν2/b the best choice (the one that gives the tightest bound) is λ = 1/b (the

maximum allowed value) and we get a bound of e−t/b+1/(2b)ν2/b. Using the relationships
ν2/b ≤ t this can be further bounded by e−t/(2b).
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At several points in previous derivations have we made some simplifications and used
bounds. Why are we content with potentially loose bounds? Note that bounds of the
given form are particularly useful. E.g., just like in the subgaussian case, if we consider the
sum of several independent rvs, each of which is subexponential, then it is easy to see that
the resulting rv is again subexponential and that its parameters are easily computed from
the parameters of the individual random variables. A similar thing happens if we scale a
random variable. This is a considerable advantage of this formulation, well worth loosing
slightly in the tightness of the final bound.

For the case of X2 the square of a Gaussian rv we explicitly computed its moment-
generating function and then found an appropriate upper bound. But this is in general
difficult to do. And in some situations we might not even know the exact distribution but
perhaps only have some constraints that are known (e.g., we know that the random variable
is bounded in some region).

It is therefore of interest to have some other criteria at hand that can certify that a rv
is subexponential and that is potentially easier to handle. One such set of conditions was
discovered by Bernstein and concerns the moments of the random variable. That moments
play a role here is not too surprising. If we look at the Taylor series expansion of eλX then
this involves all the moments of X. So one way to bound the moment-generating function
is to bound all moments of X.

We will not pursue this avenue any further at this point. But should in the future you
hear someone talk about Bernstein bounds you know that this is just a small variation of
what we have talked about.

2.5 Conditional Expectation

Let (Ω,F , P ) be a probability space and X a random variable in this space. Let G ⊆ F .
Then E[X | G] is the unique random variable Z that

1. is G-measurable,

2. for all A ∈ G, E[X1{A}] = E[Z1{A}].

If Y is another random variable in the probability space then E[X | Y ] is E[X | G] where G
is the σ-algebra generated by Y .

In words, the two properties mean that E[X | G] is a random variable that is constant
on atoms of G and on each such atom it is equal to its average. One special case is if G is
given by a random variable Y . If we think of Y as representing a certain information then
E[X | Y ] represents the best prediction of X given Y in the sense that X is the average of
all its values that are compatible with the observation of Y (the average over all ω where
Y takes on the given value). If you want to visualize this then visualize a partition that
is determined by Y (the partition signifies the region where Y takes on a constant value).
Then E[X | Y ] is a random variable that is also constant on each of those members of the
partition and takes a value that is the average ofX over this region. Conditional expectation
plays a fundamental role, see e.g. Section 6.2.1.

Lemma 2.8 (Conditional Expectation). Let X, Y , and Z be random variables and a, b ∈ R

and g : R→ R. Assuming all the following expectations exist we have

E[a | Y ] = a,
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E[aX + bZ | Y ] = aE[X | Y ] + bE[Z | Y ],

E[X | Y ] ≥ 0 if X ≥ 0,

E[X | Y ] = E[X] if X and Y are independent,

E[E[X | Y ]] = E[X],

E[Xg(Y ) | Y ] = g(Y )E[X | Y ],

E[X | Y, g(Y )] = E[X | Y ],

E[E[X | Y, Z] | Y ] = E[X | Y ].

2.6 Problems

Problem 2.1 (Review of Random Variables). Let X and Y be discrete random variables
defined on some probability space with a joint pmf pXY (x, y). Let a, b ∈ R be fixed.

(a) Prove that E[aX + bY ] = aE[X] + bE[Y ]. Do not assume independence.
(b) Prove that if X and Y are independent random variables, then E[X ·Y ] = E[X] ·E[Y ].
(c) Assume that X and Y are not independent. Find an example where E[X · Y ] ̸=

E[X] · E[Y ], and another example where E[X · Y ] = E[X] · E[Y ].
(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

Cov(X,Y ) := E [(X − E[X])(Y − E[Y ])] = 0. (2.7)

(e) Find an example where X and Y are uncorrelated but dependent.
(f) Assume that X and Y are uncorrelated and let σ2X and σ2Y be the variances of X

and Y, respectively. Find the variance of aX + bY and express it in terms of σ2X , σ
2
Y , a, b.

Hint: First show that Cov(X,Y ) = E[X · Y ]− E[X] · E[Y ].

Problem 2.2 (Review of Gaussian Random Variables). A random variable X with prob-
ability density function

pX(x) =
1√
2πσ2

e−
(x−m)2

2σ2 (2.8)

is called a Gaussian random variable.
(a) Explicitly calculate the mean E[X], the second moment E[X2], and the variance

V ar[X] of the random variable X.
(b) Let us now consider events of the following kind:

Pr(X < α). (2.9)

Unfortunately for Gaussian random variables this cannot be calculated in closed form.
Instead, we will rewrite it in terms of the standard Q-function:

Q(x) =

∫ ∞

x

1√
2π
e−

u2

2 du (2.10)

Express Pr(X < α) in terms of the Q-function and the parametersm and σ2 of the Gaussian
pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is
important to have bounds on the Q-function. In the next 3 subproblems, you derive the
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most important of these bounds, learning some very general and powerful tools along the
way:

(c) Derive the Markov inequality, which says that for any non-negative random variable
X and positive a, we have

Pr(X ≥ a) ≤ E[X]

a
. (2.11)

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real
random variable Z exceeds b is given by

Pr(Z ≥ b) ≤ E
[
es(Z−b)

]
, s ≥ 0. (2.12)

(e) Use the Chernoff bound to show that

Q(x) ≤ e−
x2

2 for x ≥ 0. (2.13)

Problem 2.3 (Moment Generating Function). In the class we had considered the logarith-
mic moment generating function

ϕ(s) := ln E[exp(sX)] = ln
∑

x

p(x) exp(sx)

of a real-valued random variable X taking values on a finite set, and showed that ϕ′(s) =
E[Xs] where Xs is a random variable taking the same values as X but with probabilities
ps(x) := p(x) exp(sx) exp(−ϕ(s)).
(a) Show that

ϕ′′(s) = Var(Xs) := E[X2
s ]− E[Xs]

2

and conclude that ϕ′′(s) ≥ 0 and the inequality is strict except when X is determin-
istic.

(b) Let xmin := min{x : p(x) > 0} and xmax := max{x : p(x) > 0} be the smallest and
largest values X takes. Show that

lim
s→−∞

ϕ′(s) = xmin, and lim
s→∞

ϕ′(s) = xmax.

Problem 2.4 (Bounded random variables are subgaussian). This problem is a guided proof
of a slightly weakened version of Lemma 2.4.

(a) Prove the following inequality:

cosh(x) = (ex + e−x)/2 ≤ ex
2/2. (2.14)

(b) Using the previous inequality, give an upper bound on the moment generating function
of a random variable S that only takes the values +1 and −1, with equal probability.

Hint: The upper bound should depend on the parameter of the moment generating
function.

(c) Consider any random variable X and let X ′ be a random variable independent of X,
but with exactly the same distribution. Show that

EX [e
λ(X−E[X])] ≤ EX,X′ [eλ(X−X′)]. (2.15)
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(d) Show that the random variables (X −X ′) and S(X −X ′), where S is as in Part (b)
and assumed independent of X and X ′, have the same distribution.

(e) From the previous part, we thus know that

EX,X′ [eλ(X−X′)] = ES,X,X′ [eλS(X−X′)]. (2.16)

Now assume that X is a bounded random variable, X ∈ [a, b]. Condition on X = x
and X ′ = x′, and take expectation over S. Observe that (x− x′)2 ≤ (b− a)2. Use this
and your result from Part (b) to further upper bound ES,X,X′ [eλS(X−X′)].

(f) Combine your results to give an upper bound on the moment generating function of
a centered bounded random variable X − E[X], where X ∈ [a, b].

Hint: The upper bound should depend on the parameter of the moment generating
function as well as a and b.

(g) Compare your result to Lemma 2.4. Discuss the differences.

Problem 2.5 (Hoeffding’s Lemma). Prove Lemma 2.5 in the lecture notes. In other words,
prove that if X is a zero-mean random variable taking values in [a, b] then

E[eλX ] ≤ e
λ2

2
[(a−b)2/4].

Expressed differently, X is [(a− b)2/4]-subgaussian.

Problem 2.6 (Gaussian Variance Estimation). Consider estimating the mean µ and vari-
ance σ2 from n independent samples (X1, . . . , Xn) of a Gaussian with this mean and vari-
ance.

(a) Show that X̄ = 1
n

∑n
i=1Xi is an unbiased estimator of µ.

(b) Show that

S2
n =

1

n

n∑

i=1

(Xi − X̄)2

is a biased estimator of σ2 whereas

S2
n−1 =

1

n− 1

n∑

i=1

(Xi − X̄)2

is an unbiased estimator of σ2.

(c) Show that S2
n has a lower mean squared error than S2

n−1. Thus it is possible that a
biased estimator may be better than an unbiased one.

Problem 2.7 (Expected Maximum of Subgaussians). Let {Xi}ni=1 be a collection of n
σ2-subgaussian random variables, not necessarily independent of each other. Let Y =
maxi∈{1,2,··· ,n}Xi. Prove that E[Y ] ≤

√
2σ2 log n. Hint: Recall that by Jensen, eλE[X] ≤

E[eλX ].
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Chapter 3

Some Useful Notions from Linear
Algebra

A key set of tools here (and throughout engineering and computer science) is linear algebra.

3.1 Definitions and Notation

We will denote (column) vectors by bold symbols x. The transpose of a vector x is the row
vector xT . The Hermitian transpose (transpose and complex conjugate) of a complex-valued
vector x is the row vector xH . The inner product (or dot product) of two vectors (of equal
length) will be denoted as ⟨x,y⟩ = yHx. (That is, following standard notational conventions,
in the ⟨·, ·⟩ notation, it is the second argument that is complex-conjugated.) The 2-norm of
a vector is ∥x∥ =

√
⟨x,x⟩. More generally, the p-norm of a vector is ∥x∥p = (

∑n
i=1 |xi|p)1/p.

These are genuine norms (triangle inequality, scaling, zero only for the zero vector) for all
real numbers p ≥ 1. For 0 ≤ p < 1, they are not norms since they violate the triangle
inequality, but they are nonetheless of interest in applications.

Matrices are denoted by upper-case symbols A. They are of dimensions m×n, meaning
that they have m rows and n columns. The entry in row i, column j is denoted by {A}ij ,
or simply Aij when there is no confusion possible. The identity matrix is denoted by I.
The matrix-vector product y = Ax, where x is of length n, is the vector y of length m with
entries yi =

∑n
j=1Aijxj .We use AT to denote the transpose and AH to denote the Hermitian

transpose of the matrix A. Consider two matrices A and B with columns denoted by ai and
bi, respectively. Then, the matrix product BHA (if dimension-compatible) has as its entry
in row i, column j the inner product ⟨aj ,bi⟩. An alternative and equally useful expression for
matrix multiplication is that ABH =

∑
i aib

H
i (if the matrices are dimension-compatible).

A unitary matrix is a matrix U satisfying UUH = UHU = I. The trace of a square matrix,
trace(A), is the sum of its diagonal entries. A particularly useful property is that for any
two (dimension-compatible) matrices A and B, we have trace(AB) = trace(BA). Another
useful property is that (AB)H = BHAH .

3.2 Symmetric Matrices : Spectral Decomposition

Perhaps the most important class of matrices are the symmetric (hence square) matrices.
That is, matrices A for which we have A = AH (and thus a fortiori, m = n). Such matrices

21
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always admit a spectral decomposition,1 i.e., they can be written as

A = UΛUH , (3.1)

where Λ is a real-valued diagonal matrix and U is a unitary matrix. The n columns of U
are called the eigenvectors of A, denoted by u1, . . . ,un. The n diagonal entries of Λ, usually
denoted by λi, are called the corresponding eigenvalues. By inspection, Formula (3.1) can
also be expressed as

A =
n∑

i=1

λiuiu
H
i , (3.2)

a shape that will be of interest to us in this class. A property with many uses is the fact that
trace(A) =

∑n
i=1 λi, which follows simply from trace(A) = trace(UΛUH) = trace(ΛUHU).

3.3 General Matrices : Singular Value Decomposition

For general matrices A, one can construct two instructive symmetric matrices, namely, AAH

and AHA. Both of these admit spectral decompositions:

AAH = UΛ′UH and AHA = V Λ′′V H , (3.3)

and it is straightforward to show that, (i), the non-zero entries in Λ′ and Λ′′ are the same,
i.e., AAH and AHA have the same eigenvalues, and (ii), all eigenvalues are non-negative.
From these one can construct the singular value decomposition

A = UΣV H =
∑min(m,n)

i=1 σiuiv
H
i , (3.4)

where Σ is an m × n diagonal matrix whose entries σi are simply the square roots of the
eigenvalues of AAH (or, equivalently, AHA). The values σi are thus non-negative and are
referred to as the singular values of the matrix A.

3.4 Rank of a matrix ; Norm of a matrix

The rank of a matrix A is the number of non-zero singular values it has in its singular value
decomposition and will be denoted by rank(A). An important relationship is that for any
two (dimension-compatible) matrices, we have rank(AB) ≤ min{rank(A), rank(B)}. Note
that no similarly useful and non-trivial relationship can be given for the rank of the sum of
two matrices.

We will also find it useful to define norms for matrices. First, let us introduce the
so-called operator norms that are derived from standard vector norms as follows:

∥A∥p = sup
x̸=0

∥Ax∥p
∥x∥p

(3.5)

An interesting special case is when p = 2, which is often called the spectral norm of the
matrix A, and is easily seen to be equal to the largest singular value of the matrix A.

1In general, the eigendecomposition is expressed as A = QΛQ−1. When Q turns out to be a unitary
matrix (thus, Q−1 = QH), then one often refers to the eigendecomposition as a spectral decomposition.
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Of equal importance is the Frobenius norm

∥A∥F =

√∑

i,j

|Aij |2. (3.6)

A first interesting observation (which can be proved by elementary manipulations) is that
∥A∥2F = trace(AHA). This also implies that ∥A∥2F =

∑r
i=1 σ

2
i . Another interesting property

is that for any two (dimension-compatible) matrices A and B, we have that ∥AB∥F ≤
∥A∥F ∥B∥F , a consequence of the Cauchy-Schwarz inequality.

3.5 Low-rank Matrix Approximation

Let us consider the following intuitively pleasing problem: Given a matrix A ∈ Rm×n, we
seek to find a matrix B ∈ Rm×n of rank no larger than p such that B is as close as possible
to A, i.e., such that the norm ∥A − B∥ is as small as possible. If we use as the norm the
spectral or the Frobenius norm, then this problem has an intuitively pleasing solution, given
in the following theorem.

Theorem 3.1 (Eckart-Young). Let the SVD of the rank-r matrix A be

A =
r∑

i=1

σiuiv
H
i , with σ1 ≥ σ2 ≥ · · · ≥ σr. (3.7)

For integers p between 1 and r − 1, let Âp denote the truncated sum

Âp =

p∑

i=1

σiuiv
H
i . (3.8)

Then, we have

min
B:rank(B)≤p

∥A−B∥2 = σp+1 (3.9)

min
B:rank(B)≤p

∥A−B∥F =

√√√√
r∑

k=p+1

σ2k, (3.10)

and a minimizer of each of the two is B = Âp. For the Frobenius norm, Âp is the unique
minimizer if and only if σp > σp+1 (strict inequality).

Proof. First, observe that rank(Âp) ≤ p and that we can write A− Âp =
∑r

k=p+1 σkukv
H
k .

Therefore :

• ∥A− Âp∥2 = σp+1, thus minB:rank(B)≤p ∥A−B∥2 ≤ σp+1, and

• ∥A− Âp∥F =
√∑r

k=p+1 σ
2
k, thus minB:rank(B)≤p ∥A−B∥F ≤

√∑r
k=p+1 σ

2
k.

The more interesting part is the converse. We provide the converse proof only for the
spectral norm in these notes. Consider any matrix B ∈ Rm×n with rank(B) ≤ p. Its null
space has dimension no smaller than n − p, and thus, the dimension of the intersection
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null(B) ∩ span{v1, · · · ,vp+1} is at least one. For all vectors x ∈ Rn of norm one in this
intersection, we have

(A−B)x = Ax =

p+1∑

k=1

σk(vk
Hx)uk, (3.11)

thus, using the fact that σ1 ≥ σ2 ≥ · · · ≥ σp+1,

∥(A−B)x∥2 =

p+1∑

k=1

σ2k|vk
Hx|2 ≥

p+1∑

k=1

σ2p+1|vk
Hx|2 = σ2p+1

p+1∑

k=1

|vk
Hx|2 (3.12)

But since the unit-norm vector x lies in the span of {v1, · · · ,vp+1}, we must have
∑p+1

k=1 |vk
Hx|2 =

1. Therefore, for every matrix B with rank(B) ≤ p, a unit-norm vector x can be found such
that ∥(A−B)x∥2 ≥ σ2p+1. Thus, ∥A−B∥2 ≥ σp+1.

3.6 Problems

Problem 3.1 (Some review problems on linear algebra). (a) (Frobenius norm) Prove that
∥A∥2F = trace(AHA).

(b) (Singular Value Decomposition) Let σi(A) denote the ith singular value of an m× n

matrix A. Prove that ∥A∥2F =
∑min{m,n}

i=1 σ2i (A)
(c) (Projection Matrices) Consider a set of k orthonormal vectors in Cn, denoted by

u1,u2, · · · ,uk. The projection matrix (that projects an arbitrary vector into the subspace
spanned by these orthonormal vectors) is given by

P =

k∑

i=1

uiu
H
i . (3.13)

• Prove that this matrix is Hermitian, i.e., PH = P.

• Prove that this matrix is idempotent, i.e., P 2 = P. (In words, projecting twice into
the same subspace is the same as projecting only once.)

• Prove that trace(P ) = k, i.e., equal to the dimension of the subspace.

• Prove that the diagonal entries of P must be real-valued and non-negative. Then,
prove that the diagonal entries of P cannot be larger than 1 (this is a little more
tricky).

Problem 3.2 (Eckart–Young Theorem). In class, we proved the converse part of the
Eckart–Young theorem for the spectral norm. Here, you do the same for the case of the
Frobenius norm.

(a) For any matrixA of dimensionm×n and an arbitrary orthonormal basis {x1, · · · ,xn}
of Cn, prove that

∥A∥2F =
n∑

k=1

∥Axk∥2. (3.14)

(b) Consider anym×n matrix B with rank(B) ≤ p. Clearly, its null space has dimension
no smaller than n−p. Therefore, we can find an orthonormal set {x1, · · · ,xn−p} in the null
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space of B. Prove that for such vectors, we have

∥A−B∥2F ≥
n−p∑

k=1

∥Axk∥2. (3.15)

(c) (This requires slightly more subtle manipulations.) For any matrix A of dimension
m × n and any orthonormal set of n − p vectors in Cn, denoted by {x1, · · · ,xn−p}, prove
that

n−p∑

k=1

∥Axk∥2 ≥
r∑

j=p+1

σ2j . (3.16)

Hint: Consider the case m ≥ n and the set of vectors {z1, · · · , zn−p}, where zk = V Hxk.
Express your formulas in terms of these and the SVD representation A = UΣV H .

(d) Briefly explain how (a)-(c) imply the desired statement.
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Chapter 4

Information Measures

Whenever you see a lower bound in data science, chances are that it is based on information-
theoretic ideas. This chapter collects basic information-theoretic notions and inequalities.
It is important not to over-interpret those definitions. E.g., entropy is a measure of “infor-
mation.” But it is only through specific operational settings that these quantities acquire
their meaning: E.g., if we are compressing a “source” then entropy gives us a lower bound
on the number of bits that we need in order to describe the source. But be aware that not
every time you see the word “information” will entropy be the correct quantity to measure
it.

Let X denote a discrete alphabet and let Π := Π(X ) denote the set of all probability
distributions on X . With K = |X |, we can identify Π with the simplex in RK : the set
of all (p1, . . . , pK) ∈ RK with

∑
k pk = 1, and pk ≥ 0. In the sequel we will say that

P ∈ Π is a distribution and we will typically work with the probability mass function (pmf)
p(x) = P (X = x), x ∈ X . The support of a probability distribution is the set of values
x ∈ X for which p(x) > 0, strictly positive.

4.1 L1 and Total Variation Distance

How should we compare two probability distributions? Since they are vectors, we might
simply start with the Euclidean distance between them. This choice is not invalid, but it
does not appear to lead to a fruitful perspective. There are many reasons for this. We will
see some of them later in the class. Instead, we start with the L1 distance between the two
probability distributions (thought of as vectors).

Definition 4.1. Let P and Q be two probability mass functions on a finite set X . Then,
the L1 distance between P and Q is defined as

∥P −Q∥1 =
∑

x

|p(x)− q(x)|. (4.1)

Lemma 4.1. We have 0 ≤ ∥P − Q∥1 ≤ 2. There is equality on the left if and only if
p(x) = q(x) for all x ∈ X . There is equality on the right if and only if the supports of P
and Q are disjoint.

Total Variation distance, and an interpretation

A second, seemingly unrelated way of measuring the distance between two distributions is
the Total Variation distance.

27
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Definition 4.2. Let P and Q be two probability mass functions on a finite set X . Then,
the Total Variation distance between P and Q is defined as

δ(P,Q) = max
S⊆X

P (S)−Q(S). (4.2)

The total variation distance has several interesting interpretations. Here is one of them.
Consider the following way of rewriting:

1− δ(P,Q) = 1−
{
max
S⊆X

P (S)−Q(S)

}
(4.3)

= min
S⊆X

{(1− P (S)) +Q(S)} (4.4)

= min
S⊆X

P (Sc) +Q(S), (4.5)

where Sc denotes the complement of the set S in X . This last quantity can be interpreted
as follows:

1. We receive a (random) sample X ∈ X . Our task is to decide if the sample came from
P or from Q.

2. That is, for every possible outcome x ∈ X , we need to say if it came from P or from
Q. Denote by S ⊆ X the subset of all values x ∈ X for which we decide P.

3. Now, suppose that the sample X came from P. Then, the probability that our rule
gets it wrong (i.e., outputs Q) is precisely the probability that the sample X ∈ Sc,
which is P (Sc). (Sometimes called a Type-I error.)

4. Conversely, suppose that the sample X came from Q. Then, the probability that our
rule gets it wrong (i.e., outputs P ) is precisely the probability that the sample X ∈ S,
which is Q(S). (Sometimes called a Type-II error.)

5. Goal: Select S such as to minimize the sum of the two error probabilities (Type-I
error plus Type-II error).

6. The performance of this (optimal) S is exactly equal to 1− δ(P,Q).

Total Variation distance is half of L1

Perhaps initially to some surprise, L1 distance and Total Variation distance are the same
(up to a factor of two), which we record in the following lemma.

Lemma 4.2. Let P and Q be two probability mass functions on a finite set X . Then,

∥P −Q∥1 = 2δ(P,Q).

Proof. Let A = {z ∈ Z : P (z) ≥ Q(z)}, and Ac the complement of A in X . Then,

∥P −Q∥1 =
∑

x∈A
p(x)− q(x) +

∑

x∈Ac

q(x)− p(x) = P (A)−Q(A) +Q(Ac)− P (Ac)

= P (A)−Q(A) + 1−Q(A)− 1 + P (A) = 2(P (A)−Q(A)).

To complete the proof, start by considering any other set S by adding elements to A
to observe that for such S, we have P (S) − Q(S) ≤ P (A) − Q(A). Then, consider any
other set S by removing elements from A, and again observe that for such S, we have
P (S)−Q(S) ≤ P (A)−Q(A).
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4.2 KL Divergence/Relative Entropy

The most fundamental measure in information theory is the so-called KL divergence. It is
a measure of how different two distributions are.

Definition 4.3 (KL Divergence). For P andQ in Π, we callD(P∥Q) =
∑

x p(x) log[p(x)/q(x)]
the divergence of P from Q.

In the sum above, we skip the terms with p(x) = 0, and we set D(P∥Q) = +∞ if there
is an x for which p(x) > 0 and q(x) = 0. This divergence is also called the KL divergence
(there are other divergences as we will discuss in the homeworks), where KL stands for
Kullback-Leibler.

Definition 4.4. Given two alphabets X and Y, a probability kernel from X to Y is a matrix
W =

[
W (y|x) : x ∈ X , y ∈ Y

]
such that W (y|x) ≥ 0, and for each x ∈ X ,

∑
yW (y|x) = 1.

We will writeW : X → Y to indicate thatW is such a kernel. The set of probability kernels
describes all possible conditional probabilities on Y, conditional on elements of X .

Lemma 4.3 (Data Processing Inequality for Divergence). Given P and Q in Π(X ) and
W : X → Y, let p̃(y) =

∑
x P (x)W (y|x) and q̃(y) =∑x q(x)W (y|x). Then P̃ and Q̃ are in

Π(Y), and

D(P̃∥Q̃) ≤ D(P∥Q).

The inequality is strict, unless q(x)/p(x) = q̃(y)/p̃(y) for all x, y with p(x)W (y|x) > 0.

Proof. That P̃ and Q̃ are probability distributions is an easy consequence of W being a
probability kernel. To prove the claimed inequality between the divergences let us first
show that log is a strictly concave function. I.e., for any non-negative λ1, . . . , λK for which∑

k λk = 1, and any positive x1, . . . , xK , we have, with x̄ =
∑

k λkxk,

∑

k

λk log xk ≤ log x̄,

and equality happens if and only if for all k with λk > 0, we have xk = x̄. It suffices to
prove this statement with ln instead of log. To that end, first note that with f(x) = lnx we
have f ′(x) = 1/x and f ′′(x) = −1/x2 < 0. Thus, Taylor expansion of lnx around 1 yields
lnx = (x − 1) − (x − 1)2/(2ξ2) for some ξ between 1 and x, and we see that lnx ≤ x − 1,
with equality if and only if x = 1. Consequently

∑

k

λk lnxk − ln x̄ =
∑

k

λk ln[xk/x̄] ≤
∑

k

λk[xk/x̄− 1] = 1− 1 = 0,

with the inequality being strict if there is a k for which λk > 0 and xk ̸= x̄.

Having thus proved the strict concavity of log, now observe (with p(x)W (y|x)’s cast in
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the role of λk’s) that

D(P̃∥Q̃)−D(P∥Q) =
∑

y

p̃(y) log
p̃(y)

q̃(y)
−
∑

x

p(x) log
p(x)

q(x)

=
∑

x,y

W (y|x)p(x) log p̃(y)
q̃(y)

−
∑

x,y

W (y|x)p(x) log p(x)
q(x)

=
∑

x,y

W (y|x)p(x) log p̃(y)q(x)
q̃(y)p(x)

≤ log

[∑

x,y

W (y|x) p̃(y)q(x)
q̃(y)

]
= log

[∑

y

p̃(y)

]
= 0.

Corollary 4.4 (Non-Negativity of Divergence). D(P∥Q) ≥ 0 with equality if and only if
P = Q.

Proof. Take Y = {0} and set W (0|x) = 1. Then p̃(0) = q̃(0) = 1 and D(P̃∥Q̃) = 0.

Corollary 4.5. D(P∥Q) is a convex function of the pair (P,Q).

Proof. Suppose P0, Q0, P1, Q1 are in Π(X ) and suppose 0 ≤ λ ≤ 1. We need to show that

D((1− λ)P0 + λP1∥(1− λ)Q0 + λQ1) ≤ (1− λ)D(P0∥Q0) + λD(P1∥Q1).

To that end consider the distributions P and Q on the set {0, 1} × X with

p(z, x) =

{
(1− λ)p0(x) if z = 0

λp1(x) if z = 1,
and q(z, x) =

{
(1− λ)q0(x) if z = 0

λq1(x) if z = 1,

Consider also the channel W : {0, 1} × X → X with W (x′|(z, x)) = 1{x′ = x}. It is easily
checked that D(P∥Q) = (1− λ)D(P0∥Q0) + λD(P1∥Q1) and also that

P̃ = (1− λ)P0 + λP1 and Q̃ = (1− λ)Q0 + λQ1.

The conclusion now follows from Lemma 4.3.

4.2.1 Examples and Applications

The Gaussian case

Example 4.1 (KL Distance between two Gaussians). If Pi, i = 1, 2, are two Gaussians
with means µi and variances σ2i , then

DKL(P1||P2) = ln(σ2/σ1) +
σ21 + (µ1 − µ2)

2

2σ22
− 1

2
.

A Probability Bound

Let A be an event and P be any distribution. Then trivially P (A) + P (Ac) = 1. What
happens if instead we consider P (A) + Q(Ac) where P and Q are close but not identical?
The following lemma gives a handy bound (and will be useful to us below in the proof of
Lemma 5.2).
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Lemma 4.6. Let A be an event and P and Q be any distributions. Then

P (A) +Q(Ac) ≥ 1

2
e−D(P ||Q).

Proof.

P (A) +Q(Ac) =

∫

x∈A
p(x) +

∫

x∈Ac

q(x)

≥
∫

x∈A
min{p(x), q(x)}+

∫

x∈Ac

min{p(x), q(x)}

=

∫
min{p(x), q(x)}

(a)

≥ 1

2

(∫
min{p(x), q(x)}

)(∫
max{p(x), q(x)}

)

(b)

≥ 1

2

(∫ √
min{p(x), q(x)}max{p(x), q(x)}

)2

=
1

2

(∫ √
p(x)q(x)

)2

=
1

2
e2 ln

∫ √
p(x)q(x)

=
1

2
e
2 ln

∫
p
√

q(x)
p(x)

Jensen
≥ 1

2
e
2
∫

1
2
p ln

q(x)
p(x)

=
1

2
e
∫
p ln

q(x)
p(x)

=
1

2
e−D(P ||Q).

For step (a) note that 1
2

(∫
max{p(x), q(x)}

)
≤ 1 with equality if the two distributions have

disjoint support. Step (b) follows by Cauchy-Schwartz.1

4.2.2 Total Variation Distance versus KL Divergence

The KL divergence can be used to furnish a bound on the L1 distance of two distributions.
This is called the Pinsker inequality. A guided proof is provided in Problem 4.5.

Lemma 4.7 (Pinsker Inequality). Let P and Q be two distributions. Then ∥p − q∥1 ≤√
2

log(e)D(p∥q).

1|fg|21 ≤ |f |22|g|22 with f =
√

min{p(x), q(x)} and g =
√

max{p(x), q(x)}.
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4.3 Entropy

Definition 4.5 (Entropy). For P in Π, we call H(P ) = −∑x p(x) log(p(x)) the entropy of
P .

The formula for entropy bears a close resemblance to KL divergence. Indeed, if we let
Q be the uniform distribution over X , then

D(P∥unifX ) =
∑

x

p(x) log
p(x)

1/|X | = log |X | −H(P ). (4.6)

So we may think of the entropy as the comparison of a distribution to the uniform distri-
bution.

Lemma 4.8. 0 ≤ H(P ) ≤ log |X |, with equality on the left if and only if there is an x ∈ X
with P (X = x) = 1, and equality on the right if and only if P is the uniform distribution
on X .

Proof. The non-negativity of H(P ) follows from p(x) ≥ 0 and − log(p(x)) ≥ 0, so that each
term in the sum defining H(P ) is non-negative. Moreover, the sum equals zero only if each
term is zero, which yields the condition for H(P ) to equal 0.

The upper bound in Lemma 4.8 and the condition for equality follow from noting that
log |X |−H(P ) = D(P∥unifX ) where unifX is the uniform distribution on X with unifX (x) =
1/|X |. As we have seen in Corollary 4.4, D(P∥unifX ) = 0 if and only if P is the uniform
distribution.

If the logarithm is in base two then we call the corresponding quantity “bits,” whereas
if we choose the natural quantity then we speak of “nats.”

If a random variable X is distributed according to P then we will also write H(X) to
denote H(P ).

Definition 4.6 (Conditional Entropy). Given two random variables X and Y we define
H(X | Y = y) and H(X | Y ) (conditional entropy) to be

H(X | Y = y) = −
∑

x

p(x | y) log(p(x | y)),

H(X | Y ) =
∑

y

H(X | Y = y)p(y) = −
∑

x,y

p(x, y) log(p(x | y)).

Note, that H(X | Y ) is the average entropy if we reveal the value of the Y variable. If
we have given a joint distribution with pmf p(x1, x2, · · · , xn) then we have the chain rule

p(x1, x2, · · · , xn) = p(x1)p(x2 | x1) · · · p(xn | x1, · · · , xn−1).

If we plug this representation into the formula for H(X1, · · · , Xn) we see that we get the
corresponding chain rule for entropies,

Lemma 4.9 (Chain Rule of Entropy).

H(X1, · · · , Xn) = H(X1) +H(X2 | X1) + · · ·+H(Xn | X1, · · ·Xn−1).

Finally, a fundamental and intuitively pleasing inequality shows that conditioning cannot
increase entropy.
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Lemma 4.10 (Conditioning Decreases Entropy).

H(X | Y ) ≤ H(X),

with equality if and only if X and Y are independent.

Proof.

H(X)−H(X | Y ) = −
∑

x

p(x) log p(x)−
(
−
∑

x,y

p(x, y) log p(x|y)
)

=
∑

x,y

p(x, y) log
p(x|y)
p(x)

=
∑

x,y

p(x, y) log
p(x|y)p(y)
p(x)p(y)

= D(p(x, y)∥p(x)p(y)) ≥ 0.

4.4 Variational Representations

4.4.1 L1 / Total Variation Distance

Lemma 4.11.

∥P −Q∥1 = 2 max
f :Z→[0,1]

EP [f(Z)]− EQ[f(Z)].

Proof. Let A = {z ∈ Z : P (z) ≥ Q(z)}. Then,

EP [f(Z)]− EQ[f(Z)] =
∑

z∈A
f(z) (P (z)−Q(z)) +

∑

z /∈A
f(z) (P (z)−Q(z))

≤
∑

z∈A
(P (z)−Q(z))

=
∥P −Q∥1

2
.

Equality can be achieved if we choose f(z) =

{
1, z ∈ A,

0, z /∈ A
.

4.4.2 Kullback-Leibler (KL) Divergence

The following lemma presents an interesting and important alternative characterization of
the KL divergence. It will prove to be useful for example in Lemma 11.4.

Lemma 4.12 (Variational Form of KL Divergence - Donsker-Varadhan). Let P and Q be
two distributions. Then,

D(P ||Q) = sup
f :R→R

EQ[ef ]<+∞

{
EP [f(Z)]− log EQ

[
ef(Z)

]}

Remark. The log is taken to the base e (both in the computation of D(P ||Q) and in the
right-hand side).
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Proof. 1) Suppose D(P ||Q) < +∞ and consider any function f . Then,

EP [f(Z)]− log EQ

[
ef(Z)

]
= EP

[
log ef(Z)

]
− log EQ

[
ef(Z)

]

= EP

[
log

ef(Z)

EQ
[
ef(Z)

]
]

= EP

[
log

(
ef(Z)

EQ
[
ef(Z)

] p
q

q

p

)]

= D(P ||Q) + EP

[
log

(
qef(Z)

pEQ
[
ef(Z)

]
)]

= D(P ||Q)− EP


log p

q ef(Z)

EQ[ef(Z)]




Now note that
∫
q ef(Z)

EQ[ef(Z)]
dz = 1

EQ[ef(Z)]

∫
qef(Z)dz = 1. Hence, the second term is also

a KL divergence. Then,

EP [f(Z)]− log EQ

[
ef(Z)

]
= D(P ||Q)−D(P ||Q̃) ≤ D(P ||Q).

Equality is achieved if we set f = log p
q .

2) Suppose D(P ||Q) = +∞. Then, we need to show that the supremum is also +∞.
D(p||q) = +∞ implies that there exists a set A such that p(A) > 0 and q(A) = 0. Choose
f = λ1{z ∈ A}. Then, Ep[f(Z)] − log Eq

[
ef(Z)

]
= λp(A). Taking λ → +∞ yields the

result.

4.5 Mutual Information

Entropy measures the information content of a random variable. KL divergences measure
how much one distributions diverges from another one. And mutual information measures
how much information one random variable contains about another one.

Definition 4.7 (Mutual Information). Let X and Y be two random variables. Then their
mutual information is defined as

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).

Lemma 4.13 (Non-Negativity of Mutual Information).

I(X;Y ) ≥ 0,

with equality if and only if X and Y are independent.
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Proof.

I(X;Y ) = H(X)−H(X | Y )

= −
∑

x

p(x) log(p(x)) +
∑

x,y

p(x, y) log(p(x | y)

=
∑

x,y

p(x, y) log(
p(x | y)
p(x)

)

=
∑

x,y

p(x, y) log(
p(x, y)

p(x)p(y)
)

= D(p(x, y)||p(x)p(y)) ≥ 0.

Definition 4.8 (Conditional Mutual Information).

I(X;Y | Z) = H(X|Z)−H(X | Y,Z) = H(Y |Z)−H(Y | X,Z).

Lemma 4.14 (Non-Negativity of Conditional Mutual Information).

I(X;Y | Z) ≥ 0,

with equality if and only if X and Y are condiitonally independent given Z.

Proof.

I(X;Y | Z) =
∑

z

p(z)D(p(x, y|z)||p(x|z)p(y|z)) ≥ 0.

Lemma 4.15 (Chain Rule for Mutual Information).

I(X1, X2, · · · , Xn;Y ) =

n∑

i=1

I(Xi;Y | X1, · · · , Xi−1).

Proof.

I(X1, X2, · · · , Xn;Y )
Definition 4.7

= H(X1, X2, · · · , Xn)−H(X1, X2, · · · , Xn | Y )

Lemma 4.9
=

n∑

i=1

H(Xi | X1, · · · , Xi−1)−
n∑

i=1

H(Xi | Y,X1, · · · , Xi−1)

Definition 4.8
=

n∑

i=1

I(Xi;Y | X1, · · · , Xi−1).

Lemma 4.16 (Data Processing Inequality for Mutual Information). Let X − Y − Z form
a Markov chain, i.e., p(z | x, y) = p(z | y). Then

I(X;Z) ≤ I(X;Y ).
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Proof. Expanding I(X;Y,Z) in two ways we get

I(X;Y, Z) = I(X;Z) + I(X;Y | Z) = I(X;Y ) + I(X;Z | Y ) = I(X;Y ).

The last equality holds since I(X;Z | Y ) = 0 due to the assumption that X and Z are
conditionally independent given Y . The result follows since I(X;Y | Z) ≥ 0.

Lemma 4.17 (Fano’s Inequality). Let X and Y be random variables. Let X̂ = g(Y ) be a
prediction of X based on Y (so that X−Y − X̂ is a Markov chain) and let Pe = P(X ̸= X̂)
be the related probability of error. Then we have

H(Pe) + Pe log(|X | − 1) ≥ H(X|Y ).

Proof. Define the random variable E = 1{X ̸= X̂}, so that P(E = 1) = P(X ̸= X̂).
Expanding H(X,E|X̂) in two ways using the chain-rule we get

H(X,E|X̂) = H(E|X̂) +H(X|E, X̂)
Lemma 4.10

≤ H(E) +H(X|E, X̂)

and

H(X,E|X̂) = H(X|X̂) +H(E|X, X̂) = H(X|X̂),

where we used that H(E|X, X̂) = 0 since we can determine the value of E when given X
and X̂. Combining both yields

H(X|X̂) ≤ H(E) +H(X|E, X̂)

Definition 4.6
= H(E) + P(E = 1)H(X|E = 1, X̂) + P(E = 0)H(X|E = 0, X̂)

= H(E) + P(E = 1)H(X|E = 1, X̂)

= H(Pe) + PeH(X|E = 1, X̂)

Lemma 4.8
≤ H(Pe) + Pe log(|X | − 1),

where in the third step we used that H(X|E = 0, X̂) = 0 since E = 0 so X = X̂ and we
are given X̂.

Finally, using lemma 4.16, we have I(X;Y ) ≥ I(X; X̂) so that H(X|Y ) ≤ H(X|X̂),
which concludes the proof.

4.6 Extension to Continuous Alphabets

So far, in this chapter, we have restricted attention to the case of discrete-valued random
variables. For some of the arguments made in this course, it is also of interest to consider
continuous random variables X, including in Chapters 8 and 11. In this section, we provide
the necessary definitions and review some key properties.
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4.6.1 KL Divergence

For probability density functions f(x) and g(x), the definition of KL divergence directly
extends as

D(f∥g) =
∫

S
f(x) log

f(x)

g(x)
dx. (4.7)

Most importantly, we have

D(f∥g) ≥ 0, (4.8)

with equality if and only if f(x) = g(x) almost everywhere. We point to [1, Chapter 8,
Section 8.5] for a more detailed treatment of this quantity.

We may define the mutual information between two random variables X and Y with
joint probability density function f(x, y) as

I(X;Y ) = D(f(x, y)∥f(x)f(y)), (4.9)

where f(x) and f(y) denote the marginal probability density functions of X and Y, respec-
tively.

4.6.2 Differential Entropy

In the continuous case, entropy is usually referred to as differential entropy. Following [1,
Chapter 8], we define the differential entropy h(X) of a continuous random variable X with
density f(x) as

h(X) = −
∫

S
f(x) log f(x)dx, (4.10)

where S is the support set of the random variable. Most importantly, it must be noted that
this quantity may be negative.

An interesting special case is when X is a Gaussian (normal) random variable with
variance σ2. In this case, solving the above integral gives h(X) = 1

2 log2
(
(2πe)σ2

)
.

Moreover, one can also easily convince oneself that we can write I(X;Y ) = h(X) +
h(Y ) − h(X,Y ). But we note that any or all of the differential entropies involved in this
expression may be negative.

We point to [1, Chapter 8] for a detailed treatment of this quantity, but point out one
small yet important and useful lemma.

Lemma 4.18. Let the random variable X have zero mean and variance σ2. Then,

h(X) ≤ 1

2
log2

(
(2πe)σ2

)
, (4.11)

with equality if and only if X is Gaussian (normal).

We return to this observation in much more detail in Chapter 8.
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4.7 Problems

Problem 4.1 (Entropy and pairwise independence). Suppose X, Y , Z are pairwise inde-
pendent fair flips, i.e., I(X;Y ) = I(Y ;Z) = I(Z;X) = 0.

(a) What is H(X,Y )?

(b) Give a lower bound to the value of H(X,Y, Z).

(c) Give an example that achieves this bound.

Problem 4.2 (Entropy and Geometry). Suppose X, Y and Z are random variables.

(a) Show that H(X) +H(Y ) +H(Z) ≥ 1
2

[
H(X,Y ) +H(Y, Z) +H(Z,X)

]
.

(b) Show that H(X,Y ) +H(Y,Z) ≥ H(X,Y, Z) +H(Y ).

(c) Show that

2
[
H(X,Y ) +H(Y, Z) +H(Z,X)

]
≥ 3H(X,Y, Z) +H(X) +H(Y ) +H(Z).

(d) Show that H(X,Y ) +H(Y,Z) +H(Z,X) ≥ 2H(X,Y, Z).

(e) Suppose n points in three dimensions are arranged so that their their projections to
the xy, yz and zx planes give nxy, nyz and nzx points. Clearly nxy ≤ n, nyz ≤ n,
nzx ≤ n. Use part (d) show that

nxynyznzx ≥ n2.

Problem 4.3. (Geometrical interpretation of mutual information)
In Homework 2 we introduced the conditional KL divergence between two probability kernels
PY |X : X → Y and QY |X : X → Y given a distribution PX over X as

D(PY |X∥QY |X |PX) ≜
∑

x∈X
PX(x)D(PY |X(·|x)∥QY |X(·|x)),

where for every x ∈ X , D(PY |X(·|x)∥QY |X(·|x)) is the standard KL divergence between the
two distributions PY |X(·|x) and QY |X(·|x) over Y.

(a) Let X and Y be two random variables with joint distribution PXY = PXPY |X . Show
that

I(X;Y ) =
∑

x∈X
PX(x)D(PY |X(·|x)∥PY ),

where PY is the marginal distribution of Y . This formula shows that the mutual
information can be interpreted as a weighted average of the distances between the
conditional distributions PY |X(·|x) and the marginal distribution PY .

(b) Show that for any distribution QY on Y,

I(X;Y ) = D(PY |X∥QY |PX)−D(PY ∥QY ).

You can think of this formula as a KL equivalent of the classical I(X;Y ) = H(Y )−
H(Y |X).
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(c) Show that
I(X;Y ) = min

QY

D(PY |X∥QY |PX).

According to this formula, the minimizing QY can be interpreted as the “center of
gravity” of the conditional distributions PY |X(·|x), and the mutual information as its
radius.

Problem 4.4. (Entropy and variance)
Let X be a continuous random variable with density p(x) and support in R. Let h(X)

denote the (differential) entropy of X, where (in nats)

h(x) =

∫
−p(x) ln p(x)dx.

Let Var(X) denote the variance of X, where

Var(X) =

∫
p(x)(x− EX)2dx.

Assume that you are told that h(X) ≥ h > 0. What bound can you conclude on Var(X) in
terms of h?

Problem 4.5 (Divergence and L1). Suppose p and q are two probability mass functions
on a finite set U . (I.e., for all u ∈ U , p(u) ≥ 0 and

∑
u∈U p(u) = 1; similarly for q.)

(a) Show that the L1 distance ∥p− q∥1 :=
∑

u∈U |p(u)− q(u)| between p and q satisfies

∥p− q∥1 = 2 max
S:S⊂U

p(S)− q(S)

with p(S) =
∑

u∈S p(u) (and similarly for q), and the maximum is taken over all
subsets S of U .

For α and β in [0, 1], define the function d2(α∥β) := α log α
β + (1 − α) log 1−α

1−β . Note that
d2(α∥β) is the divergence of the distribution (α, 1− α) from the distribution (β, 1− β).

(b) Show that the first and second derivatives of d2 with respect to its first argument α
satisfy d′2(β∥β) = 0 and d′′2(α∥β) = log e

α(1−α) ≥ 4 log e.

(c) By Taylor’s theorem conclude that

d2(α∥β) ≥ 2(log e)(α− β)2.

(d) Show that for any S ⊂ U
D(p∥q) ≥ d2(p(S)∥q(S))

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

D(p∥q) ≥ log e
2 ∥p− q∥21.

(f) Show, by example, that D(p∥q) can be +∞ even when ∥p − q∥1 is arbitrarily small.
[Hint: considering U = {0, 1} is sufficient.] Consequently, there is no generally valid
inequality that upper bounds D(p∥q) in terms of ∥p− q∥1.
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Problem 4.6 (Generating fair coin flips from biased coins). Suppose X1, X2, . . . are the
outcomes of independent flips of a biased coin. Let P(Xi = 1) = p, P(Xi = 0) = 1− p, with
p unknown. By processing this sequence we would like to obtain a sequence Z1, Z2, . . . of
fair coin flips.

Consider the following method: We process the X sequence in sucssive pairs, (X1X2),
(X3X4), (X5X6), mapping (01) to 0, (10) to 1, and the other outcomes (00) and (11) to the
empty string. After processing X1, X2, we will obtain either nothing, or a bit Z1.

(a) Show that, if a bit is obtained, it is fair, i.e., P(Z1 = 0) = P(Z1 = 1) = 1/2.

In general we can process the X sequence in successive n-tuples via a function f :
{0, 1}n → {0, 1}∗ where {0, 1}∗ denote the set of all finite length binary sequences (including
the empty string λ). [The case in (a) is the function f(00) = f(11) = λ, f(01) = 0,
f(10) = 1. The function f is chosen such that (Z1, . . . , ZK) = f(X1, . . . , Xn) are i.i.d., and
fair (here K may depend on (X1, . . . , XK).

(b) With h2(p) = −p log p− (1− p) log(1− p), prove the following chain of (in)equalities.

nh2(p) = H(X1, . . . , Xn)

≥ H(Z1, . . . , ZK ,K)

= H(K) +H(Z1 . . . , ZK |K)

= H(K) + E[K]

≥ E[K].

Consequently, on the average no more than nh2(p) fair bits can be obtained from
(X1, . . . , Xn).

(c) Find a good f for n = 4.

Problem 4.7 (Other Divergences). Suppose f is a convex function defined on (0,∞) with
f(1) = 0. Define the f -divergence of a distribution p from a distribution q as

Df (p∥q) :=
∑

u

q(u)f(p(u)/q(u)).

In the sum above we take f(0) := limt→0 f(t), 0f(0/0) := 0, and 0f(a/0) := limt→0 tf(a/t) =
a limt→0 tf(1/t).

(a) Show that for any non-negative a1, a2, b1, b2 and with A = a1 + a2, B = b1 + b2,

b1f(a1/b1) + b2f(a2/b2) ≥ Bf(A/B);

and that in general, for any non-negative a1, . . . , ak, b1, . . . , bk, and A =
∑

i ai, B =∑
i bi, we have ∑

i

bif(ai/bi) ≥ Bf(A/B).

[Hint: since f is convex, for any λ ∈ [0, 1] and any x1, x2 > 0 λf(x1)+ (1−λ)f(x2) ≥
f(λx1 + (1− λ)x2); consider λ = b1/B.]

(b) Show that Df (p∥q) ≥ 0.
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(c) Show that Df satisfies the data processing inequality: for any transition probability
kernel W (v|u) from U to V, and any two distributions p and q on U

Df (p∥q) ≥ Df (p̃∥q̃)

where p̃ and q̃ are probability distributions on V defined via p̃(v) :=
∑

uW (v|u)p(u),
and q̃(v) :=

∑
uW (v|u)q(u),

(d) Show that each of the following are f -divergences.

i. D(p∥q) :=∑u p(u) log(p(u)/q(u)). [Warning: log is not the right choice for f .]

ii. R(p∥q) := D(q∥p).
iii. 1−∑u

√
p(u)q(u)

iv. ∥p− q∥1.
v.
∑

u(p(u)− q(u))2/q(u)

Problem 4.8 (Growth of Expected Capital vs Expected Growth of Capital). Suppose
U1, U2, . . . are i.i.d. random variables taking values on a finite alphabet U ; let P (u) =
P(U1 = u) denote their common distribution. As in class let P̂n denote the empirical
distribution of Un.

Suppose f : U → [0,∞) is a non-negative real valued function defined on U . Define now
the random variables X0, X1, . . . as X0 = 1, Xn = f(Un)Xn−1, ∀n ≥ 1. In other words

Xn =

n∏

i=1

f(Ui).

One refers to the value Rn = 1
n logXn as the (exponential) rate of growth of Xn. (The

terminology is motivated by the relationship Xn = exp(nRn)).
Fix α =

∑
u P (u) log f(u) = E[log f(U)], and for a given ϵ > 0, let

A =
{
Q ∈ Π :

∣∣∑
uQ(u) log f(u)− α

∣∣ < ϵ
}
.

Let D∗ = minQ̸∈AD(Q∥P ). Observe that D∗ > 0.

(a) What can you say about P(|Rn − α| ≥ ϵ) as n gets large? Hint: How are the events
{|Rn − α| ≥ ϵ} and {P̂n ̸∈ A} related?

(b) Let β = log E[f(U)]. What is the relationship between en = 1
n log E[Xn] and β? Which

one of α and β is larger?

In a casino a game of chance is played. The outcome of the game is a random variable U ,
and if the outcome is u, the money bet on that outcome is multipled by a factor ϕ(u). The
money bet on other outcomes is lost. The game can be played successively with independent,
identically distributed outcomes.

We allocate our capital among the outcomes by placing a fraction q(u) of it on outcome
u. Clearly q(u) ≥ 0 and Q =

∑
u q(u) ≤ 1. (The fraction 1−Q is the fraction of our capital

not bet on the game and kept in reserve.) Observe that f(u) = (1 − Q) + q(u)ϕ(u) is the
factor our capital is multipled by if the outcome of the game is u.

Let X0 = 1 be our initial capital, and let Xn, n = 1, 2, . . . denote our capital as we play
the game repeatedly with a fixed allocation strategy q.
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(c) Suppose U = {0, 1}, P (0) = 1/4, P (1) = 3/4, ϕ(0) = ϕ(1) = 2. What is the allocation
q that maximizes the value of β in (b)?

(d) Continuing with (c) and the allocation you just found, what is the value of α? What
will happen to our capital Xn in the long run if we repeatedly play the game?
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Multi-Arm Bandits

You are likely already familiar with supervised and unsupervised learning. In supervised
learning we are given samples of input-output pairs and are asked to learn from those. In
unsupervised learning we only have access to input samples. Given those samples we hope to
learn about the structure of the input. E.g., the perhaps simplest such case is clustering. But
there is a third fundamental concept in ML typically referred to as reinforcement learning.
The main new component here is that we are allowed to interact with our environment and
are supposed to learn from these interactions while at the same time our interactions should
also serve the purpose of maximizing some objective. This leads to a fundamental tension
between exploration versus exploitation.

Reinforcement learning is a very large topic. We will explore the simplest such setting,
known as bandits. Even on the topic of bandits there is much more to say than what we can
cover in this short time. If you want to know more (also about the historical development)
we highly recommend the book Bandit Algorithms by Tor Lattimore and Csaba Szepesvári,
[2].

5.1 Introduction

The basic model is the following. For each round t = 1, 2, · · · , n, the learner chooses an
action At from a set of available actions A. To each action a ∈ A corresponds a probability
distribution Pa. The environment receives the chosen action At from the learner and in
response generates the random variable Xt that is distributed according to PAt and has
mean µA.

The reward up to and including time n is
∑n

t=1Xt. The decision by the learner at time
t is in general a function of the history Ht−1 = {A1, X1, · · · , At−1, Xt−1}. Our aim is to
maximize the reward by employing an appropriate learning algorithm.

More precisely, we typically try to minimize the regret rather than maximize the reward.
The regret with respect to a particular action a ∈ A is the difference of what we could have
gotten if we had used action a in all n rounds versus the actual reward we got. The
advantage of this competitive view (comparing to some other action) is that this measure
is invariant to e.g. shifting all rewards by a constant amount. We typically compute the
worst case regret, i.e., the regret with respect to the best action we could have taken, and
since the reward is a random variable it is common to first average over the reward for each

43
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action. This means we compute

Rn = max
A∈A

nµA − E[
n∑

t=1

Xt].

It is probably not surprising that a good learner will be able to achieve a sublinear
worst-case regret, i.e., Rn = o(n). Let us quickly go over the argument. We will do a much
more thorough analysis later on. Assume that |A| = K. If we take m samples from each of
these K distributions we can compute each mean with an additive error bounded by c/

√
m

with high probability.

Assume that we spend a fraction ϵ of the total time n on learning the K actions and
afterwards always play the “best” one according to the derived estimates. In this way we
will achieve a regret that behaves like nµ∗(ϵ + cK3/2/

√
ϵn). The term nµ∗ϵ is an upper

bound on the regret that we get since for a fraction ϵ of the time (when we are learning) we
might have a regret as large as µ∗. The second term, namely nµ∗cK3/2/

√
ϵn accounts for

the fact that during the remaining fraction 1− ϵ ≤ 1 of the time, we always play the “best”
arm according to our estimates but for each arm the estimate can be off by c

√
K/

√
ϵn with

a fixed probability and so each arm in expectation will contribute a term of this order to
the expected regret and we have K arms. We are still free to optimize over the choice of ϵ.

If we choose ϵ =
√
cK

(2
√
n)

2
3
then we get 3

√
K( cn2 )

2
3 , which vanishes as a function of n. So the

interesting question is how fast we can make the normalized regret converge to 0.

In the above paragraph we have assumed that we know the time horizon n. This is often
the case. But also the setting where the time horizon is not known a priori is of interest.

The setting we described, where the rewards come from a distribution that only depends
on the chosen action and this distribution is fixed over time is called the stochastic stationary
bandit problem. We will limit ourselves to this setting.

5.2 Some References

Besides the web page pointed out at the beginning there are many very good references for
this topic.

The area goes back to a paper by William R. Thompson [3]. A good recent survey is [4].
If you are looking for a book, we can recommend [5, 6].

5.3 Stochastic Bandits with a Finite Number of Arms

5.3.1 Set-Up

Let us analyze the simplest strategy that we already mentioned in a little bit more detail.
It is somewhat easier to think of problems with infinite horizons, i.e., there is no fixed n,
but we assume that the game goes on forever.

5.3.2 Explore then Exploit

A sub-optimal but very natural strategy is the following. First, get sufficiently many samples
from every bandit in order to determine its mean sufficiently accurately. This is the exploring
stage. Then exploit the so gained knowledge and play according to these empirical means.
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If we have a bandit with a finite number of arms then it is not very surprising that this
strategy achieves a sub-linear regret.

Let us do the calculations. Let X1, · · · , Xm be a sequence of iid random variables with
mean µ = E[Xi]. Given the sequence X1, · · · , Xm, the empirical estimator for µ, call it
µ̂(X1, · · · , Xm) is

µ̂(X1, · · · , Xm) =
1

m

m∑

t=1

Xt.

The above estimate is itself a random variable. Its mean is unbiased, i.e.,

E[µ̂(X1, · · · , Xm)] =
1

m
E[

m∑

t=1

Xt] = µ.

But of course we have a variance. We will use the tail bounds discussed in Section 2.3 for
this purpose.

Assume that at the start we get m samples from each of the K bandit arms. Let the
expected gain from arm k be µk and let µ∗ = max1≤k≤K µk. To simplify notation, let us
assume that µ∗ = µ1. Define ∆k = µ∗ − µk. Finally, assume that each of the K arms
corresponds to a random variable that is 1-subgaussian.

After the initial exploration stage we choose the bandit with the largest empirical pay-off
for the remaining n−Km steps. This gives us an expected regret of

Rn = m

K∑

k=1

∆k + (n−mK)

K∑

k=1

∆kP{k = argmaxjµ̂j}.

This expression is easy to explain. The first sum on the right is the expected regret due to
the exploration stage – we get m samples from each arm, and in so doing, accumulate for
each arm an expected regret of m∆k.

The second sum on the right accounts for the regret that we accumulate over the re-
maining n−mK steps in case we choose a sub-optimal arm in the exploitation stage. This
second term we can now bound using our tail-bound inequalities. Recall that ∆k is the
regret if we use arm k, instead of the optimum arm 1. We get m samples. What is the
probability that the average of the m samples of arm k look better than the average of the
m samples of arm 1? This is equivalent to asking for the probability that

P{ 1

m

m∑

t=1

(X
(1)
t −X

(k)
t ) ≤ 0},

where X
(1)
t denotes the m independent samples from arm 1 and X

(k)
t denotes the m in-

dependent samples from arm k. Now note that by assumption X
(1)
t − µ1 is 1-subgaussian

and so is X
(k)
t − µk. Therefore X

(1)
t − µ1 +X

(k)
t − µk is 2-subgaussian by Lemma 2.2. We

therefore have

P{ 1

m

m∑

t=1

(X
(1)
t −X

(k)
t ) ≤ 0} = P{ 1

m

m∑

t=1

(X
(1)
t − µ1 −X

(k)
t + µk) ≤ µk − µ1}

= P{ 1

m

m∑

t=1

(X
(1)
t − µ1 −X

(k)
t + µk) ≤ −∆k}

≤ e−m∆2
k/4.
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Therefore, our regret can be upper bounded as

Rn = m

K∑

k=1

∆k + (n−mK)

K∑

k=1

∆kP{k = argmaxjµ̂j}

≤ m
K∑

k=1

∆k + (n−mK)
K∑

k=1

∆k exp{−
m∆2

k

4
}.

It is instructive to consider the special case of K = 2. Let ∆ be the regret of the second
best arm (compared to the best one). Our expression for the regret is then

Rn ≤ m∆+ (n− 2m)∆ exp{−m∆2

4
} ≤ m∆+ n∆exp{−m∆2

4
}

︸ ︷︷ ︸
=Rn

.

If we assume that we know n and ∆ a priori we can find the optimal value of m for the
bound Rn. This leads to the equation

dRn
dm

= ∆(1− ne−
m∆2

4 ∆2/4) = 0,

e−
m∆2

4
∆2

4
=

1

n
.

We see form this equation that the optimum choice (ignoring integer constraints) is

m ∼ 4

∆2
ln(

n∆2

4
).

This gives us

Rn ∼ 4

∆

(
1 + ln(

n∆2

4
)

)
.

At first this looks pretty promising. The bound on the right is only logarithmic in n. But
there is a slight problem with our bound. So far we have implicitly assumed that ∆ is
relatively large. But what if ∆ is small? E.g., assume that ∆ = 1√

n
. Then the term 1

∆ is

equal to
√
n and so our regret is now much larger. Indeed, what if ∆ is even smaller? It

seems that the regret has no bound – the smaller the gap the larger the regret. This seems
counter-intuitive. Should a small gap not be good for us?

We can easily fix this bound by noting that the regret can never be larger than n∆.
Hence, we have a bound of the form

Rn ≤ min{n∆, 4
∆

(
1 + ln(

n∆2

4
)

)
}.

Now it is easy to see that the worst case is to have a gap of order 1/
√
n. In this case the

regret is of order
√
n.

To summarize. If the gap is large (a constant) then we only need ln(n) samples to figure
out which of the arms is best with high probability. After that we will always use the best
arm. This gives us a regret of order ln(n). But if the gap is small then even though pulling
the wrong trigger is less costly we need a considerably larger exploration phase. And once
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the gap becomes of size 1/
√
n, we will spend all the time in exploring and never reach the

exploitation phase.
There is another issue. All our previous discussion is based on the assumption that we

know the horizon n and the gap ∆ (just look at the expression for the optimum m – it
depends both on n and ∆. Perhaps it is realistic to assume that n is known. But it is not
realistic to assume that we know ∆. So is there a way to choose m that is universal? We
will explore this in the exercises. We will see that there is. But in this case the worst-case
regret is of order n

2
3 . Note that this is the same order that we got in our very first back of

the envelope calculation.

5.3.3 The Upper Confidence Bound Algorithm

The upper confidence bound (UCB) algorithm is a celebrated algorithm that overcomes the
shortcomings of the explore-then-exploit algorithm. Rather than separating the exploring
phase from the exploiting phase these two phases are mixed and the algorithm learns con-
tinously. The idea is simple: At any point the algorithm gets a sample from that arm that,
according to optimistic estimates, looks best.

Recall our upper bound of

P{µ̂(X1, · · · , Xm)− µ ≥ ϵ} ≤ exp(−mϵ2/2).

If we set the right-hand side to δ > 0 and then solve for δ we get

P{µ̂(X1, · · · , Xm)− µ ≥
√

2

m
ln(

1

δ
)} ≤ δ.

If we think of δ as small then this suggests that, at time t − 1, it is unlikely that our
empirical estimator µ̂k,t−1 of the k-th bandit arm overestimates its mean by more than√

2
Tk(t−1) ln(

1
δ ). Here Tk(t − 1) denotes the number of times we have chosen arm k in the

first t− 1 steps.
The idea of the UCB algorithm is to take these upper bounds on the individual confidence

intervals as our estimates and to choose as an action At at time t that arm i that maximizes
this upper bound.

To specify the algorithm it remains to specify the confidence level δt that is used at time
t. We will choose

δt =
1

f(t)
=

1

1 + t ln2(t)
. (5.1)

Note that the above algorithm has the following property. Once all arms have been
explored at depth all the upper bounds on the confidence intervals will be very close to the
true means and so we will likely explore further only arms whose mean is very close to the
maximum mean.

Let us now formally specify the algorithm. We have

At =

{
t, t ≤ K,

argmaxkµ̂k(t− 1) +
√

2 ln f(t)
Tk(t−1) , t > K.

This algorithm is pretty intuitive. Even if a genie had given us the correct mean of the
best arm for free, in order to verify that indeed this is the best arm, what we would do is
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to compute its confidence interval. And how confident should we be, how should we choose
δ? If we make a mistake we will pay linear regret for the remainder of the running time.
Therefore δ should be smaller than 1

n . If we think now of n as t then (5.1) makes sense.

Lemma 5.1. The regret of the UCB algorithm is bounded by

Rn ≤
∑

k:∆k>0

infϵ∈(0,∆k)
∆k(1 +

7

ϵ2
+

2

(∆k − ϵ)2
(ln f(n) +

√
π ln f(n) + 1)).

Let us compare this result to what we have seen for the explore-then-exploit algorithm.
If we pick ϵ small but not too small then the dominant terms in this expression are of the
form 2 ln f(n)

∆k
∼ 2 ln(n)

∆k
. This is essentially the same as what we derived for the explore-then-

exploit algorithm. But this time we neither required the knowledge of n nor of ∆k. Of
course, we have the same issue when one of the ∆k becomes small. The worst case is again
when one of these gaps is of order 1/

√
n. This will, as before, result in a regret of order√

n ln(n). In summary, we have

Rn ≤
∑

k:∆k>0

min{n∆k, infϵ∈(0,∆k)∆k(1 +
7

ϵ2
+

2

(∆k − ϵ)2
(ln f(n) +

√
π ln f(n) + 1))}.

Proof. Let µ̂t be the empirical (natural) estimator of the mean of a 1-subgaussian random
variable based on t independent observations. Let a ∈ R+ and ϵ > 0. Consider the quantity

P{µ̂t +
√

2a

t
≥ ϵ}.

For t no more than 2a
ϵ2

this probability is very close to 1. But for larger t we can use our
tail bound to conclude that

P{µ̂t +
√

2a

t
≥ ϵ} ≤ e

− 1
2
t(ϵ−

√
2a
t
)2
.

Therefore,

E[
n∑

t=1

1{µ̂t+
√

2a
t
≥ϵ}] =

n∑

t=1

P{µ̂t +
√

2a

t
≥ ϵ}

≤ 2a

ϵ2
+

n∑

t≥ 2a
ϵ2

P{µ̂t +
√

2a

t
≥ ϵ}

≤ 2a

ϵ2
+

n∑

t≥ 2a
ϵ2

e
− 1

2
t(ϵ−

√
2a
t
)2

(a)

≤ 2a

ϵ2
+ 1 +

∫ ∞

2a
ϵ2

e
− 1

2
t(ϵ−

√
2a
t
)2
dt

(b)
=

2a

ϵ2
+ 1 +

2

ϵ2

∫ ∞

0
e−

1
2
x2(x+

√
2a)dx

= 1 +
2

ϵ2
(a+

√
πa+ 1). (5.2)
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In step (a) we note that the terms in the sum are decreasing and that each term is less
than 1. We can hence bound the sum by the corresponding integral plus the constant 1
(the maximum value that the function can take on at the left boundary). In step (b) we
made two substitutions. First we set z = ϵ

√
t so that dt = 2z/ϵ2dz. This will change the

lower bound to
√
2a and the argument in the exponent to −1

2(z−
√
2a)2. Then we shift the

integration boundaries by defining x = z −
√
2a. This gives us the indicated integral.

Let us now bound the regret, which has the form Rn =
∑

k:∆k>0∆kE[Tk(n)]. The key
is to find a good bound on E[Tk(n)]. Note that

Tk(n) =
n∑

t=1

1{At=k} ≤
n∑

t=1

1{µ̂1(t−1)+
√

2 ln f(t)
T1(t−1)

≤µ1−ϵ}
+

n∑

t=1

1
{µ̂k(t−1)+

√
2 ln f(t)
Tk(t−1)

≥µ1−ϵ ∧ At=k}

(5.3)

The idea of this bound is the following. Rather than counting how often the upper confidence
bound of arm k is larger than the upper confidence bounds of all other arms, we count how
often it is larger than the upper confidence bound of arm 1.

Clearly, this count is an upper bound. Further, rather than comparing the upper confi-
dence bound of arm k and arm 1 directly, we compare each individuall to a third quantity.
This quantity is chosen to be slightly below the true mean of arm 1. We increase our count
if either the upper confidence bound of arm k is above this threshold, or if the upper con-
fidence bound of arm 1 is below this threshold. Again, this leads to an upper bound. This
explains the two terms on the right in (5.3).
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We start with the first one,

E[

n∑

t=1

1{µ̂1(t−1)+
√

2 ln f(t)
T1(t−1)

≤µ1−ϵ}
] =

n∑

t=1

P

(
µ̂1(t− 1) +

√
2 ln f(t)

T1(t− 1)
≤ µ1 − ϵ

)

(a)

≤
n∑

t=1

t∑

s=1

P

(
µ̂1,s +

√
2 ln f(t)

s
≤ µ1 − ϵ

)

≤
n∑

t=1

t∑

s=1

e−
s
2
(
√

2 ln f(t)
s

+ϵ)2

=
n∑

t=1

t∑

s=1

e− ln(f(t))−
√

2s ln f(t)− s
2
ϵ2

≤
n∑

t=1

1

f(t)

t∑

s=1

e−
s
2
ϵ2

=

n∑

t=1

1

f(t)

e−
ϵ2

2

1− e−
ϵ2

2

=
n∑

t=1

1

f(t)

1

e
ϵ2

2 − 1︸ ︷︷ ︸
take Taylor series

all terms are positive; keep only first two

≤
n∑

t=1

1

f(t)

2

ϵ2

≤ 2

ϵ2

n∑

t=1

1

1 + t ln(t)2

(b)

≤ 2

ϵ2
(2 +

∫ ∞

2

1

x ln(x)2
dx)

=
2

ϵ2
(2 +

1

ln(2)
)

≤ 7

ϵ2

In step (a) we argue as follows. We do not know how many samples of arm 1 we have
taken at time t. Hence we bound this probability via a union bound, where we sum over all
possibilities. In step (b) we used the fact that 1

1+t ln(t)2
is a decreasing function so that the

sum can be bounded by an appropriately chosen integral. In particular, we note that each
term us upper bounded by 1. We hence bound the first two terms by 2 and then we bound
the remainder of the sum by the corresponding integral starting at 2 (the sum starts at 3).
Finally, we drop the 1 from the denominator and we extend the integral to infinity. This
further upper bounds the sum and leads to a simple expression.
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It remains to bound the second term in (5.3),

E[

n∑

t=1

1
{µ̂k(t−1)+

√
2 ln f(t)
Tk(t−1)

≥µ1−ϵ ∧ At=k}
]
(a)

≤ E[

n∑

t=1

1
{µ̂k(t−1)+

√
2 ln f(n)
Tk(t−1)

≥µ1−ϵ ∧ At=k}
]

(b)

≤ E[
n∑

s=1

1
{µ̂k,s+

√
2 ln f(n)

s
≥µ1−ϵ}

]

≤ E[
n∑

s=1

1
{µ̂k,s−µk+

√
2 ln f(n)

s
≥∆k−ϵ}

]

(c)

≤ 1 +
2

(∆k − ϵ)2
(ln f(n)) +

√
π ln f(n) + 1).

In step (a) we replacedf(t) by the larger quantity f(n). This gives us an upper bound.
Step (b) also warrants some explanation. As in the previous case, we do not know what

Tk(t − 1) is, other than that it must be in the range from 1 to t − 1. When we derived a
bound on the first term in (5.3) we got around this problem by taking a union bound over
all possible such values.

We could do the same thing here, but this bound would be loose. The trick is to realize
that whatever value of s we have for a particular step t, the same value cannot appear again
in a later step due to the condition that At = k. Therefore, it suffices to take the sum over
all possible values of s once, i.e., instead of the sum over t.

Finally, in step (c) we have used (5.2) with a = ln(f(n)) and ϵ replaced by ∆k = ϵ.

5.3.4 Information-theoretic Lower Bound

We have seen that the UCB algorithm has a worst-case (worst-case over the choice of gaps)
regret of order

√
n ln(n). Could there be an algorithm that is much better than that. We

will now see that we cannot hope to do better than
√
n.

So far we have discussed two concrete algorithms. In general, an algorithm is specified
by a policy π. A policy is a sequence of conditional probabilities that specify the probability
of the action at time t given the history Ht−1 = {A1, X1, · · · , At−1, Xt−1}. The policies
of the explore-then-exploit as well as the UCB algorithm were deterministic (other than
perhaps when breaking ties). But in general a policy might be randomized. Recall also
our notion of environment ν. The environment is the set of K probability distributions
ν = (P1, · · · ,PK).

Lemma 5.2 (Lower Bound onWorst-Case Regret). Let K > 1 and n ≥ K−1. Then for any
policy π there exists an environment ν so that the regret Rn(π, ν) ≥ 1

27

√
(K − 1)n. Further,

this environment can be chosen to be a Gaussian environment, where all distributions are
unit-variance Gaussians.

Proof. The idea of the proof is the following. We are given a policy π. Based on this
policy we construct two Gaussian environments that are quite similar and differ only in a
single distribution. We then show that the given policy π cannot do well on both of these
environments. Note that the “bad” enviroment that we prove to exist depends in general
not only on the policy but also on n.

Let K be the number of arms, K > 1, and let π be given policy. Our first enviroment
is Gaussian with unit-variance distributions and a mean vector of the form (∆, 0, · · · , 0),
where ∆ > 0 is a parameter. We will chose it to be

√
(K − 1)/(4n).



52 Chapter 5.

Let Eν [Tk(n)] denote the expected number of times we choose arm k for this environment
ν under the policy π (since the policy π is fixed we do not explicitly denote it). Let i,
1 ≤ i ≤ K, be an arm that we choose the least often under this policy. More formally,
i = argmink Eν [Tk(n)]. If i = 1 then at least (1 − 1/K)n times we do not choose arm
1 and so our regret is at least (1 − 1/K)n∆, which, for our choice of ∆ gives a regret of
(1− 1/K)n

√
(K − 1)/(4n) ≥ 1

4

√
(K − 1)n ≥ 1

27

√
(K − 1)n.

So let us assume that i ̸= 1. In this case the second environment ν ′ is again Gaussian
with unit-variance distributions and a mean vector of

(∆, 0, · · · , 0, 2∆︸︷︷︸
i-th component

, 0, · · · , 0).

Let pν(A1, X1, · · · , An, Xn) denote the joint distribution under policy π in environment ν
and let pν′(A1, X1, · · · , An, Xn) denote the joint distribution under policy π in environment
ν ′. How different are these distributions? Let us compute their KL divergence,

D(pν ||pν′) =
∫
pν(A1, X1, · · · , An, Xn) ln

pν(A1, X1, · · · , An, Xn)

pν′(A1, X1, · · · , An, Xn)
.

Note that these distributions can be factorized in the following form

pν(A1, X1, · · · , An, Xn) = π(A1)πν(X1 | A1) · · ·πHn−1(An)πν(Xn | An).

Therefore

D(pν ||pν′) =
∫
pν(A1, X1, · · · , An, Xn) ln

pν(A1, X1, · · · , An, Xn)

pν′(A1, X1, · · · , An, Xn)

=

∫
pν(A1, X1, · · · , An, Xn) ln

π(A1)πν(X1 | A1) · · ·πHn−1(An)πν(Xn | An)
π(A1)πν′(X1 | A1) · · ·πHn−1(An)πν′(Xn | An)

=

∫
pν(A1, X1, · · · , An, Xn) ln

πν(X1 | A1) · · ·πν(Xn | An)
πν′(X1 | A1) · · ·πν′(Xn | An)

=

n∑

t=1

∫
pν(A1, X1, · · · , At, Xt) ln

πν(Xt | At)
πν′(Xt | At)

=

n∑

t=1

∫ K∑

k=1

pν(At = k)pν(Xt | At = k) ln
πν(Xt | At = k)

πν′(Xt | At = k)

=

n∑

t=1

K∑

k=1

pν(At = k)D(Pk, P
′
k)

=

K∑

k=1

Eν [Tk(n)]D(Pk, P
′
k)

(a)
= Eν [Ti(n)]

4∆2

2
(b)

≤ n

K − 1

4∆2

2
=

2n∆2

K − 1
.

In step (a) we have used the fact that the two enviroments only differ in position i and that
in this position we have two unit-variance Gaussians, one with mean 0 and one with mean
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2∆. As you will show in your homework, if Pi, i = 1, 2, are two Gaussians with means µi
and variances σ2i , then

DKL(P1||P2) = ln(σ2/σ1) +
σ21 + (µ1 − µ2)

2

2σ22
− 1

2
.

To see step (b) note that amongst the K − 1 arms 2, · · · ,K, the one that is chosen the
least cannot be chosen more than n/(K − 1) times. We now have

Rn(π, ν) +Rn(π, ν
′)

(a)

≥ Pν{T1(n) ≤ n/2}n∆
2

+ Pν′{T1(n) > n/2}n∆
2

(b)

≥ n∆

4
e−D(Pν ,Pν′ )

≥ n∆

4
e−

2n∆2

K−1

(c)
=

√
n(K − 1)

8
e−

1
2

(d)
=

2
√
n(K − 1)

27
.

Before we justify any of these steps note that this inequality completes our proof: We have
shown that for a given policy there are two environments so that the sum of their regrets

at time n is at least 2

√
n(K−1)

27 . So at least one of these environments must have a regret of

at least

√
n(K−1)

27 .

Step (a) is easy to explain. If we choose the arm 1 in environment µ at most half of the
time then for n/2 time steps we have a regret of ∆ for each step. And if we choose the arm
1 in environment ν ′ more than half of the time then for n/2 time steps we have a regret of
at least ∆.

In step (c) we made the choice ∆ =
√
(K − 1)/(4n) and in step (d) we lower bounded

e−
1
2 /8 ∼ 0.0758 by 2/27 ∼ 0.07407.

Step (b) follows from Lemma 4.6.

5.4 Further Topics

There are many extensions and variations of this topic. Let us quickly mention a few
without proofs or details.

5.4.1 Asymptotic Optimality

Assume we are given a fixed policy π.

In Section 5.3.4 proved that if we first fix the time horizon n and then choose an envi-
ronment we can make the regret as large as

√
n.

But what if we first fix the environment and then let n tend to infinity. We have seen
that for the UCB algorithm the asymptotic regret scales logarithmically. Can we do better?
It turns out that we cannot as long as we stick to policies that have an asymptotic regret
that is upper bounded by nα, for every α > 0, for all environments (E.g., the UCB fulfills
this condition). So the UCB algorithm is optimal also in this sense.
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5.4.2 Adversarial Bandits

So far we have assumed that the environment consists of K distributions that are unknown
but fixed. This is a relatively strong assumption. In the adversarial bandit setting we do
not assume that the rewards are iid samples from a distribution. Rather, we allow them to
be arbitrary numbers xt,k in [0, 1].

Assume at first that the policy is deterministic. Then it is clear that we can make the
regret equal to n. For any time t, once At has been chosen by the policy, lets say it has
value k, pick j ̸= k, and set xt,j = 1, and xt,i = 0, i ̸= j.

We can remedy this problem by making the following two changes. First, clearly we
need a randomized strategy. Second, we will compare ourselves to a genie who knows all
rewards xt,k and who picks that arm whose average reward is largest up to time n (so we
do NOT compare to a genie who is allowed to pick at every time t that arm that contains
the highest reward at this time).

Perhaps suprisingly, for a randomized stratety and this proper choice of genie we can
make the regret almost as small as for the stochastic case. Here, the regret is the expected
regret, where the expectation is over the randomness of the algorithm.

Exponential-Weight Algorithm for Exploration and Exploitation

The most common algorithm in this setting is the Exponential-weight algorithm for Explo-
ration and Exploitation (Exp3 for short). It is defined as follows.

We start with a uniform distribution on the set of actions, Pt=1,k = 1/K, k = 1, · · · ,K.
At time t, we have computed the distribution Pt,k. Sample an action At from this distribu-
tion, assume it is k. Reveal the sample. It is the number xt,k and we call it Xt. Estimate
the rewards for all arms based on Xt and then compute Pt+1,k by updating Pt,k.

Reward Estimation

Recall that in round t we chose some action At according to the distribution Pt,k and then
we observed the reward Xt which is the t-reward of arm At. Based on this number we would
like to estimate the reward of all arms. We use the estimator

x̂t,k =
1{At=k}
Pt,k

Xt.
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This makes sense. We scale each number by one over the probability that we sample it. We
have1

E[x̂t,k | A1, X1, · · · , At−1, Xt−1] = E[
1{At=k}
Pt,k

Xt | A1, X1, · · · , At−1, Xt−1]

= E[
1{At=k}
Pt,k

xt,k | A1, X1, · · · , At−1, Xt−1]

=
xt,k
Pt,k

E[1{At=k} | A1, X1, · · · , At−1, Xt−1]

= xt,k.

Note that the conditional expectation E[x̂t,k | A1, X1, · · · , At−1, Xt−1] is a random variable
(it depends on the history) that is constant on the “partitions” given by the conditioning.
What the above says is that independent of the history this random variable is in fact equal
to xt,k. So irrespective of the history, if we repeated the same history many times, the
expected regret we would see is always xt,k. This makes of course sense since the history
only changes Pt,k but by definition we sampled exactly according to this distribution. (In
order for things to be well-defined we need to ensure that the probability of sampling a
particular k is never 0.)

In the same way we can compute the variance of this estimator. We have

E[x̂2t,k | A1, X1, · · · , At−1, Xt−1]− E[x̂t,k | A1, X1, · · · , At−1, Xt−1]
2

= E[

(
1{At=k}
Pt,k

Xt

)2

| A1, X1, · · · , At−1, Xt−1]− x2t,k

= E[
1{At=k}
P2t,k

x2t,k | A1, X1, · · · , At−1, Xt−1]− x2t,k

=
x2t,k
P2t,k

E[1{At=k} | A1, X1, · · · , At−1, Xt−1]− x2t,k

= x2t,k
1− Pt,k

Pt,k
.

From this we see that the variance can be substantial if Pt,k is very small. This can of
course cause trouble.

Updating the Probability Distribution

Now that we have discussed how we can estimate the total reward of each arm up to time
t − 1, call this quantity Ŝt−1,k, we still need to discuss how we convert this estimate into
the probability distribution Pt,k. One standard way of doing this is to set

Pt,k =
eηŜt−1,k

∑
j e

ηŜt−1,j

,

1Recall the definition of conditional expectation. Let X be a random variable defined on a σ-algebra F .
Let G be a sub σ-algebra. Then the conditional E[X | G] is the unique random variable that is G-measureable
and so that for all G ∈ G ∫

G

E[X | G]dP =

∫
G

XdP
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where η is a parameter that we can choose freely.

Lemma 5.3 (Regret of Exp3). For any assignment of the rewards xt,k ∈ [0, 1] the expected
regret of the Exp3 algorithm is bounded as

Rn ≤ 2
√
nK ln(K).

5.4.3 Contextual Bandits

In many scenarios we have some side information available. How can we use this information
to improve our choice. One idea is to define a context. E.g., perhaps we built a movie
recommedation site. In this case we might have a prior classification of various user “types.”
This could be the context.

Assume that there are a finite number of contexts. Then we could define one bandit
algorithm for each of the finite number of contexts and run them independently. But we
pay a price. Now each algorithm only sees a fraction of the examples!

5.5 Problems

Problem 5.1 (KL Divergence). Compute the KL Divergence of two scalar Gaussians p(x) =
N (µ1, σ

2
1) and q(x) = N (µ2, σ

2
2).

Problem 5.2 (Epsilon-Greedy Algorithm). Recall our original explore-then-exploit strat-
egy. We had a fixed time horizon n. For some m, a function of n and the gaps {∆k}, we
explore each of the K arms m times initially. Then we pick the best arm according to their
empirical gains and play this arm until we reach round n. We have seen that this strategy
achieves an asymptotic regret of order ln(n) if the environment is fixed and we think of n
tending to infinity but a worst-case regret of order

√
n if we use the gaps when determining

m and of order n
2
3 if we do not use the gaps in order to determine m.

Here is a slightly different algorithm. Let ϵt = t−
1
3 . For each round t = 1, . . ., toss a

coin with success probability ϵt. If success, then explore arms uniformly at random. If not
success, then pick in this round the arm that currently has the highest empirical average.

Show that for this algorithm the expected regret at any time t is upper bounded by t
2
3

times terms in t and K of lower order. This is a similar to the worst-case of the explore-
then-exploit strategy but here we do not need to know the horizon a priori. Assume that
the rewards are in [0, 1].

Problem 5.3 (Upper Confidence Bound Algorithm). In the course we analyzed the Upper
Confidence Bound algorithm. As was suggested in the course, we should get something
similar if instead we use the Lower Confidence Bound algorithm. It is formally defined as
follows.

At =

{
t, t ≤ K,

argmaxk µ̂k(t− 1)−
√

2 ln f(t)
Tk(t−1) , t > K.

Analyze the performance of this algorithm in the same way as we did this in the course
for the UCB algorithm.

Hint: Is this algorithm well designed?
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Problem 5.4 (Thompson Sampling with Bernoulli Losses). This problem deals with a
Bayesian approach to multi-arm bandits. Although we will not pursue this facet in the
current problem, the Bayesian approach is useful since within this framework it is relatively
easy to incorporate prior information into the algorithm.

Assume that we have K bandits, and that bandit k outputs a {0, 1}-valued Bernoulli
random variable with parameter θk ∈ [0, 1]. Let π be the uniform prior on [0, 1]K , i.e., the
uniform prior on the set of all parameters θ = (θ1, · · · , θK). Let

T 1
k (t) = |{τ ≤ t : Aτ = k;Yτ = 1}|,
T 0
k (t) = |{τ ≤ t : Aτ = k;Yτ = 0}|.

In words, T 1
k (t) is the number of times up to and including time t that we have chosen

action k and the output of arm k was 1 and similarly T 0
k (t) is the number of times up to

and including time t that we have choses action k and the output of the arm k was 0.
The goal is to find the arm with the highest parameter, i.e., the goal is to determine

k∗ = argmaxkθk.

In the Bayesian approach we proceed as follows. At time time t:

1. Compute for each arm k the distribution p(θk(t)|T 1
k (t− 1), T 0

k (t− 1)).

2. Generate samples of these parameters according to their distributions.

3. Pick the arm j with the largest sample.

4. Observe the output of the j-th arm, call it Yj(t), and update the counters T 1
j and T 0

j

accordingly.

Show that this algorithm “works” in the sense that eventually it will pick the best arm.
More precisely, show the following two claims.

1. Show that p(θk(t)|T 1
k (t− 1), T 0

k (t− 1)) is a Beta distributed and determine α and β.

2. Show that as t tends to infinity the probability that we choose the correct arm tends
to 1. [HINT: To simplify your life, you can assume that for every arm k, T 1

k (t− 1) +

T 0
k (t− 1)

t→∞→ ∞.]

NOTE: Recall that the density of the Beta distribution on [0, 1] with parameters α and
β is equal to

f(x;α, β) = constant xα−1(1− x)β−1.

Further, the expected value of f(x;α, β) is α
α+β and its variance is αβ

(α+β)2(α+β+1)
.

Problem 5.5 (Bandits with Infinitely Many Arms). In the course we considered bandits
with a finite number of K arms. In this problem we will see that the same ideas apply if
we have infinitely many arms as long as there is some additional structure.

Assume that there is an unknown unit-norm vector θ ∈ Rd. For every unit-norm vector
u ∈ Rd, there is a bandit. It gives the reward Xu = ⟨u, θ⟩+Zu, where Zu is a zero-mean unit-
variance Gaussian that is independent over time and independent with respect to different
bandits. The nature of the reward is known to the player.

Find a policy, i.e., a strategy of what bandit to probe at any given point in time given a
specific history, that has a sublinear regret as time tends to infinity. You can assume that
you know the horizon, i.e., we are looking for fixed-horizon policies.
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Problem 5.6 (Lipschitz Bandits). Assume for the following that you have a bandit algo-
rithm at your disposal that has an expected regret, call it Rn, bounded by c

√
Kn log(n),

where K is the number of arms and n is the time horizon.
You have to design an algorithm for the following scenario. There are infinitely many

bandits. More precisely the bandits are indexed by x, x ∈ [0, 1]. Bandit x has mean µ(x)
(which is unknown). But you do know that the various bandits are related in the sense that

|µ(x)− µ(y)| ≤ L|x− y|, (5.4)

where L is a known constant. This is known as the Lipschitz bandit problem due to the
Lipschitz condition (5.4).

A natural approach to such a bandit problem is to discretize the space of bandits. I.e.,
assume that you pick K positions 0 ≤ x1 < x2 < · · · < xK ≤ 1 and run your given bandit
problem on these K bandits.

a) Bound the expected regret as a function of K, n, L and the placement of points.

b) For n and L fixed, minimize your expression with respect to K and the placement of
points.

Hint: In order to simplify your computation, you might want to slightly loosen your bound.
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Detection and Estimation

There are two basic tasks that we will review in this chapter. The first one is known
as detection. Synonyms are decision making and hypothesis testing. The second topic is
estimation.

These two tasks are the equivalent of classification and regression in ML, except that
we know the underlying distribution. Therefore, detection and estimation give us a guide
of what we might hope to achieve in a particular setting (assuming that we have a large
amount of data). Of course, in a typical setting in ML we do not know the distribution.

In particular estimation is very much at the intersection of all the topics we discuss in
this course. It is a form of statistical signal processing. Its fundamental bounds are given by
information theory. And, as we just mentioned above, it relates to the basic regression task
of data science. And in the typical case where we do not know the underlying distribution
one possible strategy is to estimate this distribution (another topic of this course) given the
data and then to predict the value according to the rules of estimation theory.

6.1 Detection

6.1.1 Binary hypothesis testing

We start with the simplest set-up, namely binary hypothesis testing. Consider the problem
of deciding which of two hypotheses, hypothesis 0 or hypothesis 1, is true, based on an
observation U . The observation U is a random variable taking values in an alphabet U —
a finite set of K = |U| letters — and under hypothesis j it has distribution Pj . To avoid
trivial cases we will assume that for each u ∈ U both P0(u) and P1(u) are strictly positive.
Otherwise, if we observe a u with, say, P0(u) = 0, we would know for sure that hypothesis 1
is true.

A deterministic decision rule associates to each u ∈ U a binary value — i.e., the rule is
a function ϕ : U → {0, 1} — and we decide in favor of hypothesis ϕ(u) if the observation U
equals u. In general, we will allow for randomized decision rules: such a rule is characterized
by a function ϕ : U → [0, 1] that associates to each u ∈ U a value in the interval [0, 1], that
gives the probability of deciding in favor of hypothesis 1. If our observation U equals u, we
flip a coin that comes heads with probability ϕ(u) and tails with probability 1− ϕ(u), and
decide accordingly: 1 if heads, 0 if tails. We will identify a decision rule with the function
ϕ.

In this set up there are two kinds of error: deciding 1 when the true hypothesis is 0,
and deciding 0 when the true hypothesis is 1. For a fixed rule ϕ let πϕ(i|j) denote the

59
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probability of deciding i when the truth is j. We have

πϕ(0|1) =
∑

u

P1(u)[1− ϕ(u)], πϕ(1|0) =
∑

u

P0(u)ϕ(u).

Given P0 and P1 and a positive real number η > 0, let Φη to be the set of decision rules
ϕ of the form

ϕ(u) =

{
1 if P1(u) > ηP0(u)

0 if P1(u) < ηP0(u).
(6.1)

Note that if there is no u for which P1(u) = ηP0(u), the test ϕ is uniquely specified and Φη
contains only this test.

Lemma 6.1. The rules in Φη are minimizers of π(0|1) + ηπ(1|0).
Proof. For any rule ϕ ∈ Φη, as a consequence of (6.1), for every u ∈ U

P1(u)[1− ϕ(u)] + ηP0(u)ϕ(u) = min{P1(u), ηP0(u)}.

Thus for any rule ϕ ∈ Φη

πϕ(0|1) + ηπϕ(1|0) =
∑

u

P1(u)[1− ϕ(u)] + ηP0(u)ϕ(u) =
∑

u

min{P1(u), ηP0(u)}.

Suppose now ψ is any decision rule. The lemma follows by noting that

πψ(0|1) + ηπψ(1|0) =
∑

u

P1(u)[1− ψ(u)] + ηP0(u)ψ(u) ≥
∑

u

min{P1(u), ηP0(u)}.

Theorem 6.2. For any α ∈ [0, 1], (i) there is a rule ϕ of the form (6.1) such that πϕ(0|1) =
α, and (ii) for any decision rule ψ either πψ(0|1) ≥ πϕ(0|1) or πψ(1|0) ≥ πϕ(1|0).
Proof. Assertion (ii) follows from the lemma above: a ψ that violates both the inequalities
would contradict the lemma. It thus suffices to prove (i), the existence of a rule ϕ of
the form (6.1) with πϕ(0|1) = α. To that end, define L(u) = P1(u)/P0(u), and label the
elements of U as U = {u1, . . . , uK} such that L(u1) ≥ L(u2) ≥ · · · ≥ L(uK). Now define,
ai =

∑i
j=1 P1(uj) for i = 0, . . . ,K. We then have 0 = a0 < a1 < · · · < aK = 1. Given

0 ≤ α ≤ 1, we can find 1 ≤ i ≤ K for which ai−1 ≤ 1−α ≤ ai, so that 1−α = (1−ρ)ai−1+ρai
for some ρ ∈ [0, 1]. Then, the rule

ϕ(u) =





1 u ∈ {u1, . . . , ui−1}
ρ u = ui

0 u ∈ {ui+1, . . . , uK}

is of the form (6.1) with η = L(ui), and πϕ(0|1) = α.

Rules of the form (6.1) are based on a likelihood ratio test : they compare the likelihood
ratio P1(u)/P0(u) to a threshold η to make a decision. If the likelihood ratio is larger than
the threshold, decide 1; if less, decide 0. Equivalently one may compare the log likelihood
ratio, log(P1(u)/P0(u)) to the threshold log η.

The theorem stated just above shows the dominant nature of likelihood ratio tests in
making decisions: given any decision rule ψ, we can find a (log) likelihood ratio test ϕ which
is ‘as good or better’ — in the sense that the two error probabilities satisfy πϕ(0|1) ≤ πψ(0|1)
and πϕ(1|0) ≤ πψ(1|0).
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6.1.2 Hypothesis testing with repeated independent observations

Suppose now that we make repeated independent observations of U . That is, we observe
a sequence U1, . . . , Un of independent and identically distributed (i.i.d.) random variables,
with common distribution Pi under hypothesis i, for i = 0, 1.

The log likelihood ratio tests for this scenario are of the form

ϕ(u1, . . . , un) =

{
1 Λn(u1, . . . , un) > t

0 Λn(u1, . . . , un) < t

where

Λn(u1, . . . , un) =
1

n

n∑

i=1

log
P1(ui)

P0(ui)

is the normalized log likelihood ratio for the observation u1, . . . , un.
If hypothesis 0 is true, then U1, . . . , Un are i.i.d. random variables with distribution P0,

and, by the law of large numbers

Λn(U1, . . . , Un) → E0

[
log

P1(U1)

P0(U1)

]
=
∑

u

P0(u) log
P1(u)

P0(u)

as n gets large. In the expression above, the subscript 0 to the expectation operator indicates
that the expectation is taken with the distribution of the Ui’s given by P0. Similarly, if
hypothesis 1 is true,

Λn(U1, . . . , Un) → E1

[
log

P1(U1)

P0(U1)

]
=
∑

u

P1(u) log
P1(u)

P0(u)

as n gets large.
We of course recognize the above two quantities as D(P0∥P1) and D(P1∥P0).
Thus, as n gets large Λn(U1, . . . , Un) concentrates around −D(P0∥P1) ≤ 0 under hy-

pothesis 0 and, concentrates around D(P1∥P0) ≥ 0 under hypothesis 1. One expects that
the threshold t will be chosen to lie between −D(P0∥P1) and D(P1∥P0) so that under either
hypothesis, making a wrong decision becomes a large deviations event — an event that the
empirical average of a collection of i.i.d. random variables deviates significantly from its
expected value.

6.2 Estimation

6.2.1 MMSE Estimation

Consider two (real- or complex-valued) random vectors D and X with known joint prob-
ability density function pD,X. Suppose that using only X, we are tasked to construct an
estimate of D. This estimate is thus a function g(x), to be selected optimally. A natural
criterion for choosing the estimator is to find that function g(·) that minimizes the so-called
standard mean-squared error

E

[
∥D− g(X)∥2

∣∣∣X = x
]
. (6.2)

In words, for a given input X = x, we choose the estimate so that the average of the squared
error is as small as possible.
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This problem has a nice and intuitively pleasing solution, pick g(x) to be the mean of
D given the observation x, i.e.,

g(x) = E [D|X = x] . (6.3)

We will use the shorthand notation D̂MMSE(X = x) for this optimal estimator (optimal in
the mean-squared error sense). To see that this estimator is optimal write

E

[
∥D− g(X)∥2

∣∣∣X = x
]
= E

[
∥(D− E [D|X = x]) + (E [D|X = x]− g(X))∥2

∣∣∣X = x
]
.(6.4)

Expand now the right hand term into three parts as

E

[
∥D− E [D∥X = x]∥2

∣∣∣X = x
]
+ (6.5)

2Re {E [⟨D− E [D|X = x] , E [D|X = x]− g(X)⟩|X = x]}+ (6.6)

E

[
∥E [D|X = x]− g(X)∥2

∣∣∣X = x
]
. (6.7)

To prove the claim observe that the middle part is zero and the third terms is non-negative.
To see that the middle part is zero, note that the whole left side E [D|X = x] − g(X) is
X-measureable and hence we can take this part out of the conditional expectation. The
remaining expression on the left evaluates to zero if we take the expectation and hence the
whole inner product is zero.

The optimality of this estimator is used for example in Section 7.1.7.

Example 6.1 (Gaussian signal and noise). Let D be a real-valued zero-mean unit-variance
Gaussian random variable. Let X = D + Z, where Z is a zero-mean Gaussian random
variable of variance σ2. Then,

D̂MMSE(X = x) = E [D|X = x] =

∫ ∞

−∞
dpD|X(d|x)dd =

∫ ∞

−∞
d
pX|D(x|d)pD(d)

pX(x)
dd

=

∫ ∞

−∞
d

1√
2πσ

exp(− (x−d)2

2σ2 ) 1√
2π

exp(−d2

2 )

1√
2π(1+σ2)

exp(− x2

2(1+σ2)
)

dd (6.8)

=

∫ ∞

−∞
d

1√
2πρ2

e
− (d−µ)2

2ρ2 dd = µ, (6.9)

where µ = 1
1+σ2x and ρ2 = σ2

1+σ2 . Hence, the mean-squared error incurred by this optimum
estimator is

E

[∣∣∣D − D̂MMSE(X)
∣∣∣
2
]

= ρ2 =
σ2

1 + σ2
. (6.10)

In this example, the conditional expectation E [D|X = x] = 1
1+σ2x is a linear function

of the observation x. Extending the calculation performed in this example, one can estab-
lish that whenever D and X are jointly Gaussian random vectors, then the conditional
expectation can be written as E [D|X = x] = Ax for a matrix A. That is, in this case, the
conditional expectation is again a linear function of the observation x. Once we know this
fact, then finding the optimal matrix A is not difficult. We do this in the following section.
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6.2.2 Linear MMSE Estimation

In a slight variation of the consideration, let us now assume that the estimator must be
linear (with fixed coefficients, independent of the data). Let us first consider the case where
the desired data D is scalar. That is, we seek to find

D̂LMMSE(X) = wTX, (6.11)

where w is a fixed vector of coefficients. In the MMSE perspective, we strive to select this
vector such as to minimize

E

[∣∣∣D − D̂LMMSE(X)
∣∣∣
2
]
. (6.12)

To express the solution, it is convenient to introduce the notation

RX = E[XXH ] (6.13)

for the covariance matrix of the data (without essential loss in generality we assume zero-
mean signals throughout this section), and

rDX = E[DX∗] (6.14)

for the covariance between the desired and the observed data. With this, the optimal
coefficients, called the Wiener coefficients are (assuming that the matrix RX is invertible
— for the more general case, see the homework)

w = R−1
X rDX, (6.15)

and the corresponding mean-squared error can be expressed as

E

[∣∣∣D − D̂LMMSE(X)
∣∣∣
2
]

= σ2D − rHDXR
−1
X rDX, (6.16)

where σ2D denotes the variance of the desired data D.
To prove this, it is instructive to observe that with the optimal coefficient vector w, the

error must be orthogonal to the observed data, which (here) means that

E[(D −wHX)XH ] = 0H . (6.17)

This can be established in various ways: (i) we can observe that the objective function is
convex and find the gradient with respect to the coefficient vector; (ii) we can observe that
random variables are just functions and that the expectation E[XY ∗] gives rise to a valid
inner product; hence we are working in a Hilbert space (see Section 9.2) and we can invoke
the orthogonality principle from this setting; or, (iii), we can proceed with our standard
trick and expand

E[
∣∣D −wTX

∣∣2] = E[
∣∣D −wT

⊥X+wT
⊥X−wTX

∣∣2] (6.18)

= E[
∣∣D −wT

⊥X
∣∣2] + 2Re E[⟨D −wT

⊥X, (w⊥ −w)TX⟩]︸ ︷︷ ︸
=0

+ E[
∣∣(w⊥ −w)TX

∣∣2]︸ ︷︷ ︸
≥0

where wT
⊥ is the vector chosen according to this orthogonality principle.
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The orthogonality condition can be rewritten as

E[DXH ]−wT E[XXH ] = 0H . (6.19)

Assuming that the matrix E[XXH ] is invertible, this implies the claimed formula.
The corresponding incurred mean-squared error can be calculated as follows:

E

[∥∥∥D − D̂LMMSE(X)
∥∥∥
2
]

= E

[(
D −wTX

)∗ (
D −wTX

)]

= E

[(
D −wTX

)∗
D
]
−wT E

[(
D −wTX

)∗
X
]

︸ ︷︷ ︸
=0, due to orthogonality

= E

[
|D|2

]
−wHE [X∗D] , (6.20)

and if we plug in the formula for the optimal Wiener solution for w, we obtain the claimed
formula.

Recall that estimation is equivalent to regression. Hence the equivalent setting to the
current one in data science least squares. If you go back to your ML notes you will see
that we encountered the equivalent of orthogonality condition (6.17) when we derived the
solution, except that in ML we take the empirical quantities since we do not have access to
the actual distribution.

More precisely, and adapting to the notation that we use here our cost function was
given by

L(w) =
1

2N

N∑

n=1

(Dn −wHXn)
2,

where {(Dn,Xn} are the samples and where we typically assumed that all quantities are
real-valued. If we take the gradient of this expression wrt w we get

∇wL(w) = − 1

N

N∑

n=1

(Dn −wHXn)Xn = 0.

We see that this is the equivalent to the orthogonality condition where we take empirical
quantities rather than expectations.

6.3 Wiener Filtering, Smoothing, Prediction

The tools of signal processing are often most powerful if we consider (long) sequences of
data. That is, we now suppose that we have a time-domain signal D[n] (where n ranges
over integers), and the observed data is X[n]. In the world view of signal processing, we
would then form an estimate of the form

D̂[n] =

p1∑

k=−p0
w[k]X[n− k], (6.21)

where p0 and p1 are non-negative integers. Defining the vector (of length p0 + p1 + 1)

X[n] = (X[n+ p0], X[n+ p0 − 1], . . . , X[n], . . . , X[n− p1 + 1], X[n− p1])
T (6.22)
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and the vector w containing the corresponding p0 + p1 + 1 filter coefficients, namely,

w = (w[−p0], w[−p0 + 1], . . . , w[0], . . . , w[p1 − 1], w[p1])
T , (6.23)

we can express the optimal coefficients as

wT = E[D[n]X[n]H ]
(
E[X[n]X[n]H ]

)−1
, (6.24)

which, in general, depends on n. This motivates the definition of wide-sense stationary
random processes that you have encountered in earlier classes. For such processes, we have
that

E[X[n]X∗[n− k]] = RX [k], (6.25)

E[D[n]X∗[n− k]] = RDX [k], (6.26)

that is, these expectations do not depend on n, but only on the “lag” k between the two
arguments. With this, it can easily be verified that the above formula for the optimal
coefficient vector w does not depend on n.

An equally enlightening but alternative view is to allow p0 and p1 to be infinite. In this
case, the orthogonality principle stipulates that the optimum filter coefficients must satisfy

E

[(
D[n]−

∞∑

k=−∞
w[k]X[n− k]

)
X∗[n− ℓ]

]
= 0, (6.27)

for all integers ℓ. Rewriting,

E [D[n]X∗[n− ℓ]]−
∞∑

k=−∞
w[k]E [X[n− k]X∗[n− ℓ]] = 0, (6.28)

or

RDX [ℓ]−
∞∑

k=−∞
w[k]RX [ℓ− k] = 0, (6.29)

where we observe that the sum is a convolution. This suggests that it may be instructive
to take Fourier transforms:

SDX(e
jω)−W (ejω)SXX(e

jω) = 0. (6.30)

6.4 Adaptive Filters

Let us consider the scenario where

D̂[n] =

p∑

k=0

w[k]X[n− k]. (6.31)

Suppose that we pick an arbitrary initial choice of filter coefficients w0. Let us take the
perspective that we gradually update these filter coefficients so as to make them better. A
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classical choice is called gradient descent. Here, we consider the gradient of the error (with
respect to the filter coefficients), which is easily found to be

∇wnE

[∣∣D[n]−wT
nX[n]

∣∣2
]

= −2E
[(
D[n]−wT

nX[n]
)
X∗[n]

]
(6.32)

The idea is to take a (“small”) step against the gradient, i.e.,

wn+1 = wn + µE
[(
D[n]−wT

nX[n]
)
X∗[n]

]
, (6.33)

where the step-size parameter µ is to be chosen wisely.
To gain some understanding of what this algorithm does, let us consider the special case

where the signals D[n] and X[n] are jointly wide-sense stationary, and hence, all expected
values above do not depend on n. For this special case, the update equation becomes

wn+1 = wn + µE
[(
D −wT

nX
)
X∗] (6.34)

= wn + µ (rDX −RXwn) (6.35)

If we plug in wn = R−1
X rDX (which is the optimal Wiener solution), then the algorithm will

not move any further, and thus, will stay at the globally optimal solution, which is a first
important sanity check. In more detail, we can also suppose that we start the algorithm
with an arbitraryw0. Let us denote the optimal Wiener solution byw. Then, we can express

wn+1 −w = wn −w + µrDX −RXwn

= (I − µRX) (wn −w) , (6.36)

where, for the last step, we have used the fact that the Wiener solution satisfies rDX =
RXw. It is then instructive to express the matrix in terms of its spectral decomposition
RX = UΛUH , leading to p + 1 independent recursions. Specifically, defining the notation
un = UH (wn −w) , we obtain

un+1 = UH (wn+1 −w)

= UH (I − µRX) (wn −w)

= UH
(
U (I − µΛ)UH

)
(wn −w)

= (I − µΛ)un, (6.37)

and since Λ is a diagonal matrix, each of the p + 1 components of the vector un follows a
separate recursion, independently of the others. Clearly, the overall sequence converges if
and only if all p+1 so-called modes converge individually. But each one of them is simply an
exponential series governed by (1−µλi(RX))n (times the initial value). Such an exponential
series converges (to zero) if and only if |1−µλi(RX)| < 1, or, equivalently, λmax(RX) < 2/µ.
Here, we are also using the fact that for covariance matrices RX, eigenvalues must be non-
negative.

To make the algorithm useful, we cannot use the shape given in Equation (6.33) since
in any realistic scenario, we would not know the involved expected values. Instead, we may
estimate them from the data. In the extreme case, we could estimate the expectation from
just a single sample, hence use E

[(
D[n]−wT

nX[n]
)
X∗[n]

]
≈
(
D[n]−wT

nX[n]
)
X∗[n]. Of

course, this should not be expected to be a particularly good estimate of said expectation,
but in exchange, we can actually calculate this simply based on the data at hand (at least
for all times n for which we have “training data,” i.e., where we know the true desired
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outcome D[n]). This is called the LMS adaptive algorithm and was discovered in 1960 [7].
It is thus characterized by the update equation

wn+1 = wn + µ
(
D[n]−wT

nX[n]
)
X∗[n]. (6.38)

The full analysis of the convergence of this algorithm, even for the special case of wide-
sense stationary data, is not feasible in closed form. It is important to observe that here,
the filter coefficients wn are random vectors, induced by the data. Hence, a first order of
business would be to prove convergence of the mean E [wn] , perhaps starting with the case
of wide-sense stationary data. Unfortunately, it is quickly seen that the resulting vector
sequence {E [wn]}n≥0 depends on higher-order statistics of the data and is thus out of reach.
A common alternative (approximate) consideration is to assume that the filter taps wn are
(statistically) independent of the data vector corresponding to the same time slot, X[n].
While this is not exactly true, it may hold approximately if µ is sufficiently small. Under
this so-called independence assumption for the LMS, one easily finds that convergence is
again determined by the vector sequence from Equation (6.36), and thus, by the eigenvalues
of the covariance matrix of the observed data. A well written account on adaptive filters
can be found, e.g., in [8], and an exhaustive compendium in [9].

6.5 Parameter Estimation

In Statistical Signal Processing, a well-studied alternative consideration is to only assume
the noise to be random, but the signal to be arbitrary and unknown. This is often referred
to as parameter estimation. In this view, there is an underlying unknown parameter θ, and
the observations are distributed according to a known family of distributions pθ(x). Upon
observing data X = x, we have to produce an estimate T (x) of the unknown parameter
θ. The most common figure of merit is the mean-squared error E[(θ − T (X))2], where the
expectation is over the distribution pθ(x), for every fixed θ. That is, every possible estimator
T (x) is characterized by a corresponding mean-squared error function, i.e., as a function
of θ. One important result is the Cramér-Rao lower bound. For all unbiased estimators,
this bound gives a lower limit to the mean-squared error function in terms of the Fisher
information. We also note that this lower limit is not generally attainable, i.e., there does
not always exist a T (x) attaining this lower limit.

6.5.1 Fisher Information

In this perspective, there is a family of distributions {pθ(x) : θ ∈ R}, indexed by a real-
valued parameter θ. Note that the theory can be extended in a direct fashion to the case
where θ is a real-valued vector of some dimension d. In the sequel, we will use the following
notational convention:

Eθ[g(X)] =

∫ ∞

−∞
g(x)pθ(x)dx. (6.39)

We study the performance of an estimator T (x) in the mean-squared error sense, that is,

Eθ[(T (X)− θ)2], (6.40)

which is a function of θ. We are looking for estimators T (x) that are simultaneously good
for all values of θ.
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Definition 6.1. The bias of T (X) is BT (θ) = Eθ[T (X)− θ].

Definition 6.2. T (X) is called unbiased if BT (θ) = 0 for all values of θ.

Definition 6.3. For a collection of distributions {pθ(x) : θ ∈ R}, the score is ℓ(θ) =
d
dθ log pθ(x).

Lemma 6.3. Eθ[ℓ(θ)] = 0.

Definition 6.4. The Fisher information associated to the class of distributions {pθ(x) :
θ ∈ R} is defined as

Iθ = Eθ[ℓ
2(θ)]. (6.41)

Theorem 6.4 (Cramér-Rao lower bound). For any unbiased estimator T (x) for the class
of distributions {pθ(x) : θ ∈ R}, it holds that

Eθ[(T (X)− θ)2] ≥ 1

Iθ
. (6.42)

Proof. From the Cauchy-Schwarz inequality, we can write

(Eθ[ℓ(θ)(T (X)− θ)])2 ≤ Eθ[ℓ
2(θ)]Eθ[(T (X)− θ)2] (6.43)

= IθEθ[(T (X)− θ)2]. (6.44)

Moreover,

Eθ[ℓ(θ)(T (X)− θ)] = Eθ[ℓ(θ)T (X)]− Eθ[ℓ(θ)θ]︸ ︷︷ ︸
=0

(6.45)

= Eθ

[
d

dθ
log pθ(X)T (X)

]
(6.46)

=

∫ ∞

−∞

d
dθpθ(x)

pθ(x)
T (x)pθ(x)dx (6.47)

=

∫ ∞

−∞

d

dθ
pθ(x)T (x)dx (6.48)

=
d

dθ

∫ ∞

−∞
pθ(x)T (x)dx

︸ ︷︷ ︸
=θ

(6.49)

= 1, (6.50)

which completes the proof.

Example 6.2 (Fisher Information of Bernoulli). For x ∈ {0, 1}, let Pθ(x) = θx(1− θ)1−x,
where θ ∈ [0, 1]. Then

Iθ = −
∑

x∈{0,1}
Pθ(x)

d log(Pθ(x))

dθ2
=

1

θ
+

1

1− θ
=

1

θ(1− θ)
.

Example 6.3 (Fisher Information and Estimation of Bernoulli). Assume that we want to
estimate the mean of a Bernoulli random variable with parameter p from n iid samples. Let
p̂ denote the empirical sample mean. Then we have

E[(p̂− p)2] =
1

n
Var(X) =

p(1− p)

n
=

1

Ip

1

n
.
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6.5.2 Fisher Information — Beyond one dimension

Let pθ(x) denote the densities associated to a family of distributions parametrized by θ.
The Fisher information associated to this family is defined as

Iθ = Eθ[(∇θ log pθ(X)︸ ︷︷ ︸
ℓ(θ)

)(∇θ log pθ(X))T ].

First note that

Eθ[ℓθ] =

∫
pθ(x)∇θ log pθ(x)dx

=

∫ ∇θpθ(x)

pθ(x)
pθ(x)dx

=

∫
∇θpθ(x)dx = ∇θ

∫
pθ(x)dx = 0.

Further,

∇2
θ log pθ(x) =

∇2
θpθ(x)

pθ(x)
− ∇θpθ(x)∇θpθ(x)

T

pθ(x)2

=
∇2
θpθ(x)

pθ(x)
− ℓ(θ)ℓ(θ)T .

Lemma 6.5 (Alternative Characterization). Unders suitable smoothness conditions on the
density (hence justifying the exchange of taking integration with taking derivatives) the
Fisher information can also be written as

Iθ = −Eθ[∇2
θ log pθ(X)].

Proof.

Iθ = Eθ[ℓ(θ)ℓ(θ)
T ]

= −
∫
pθ(x)∇2 log pθ(x)dx+

∫
∇2pθ(x)dx

= −E[∇2 log pθ(x)] +∇2

∫
pθ(x)dx = −E[∇2 log pθ(x)].

Lemma 6.6 (Cramer Rao Bound). Let T be an unbiased (under Pθ) estimator of a function
ϕ(θ). Then

Var(T ) ≥ ∇θϕ(θ)
T I−1

θ ∇θϕ(θ)

6.6 Problems

Problem 6.1 (MMSE Estimation). Consider the scenario where p(x|d) = de−dx, for x ≥ 0
(and zero otherwise), that is, the observed data x is distributed according to an exponential
with mean 1/d.Moreover, the desired variable d itself is also exponentially distributed, with
parameter λ, that is, p(d) = λe−λd.

(a) Find the MMSE estimator of d given x, and calculate the corresponding mean-
squared error incurred by this estimator.

(b) Find the MAP estimator of d given x.
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Problem 6.2 (Tweedie’s Formula). For the special case where X = D + N, where N is
Gaussian noise of mean zero and variance σ2, Tweedie’s formula says that the conditional
mean (that is, the MMSE estimator) can be expressed as

E [D|X = x] = x+ σ2ℓ′(x), (6.51)

where

ℓ′(x) =
d

dx
log fX(x), (6.52)

where fX(x) denotes the marginal PDF of X. In this exercise, we derive this formula.
(a) Assume that fX|D(x|d) = eαdx−ψ(d)f0(x) for some functions ψ(d) and f0(x) and

some constant α (such that fX|D(x|d) is a valid PDF for every value of d). Define

λ(x) = log
fX(x)

f0(x)
, (6.53)

where fX(x) is the marginal PDF of X, i.e., fX(x) =
∫
fX|D(x|δ)fD(δ)dδ. With this, estab-

lish that

E [D|X = x] =
1

α

d

dx
λ(x). (6.54)

(b) Show that the case where X = D + N, where N is Gaussian noise of mean zero
and variance σ2, is indeed of the form required in Part (a) by finding the corresponding
ψ(d), f0(x), and α. Show that in this case, we have

f ′0(x)
f0(x)

= − x

σ2
, (6.55)

and use this fact in combination with Part (a) to establish Tweedie’s formula.

Problem 6.3 (FIR Wiener Filter). Consider a (discrete-time) signal that satisfies the
difference equation d[n] = 0.5d[n− 1] + v[n], where v[n] is a sequence of uncorrelated zero-
mean unit-variance random variables. We observe x[n] = d[n] + w[n], where w[n] is a
sequence of uncorrelated zero-mean random variables with variance 0.5.

(a) (you may skip this at first and do it later — it is conceptually straightforward) Show
that for this signal model, the autocorrelation function of the signal d[n] is

E[d[n]d[n+ k]] =
4

3

(
1

2

)|k|
, (6.56)

and thus the autocorrelation function of the signal x[n] is

E[x[n]x[n+ k]] =

{
11
6 , for k = 0,
4
3

(
1
2

)|k|
, otherwise.

(6.57)

(b) We would like to find an (approximate) linear predictor d̂[n+ 3] using only the ob-
servations x[n], x[n−1], x[n−2], . . . , x[n−p]. Using the Wiener Filter framework, determine
the optimal coefficients for the linear predictor. Find the corresponding mean-squared error
for your predictor.

(c) We would like to find a linear denoiser d̂[n] using all of the samples {x[k]}∞k=−∞.
Find the filter coefficients and give a formula for the incurred mean-squared error.
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Problem 6.4 (Wiener Filter and Irrelevant Data). As we have seen in class, the (FIR)
Wiener filter is given by

w = R−1
x rdx, (6.58)

where Rx is the autocorrelation matrix of the data that’s being used, and rdx is the cross-
correlation between the data and the desired output. For this to be well defined, Rx should
be full rank. In this problem, we study this question in more detail.

(a) In many applications, the signal acquisition process is noisy. That is, the data
x[n] = s[n] + w[n], where s[n] is an arbitrary signal, and w[n] is white noise. Prove that in
this case, the p−dimensional autocorrelation matrix Rx is full rank (i.e., invertible) for any
p. (Note: Be careful not to make any assumptions about the signal s[n].)

(b) In some other cases, Rx could be rank-deficient. To study this, prove first that if
the (FIR) Wiener filter based on the data x = {x[n]}p−1

n=0 is w, then the (FIR) Wiener filter
based on the modified data Ax (where A is an invertible matrix) is A−Hw, (where we use
the relatively common notation A−H = (A−1)H).

(c) Explain how to find the (FIR) Wiener filter when Rx is rank-deficient. Discuss
existence and uniqueness. Hint: Use Part (b) to transform your data to a more convenient
basis.

Problem 6.5 (Adaptive Filters). One of the many uses of adaptive filters is for system
identification as shown in the figure blow. In this configuration, the same input is applied to
an adaptive filter and to an unknown system, and the coefficients of the adaptive filter are
adjusted until the difference between the outputs of the two systems is as small as possible.

x[n]

Unknown System
d[n]

Wn(Z)
d̂[n]

+

− e[n]

Let the unknown system that is to be characterized by

d[n] = x[n] + 1.8x[n− 1] + 0.81x[n− 2] (6.59)

With an input x[n] consisting of 1000 samples of unit variance white Gaussian noise,
create the reference signal d[n].

(a) Determine the range of values for the step size µ in the LMS algorithm for the
convergence in the mean.

(b) Implement an adaptive filter of order p = 4 using the LMS algorithm. Set the initial
weight vector equal to zero, and use a step size of µ = 0.1µmax, where µmax is the largest
step size allowed for convergence in the mean. Let the adaptive filter adapt and record the
final set of coefficients.
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(c) Repeat part (b) using the normalized LMS algorithm with β = 0.1, and compare
your results.

(d) Make a plot of the learning curve by repeating the experiment described in part (b)
for 100 different realizations of d[n], and plotting the average of the plots of e2[n] versus
n. How many iterations are necessary for the mean-square error to fall to 10% of its peak
value? Calculate the theoretical value for the excess mean-square error and compare it to
what you observe in your plot of the learning curve.

Problem 6.6 (Missing Data). We are given real-valued data with a single missing sample
:

X1, X2, X3, X4, X5, X6, ?, X8, X9, . . . (6.60)

where we assume that the data is wide-sense stationary with autocorrelation function
RX [k] = α|k|, where 0 < α < 1. We would like to find a meaningful estimate for the
missing sample X7.

1. As a starting point, let us consider the estimate X̂7 = wX6, where w is a real number.
Find the value of w so as to minimize the mean-squared error E[(X7 − X̂7)

2], and
determine the incurred mean-squared error.

2. Now, consider the estimate X̂7 = w1X6 + w2X8. Again, find the values of w1 and w2

so as to minimize the mean-squared error E[(X7 − X̂7)
2], and determine the incurred

mean-squared error.

Problem 6.7 (Parameter Estimation and Fisher Information). The Fisher information
J(Θ) for the family fθ(x), θ ∈ R is defined by

J(θ) = Eθ

(
∂fθ(X)/∂θ

fθ(X)

)2

=

∫
(f

′
θ)

2

fθ

Find the Fisher information for the following families:

(a) fθ(x) = N(0, θ) = 1√
2πθ

e−
x2

2θ

(b) fθ(x) = θe−θx, x ≥ 0

(c) What is the Cramèr Rao lower bound on Eθ(θ̂(X) − θ)2, where θ̂(X) is an unbiased
estimator of θ for (a) and (b)?

Problem 6.8 (Conditional Independence and MMSE). For simplicity, throughout this
problem, all random variables are assumed to be zero-mean.

(a) Show that if X and Y are conditionally independent given Z, then

E[(X − E[X|Z])(Y − E[Y |Z])] = 0. (6.61)

(b) Now letX and Y be jointly Gaussian (zero-mean). It is well known that if E[XY ] = 0,
then X and Y are independent. Establish this fact starting from the observation that for
(zero-mean) Gaussian random variables X and Y, we may always write Y = αX +W, for
some constant α, where W is zero-mean Gaussian independent of X. Note: This prepares
you for Part (c).
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(c) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove
that if

E[(X − E[X|Z])(Y − E[Y |Z])] = 0, (6.62)

then X and Y are conditionally independent given Z. Hint: Make sure to solve Part (b)
first. Recall that for three jointly Gaussians X,Y, Z, we can always write Y = γX+δZ+V,
for some constants γ and δ, where V is Gaussian and independent of X and Z.

(d) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove
that X and Y are conditionally independent given Z if and only if

E[XY ]E[Z2] = E[XZ]E[Y Z]. (6.63)

(e) Continuing from Part (d), let us simplify: E[X2] = E[Y 2] = E[Z2] = 1, and use the
notation ρ = E[XY ]. Define a = E[XZ] and b = E[Y Z]. Find

argmax
a,b

min
f
E[(Z − f(X,Y ))2], (6.64)

where the inner minimum is over all measurable functions f(x, y), and the maximum is over
all choices a, b such that X and Y are conditionally independent given Z.

Problem 6.9 (Fisher Information and Divergence). Suppose we are given a family of prob-
ability distributions {p( · ; θ) : θ ∈ R} on a set X , parametrized by a real valued parameter
θ. (Equivalently, a random variable X whose distribution depends on θ.) Assume that the
parametrization is smooth, in the sense that

p′(x; θ) :=
∂

∂θ
p(x; θ) and p′′(x; θ) :=

∂2

∂θ2
p(x; θ)

exist. (Note that the derivaties are with respect to the parameter θ, not with respect to
x.) We will use the notation Eθ0 [·] to denote expectations when the parameter is equal to a
particular value θ0, i.e., Eθ[g(X)] =

∑
x p(x; θ)g(x).

Define the function K(θ, θ′) := D
(
p( · ; θ)∥p( · ; θ′)

)
.

(a) Show that for any θ0,
∂

∂θ
K(θ, θ0) =

∑

x

p′(x; θ) log
p(x; θ)

p(x; θ0)
.

(b) Show that
∂2

∂θ2
K(θ, θ0) =

∑

x

p′′(x; θ0) log
p(x; θ)

p(x; θ0)
+ J(X; θ) with

J(X; θ) := Eθ
[(
p′(X; θ)/p(X; θ)

)2]
.

(c) Show that when θ is close to θ0

K(θ, θ0) =
1
2J(X; θ0)(θ − θ0)

2 + o((θ − θ0)
2)

(d) Show that J(X; θ) = −Eθ
[
∂2

∂θ2
log p(X; θ)

]
.
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Chapter 7

Distribution Estimation, Property
Testing and Property Estimation

Assume that we are given iid samples from an unknown distribution. How many samples do
we need before we can estimate the distribution with an “acceptable” accuracy? And what
if we are interested in only particular properties of the distribution, such as its support size,
or perhaps it’s entropy. These are the questions that we will discuss in this chapter.

This chapter closely follows the tutorial by Acharya, Orlitsky, and Suresh, see

https://people.ece.cornell.edu/acharya/papers/isit-tutorial-acharya-orlitsky-suresh.pdf

7.1 Distribution Estimation

7.1.1 Notation and Basic Task

Consider a random variable X taking values in the discrete set X and let p(x), x ∈ X ,
describe the distribution of X. Of course we have p : X → R≥0 and

∑
x∈X p(x) = 1. We

assume that X has a finite support, |X | = k. Without loss of generality we will assume
that X = {1, · · · , k}. In this case we can think of p(x) also as a vector of length k written
as p = (p1, · · · , pk). Note that in this way p is an element of ∆k, the simplex in Rk.

In the sequel we will assume that we are given a sample of n elements from X , call it
xn = x1, · · · , xn, chosen iid according to p(x), so that

p(xn) =

n∏

i=1

p(xi).

Given this sample xn our task is to find a distribution q = q(xn), q ∈ ∆k, that is “close”
to the distribution p.

7.1.2 Empirical Estimator

The perhaps most “natural” estimator is the empirical estimator qemp. Given a sequence
xn let

ti(x
n) = |{j ∈ {1, · · · , n} : xj = i}|.

75
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In words, ti(x
n) counts how many times the symbol i appears in xn. The empirical estimator

is then defined as

qemp
i (xn) = ti(x

n)/n.

Clearly,

qemp
i (xn) ≥ 0,

k∑

i=1

qemp
i (xn) = 1.

In other words, qemp(xn) ∈ ∆k, so this estimator is well-defined.

Example 7.1. Let’s assume that n = 4, k = 3, and x4 = 3112. Then

qemp(3112) = (qemp
1 (3112), qemp

2 (3112), qemp
3 (3112)) = (

2

4
,
1

4
,
1

4
).

The empirical estimator will play a prominent role in the following.

7.1.3 Loss Functions

Before we can analyse how a given estimator does we need to specify how we will measure
the quality of the estimator. More precisely, given p and q, how do we measure their
distance? The three most common choices are the ℓ1 distance, the ℓ2 distance, and the
Kullback-Leibler divergence. Generically we call the loss L(p, q). We will start by looking
at ℓ22 since it is mathematically the most convenient.

7.1.4 Min-Max Criterion

So assume that we have fixed the loss function L. We then still have various degrees of
freedom. Let us go over these options.

• We are given a fixed distribution p and a fixed estimator q. It is then natural that we
compute the expected loss, where the expectation is over the sample:

EXn∼p[L(p, q(Xn))].

• We are given a fixed distribution p. For each estimator we can compute an expected
loss as we discuss in the previous scenario. It is then natural to find that estimator
that minimizes this expected loss:

q∗ = argminqEXn∼p[L(p, q(Xn))].

• We are given a fixed estimator q. For each fixed distribution we can compute an
expected loss as we discussed in the first scenario. It is then natural that we find that
distribution p∗ that maximizes this expected loss:

p∗ = argmaxp∈∆k
EXn∼p[L(p, q(Xn))].
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What if we are neither given p nor q? We get a robust definition if we choose the
estimator q in such a way that we minimize the expected risk for the worst distribution p.
This is called the min-max criterion and in formulae it reads

rLk,n = min
q

max
p∈∆k

EXn∼p[L(p, q(Xn))].

Let us emphasize: For each q (estimator) we look a that p (distribution) that gives the
worst result. We then pick that q that minimizes the worst case.

We will be interested in finding what this min-max optimal estimator is and how it
performs. Our strategy will be the following. We first compute the risk of the empirical
estimator. By computing a lower bound on the risk, we will then see that a small variant
of this natural estimator is min-max optimal.

7.1.5 Risk of Empirical Estimator in ℓ22

We start by looking at the case where the difference between the true distribution and the
estimated one is measured in ℓ22 distance, i.e.,

∥p− q∥22 =
∑

i

(pi − qi)
2.

We want to compute

rq
emp

k,n = max
p∈∆k

EXn∼p

[∑

i

(pi − qemp
i (Xn))2

]
,

where qemp
i (xn) = ti(x

n)/n.
Recall that the components of Xn are iid, chosen from X according the distribution

p. This (the fact that they are iid) implies that for all i ∈ X , ti(X
n) is a Binomial with

parameters Binom(pi, n). Therefore,

EXn∼p[ti(Xn)] = npi,

EXn∼p[(ti(Xn)− npi)
2] = npi(1− pi).

Hence,

EXn∼p[
k∑

i=1

(ti(X
n)/n− pi)

2] =

k∑

i=1

pi(1− pi)

n
=

1−∑k
i=1 p

2
i

n

(a)

≤ 1− 1
k

n
.

In step we have used the Cauchy-Schwartz inequality,

|⟨x, y⟩|2 ≤ ⟨x, x⟩ · ⟨y, y⟩.

To get our inequality, pick x = (1, · · · , 1) and y = p. Note that this inequality is achieved
by the uniform distribution pi = 1/k.

Note that the above bound is universal with respect to the underlying distribution p.
This is good news. So we have shown that for ℓ22 loss

max
p∈∆k

EXn∼p[L(p, qemp(Xn))] =
1− 1

k

n
.
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7.1.6 Risk of “Add Constant” Estimator in ℓ22

Is the empirical estimator min-max optimal? Not quite. Here is a slightly better estimator:

q
+
√
n/k

i (xn) =
ti(x

n) +
√
n
k

n+
√
n

.

This is an instance of an “add constant” estimator. We will soon see that this estimator
is min-max optimal. Intuitively, adding a constant to our observations makes sense. If the
number of samples is small, we cannot possibly have seen all elements, not because their
probability is zero, but because it is small and there is randomness in sampling. What is
the risk of this estimator? We claim that

max
p∈∆k

EXn∼p[L(p, q+
√
n/k(Xn))] =

1− 1
k

(
√
n+ 1)2

To see this claim note that

EXn∼p[q
+
√
n/k

i (xn)] = EXn∼p[
ti(X

n) +
√
n
k

n+
√
n

] =
npi +

√
n
k

n+
√
n
.

Note that this is a biased estimator. We get

EXn∼p[(q
+
√
n/k

i (Xn)− pi)
2] =

EXn∼p[(ti(Xn)− npi −
√
n
k (kpi − 1))2]

(n+
√
n)2

=
Var[ti(X

n)] + n
k2
(kpi − 1)2

(n+
√
n)2

=
npi(1− pi) +

n
k2
(kpi − 1)2

(n+
√
n)2

=
npi(1− 2

k ) +
n
k2

(n+
√
n)2

.

To compute the worst-case loss of the q+
√
n/k(xn) estimator we need to sum this expression

over all k components and then maximize with respect to the distribution p. This gives us

max
p∈∆k

k∑

i=1

EXn∼p[(q
+
√
n/k

i (Xn)− pi)
2] =

n(1− 1
k )

(n+
√
n)2

=
(1− 1

k )

(
√
n+ 1)2

,

as claimed.

Note: This calculation shows that for this estimator the loss does not depend on the
underlying distribution p. This will become important soon.

Note: If we had done this calculation with a general additive term β instead of the

specific term β∗ =
√
n
k then it is easy to see that that the choice β∗ is optimal.
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7.1.7 Matching lower bound for ℓ22

We will now derive a matching lower bound. We proceed as follows. Let π be a prior
distribution on ∆k. We then have

r
ℓ22
k,n = min

q
max
p∈∆k

EXn∼p

[∑

i

(pi − qXn,i)
2

]
≥ min

q
EP∼π;Xn∼P

[∑

i

(Pi − qi(X
n))2

]

= EP∼π;Xn∼P

[∑

i

(Pi − EP∼π;Xn∼P [Pi | Xn])2

]
.

where in the last step we have used the fact that the minimum-mean squared error estimator
is given by the conditional expectation, a fact that is discussed in detail in Section 6.2.1.

Therefore, if we can guess a “good” prior then we will get a good bound. It turns out that
a suitable Dirichlet prior gives us the matching lower bound. The Dirichlet distribution on
∆k is characterized by a vector α ∈ (R+)

k. Let (x1, · · · , xk) ∈ ∆k. The associated density
is given by

f(x1, · · · , xk;α) =
∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)

k∏

i=1

xαi−1
i .

Note that this is an exponential distribution, i.e., it can be written in a form

pΘ(x) = e⟨Θ,ϕ(x)⟩−A(Θ),

where x = (x1, · · · , xk), ϕ(x) = (ln(x1), · · · , ln(xk)), and Θ = (α1 − 1, · · · , αk − 1).
The important property of a Dirichlet distribution for our application is that it is the con-

jugate distribution of a multi-nomial distribution. So assume that the parameters p1, · · · , pk
of a multi-nomial distribution are themselves random with prior Dir(α). Assume that we
sample from this Dirichlet distribution and then sample from the multi-nomial according
to the chosen parameter. We get n samples and their counts are T1, · · · , Tk. Given this
observation what is the posterior of the parameters? I.e., we want to determine

f(p1, · · · , pk | T1 = t1, · · · , Tk = tk).

We claim that this is again a Dirichlet distribution, namely with parameters α + T (both
vectors). Using Bayes’ rule we get

f(p1, · · · , pk | t1, · · · , tk) =
f(t1, · · · , tk | p1, · · · , pk)f(p1, · · · , pk)

Z(t1, · · · , tk)

=

(
n

t1,··· ,tk
)
[
∏k
i=1 p

ti
i ]

∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)
[
∏k
i=1 p

αi−1
i ]

Z(t1, · · · , tk)

=

∏k
i=1 p

αi+ti−1
i

Z
= Dir(p1, · · · , pk;α+ t).

The Dirichlet distribution has been well studied. In particular, its mean is known. If we
assume that αi = α for all i = 1, · · · , k, then we get

EP∼π;Xn∼P [Pi | Xn] =
ti(X

n) + α

n+ kα
.
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Now note that if we pick α =
√
n/k then our previous calculations have shown that the loss

does not in fact depend on the distribution p but is always equal to 1−1/k
(
√
n+1)2

. This finishes

our claim.

Although ℓ2 is nice and easy from an analysis perspective it has also downsides. Perhaps
the biggest one is that it is not a good measure if k is very large. Assume that p has 2/k
in its first k/2 components and 0 in its remaining ones and assume that for q the roles of
these two parts are exactly reversed. Their ℓ22 distance is then equal to 4/k which quickly
converges to 0 as k gets large. But it is hard to think of distributions that are more different!
If instead we looked at their ℓ1 distance we would get 2 and their KL “distance” is in fact
infinity.

7.1.8 Risk in ℓ1

This motivates us to look at ℓ1, i.e., now we look at

∥p− q∥1 =
k∑

i=1

|pi − qi|.

Note that this has a probabilistic interpretation. E.g., we can couple the two random
variables so that up to a fraction of time ∥p− q∥1 they take the same value.

Lemma 7.1. For k fixed and as n tends to infinity, the worst case min-max loss behaves
like

rk,n ≤
√

2(k − 1)

πn
+O(n−

3
4 ).

Further, this is achieved by the empirical estimator.

The idea of the proof is similar to the technique we used before. We first compute the
loss of the empirical estimator. We show that this loss is highest for the uniform distribution
and this gives us an upper bound. Then we derive a lower bound that matches the dominant
terms by computing again the Bayes loss with a proper Dirichlet prior. We skip the details.

If we are content with a sligthly looser upper bound we can proceed as follows. Consider
the empirical estimator qemp(Xn). We have

E[∥p− qemp(Xn)∥1] =
k∑

i=1

E[|pi −
Ti(X

n)

n
|]

(a)

≤
k∑

i=1

√
E[|pi −

Ti(Xn)

n
|2]

(b)

≤
√
k − 1

n
.

Step (a) follows by Jensen’s inequality and in step (b) we have used our results for ℓ22 and the
Cauchy-Schwartz inequality. We see that we loose a factor 2/π compared to the previous
result.
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7.1.9 Risk in KL-Divergence

If we are using the KL divergence as our loss metric then we need to make sure that none
of our estimated probabilities are 0 since otherwise our metric will be ∞. It is therefore
natural to use an “add constant” estimator.

When the number of samples becomes large compared to the alphabet size one can show
that the best “add constant” estimator is of the form q+0.509

i and this gives us an expected
worst case loss of

max
p∈∆k

E[D(p∥q+0.509)] ∼ 0.509
k − 1

n
. (7.1)

One can do slightly better (12 instead of 0.509) by using different constants depending on
the observed frequency.

Note that by the Pinsker inequality we have

√
1.2

k − 1

n
∼ max

p∈∆k

√
2E[D(p∥q+0.509)] ≥ max

p∈∆k

E[
√

2D(p∥q+0.509)] ≥ max
p∈∆k

E[∥p− q+0.509)∥1].

The first step is (7.1). Note that this step is approximate (valid for large ratios n/k). In the
second we have used Jensen’s inequality. The final step is Pinsker’s inequality ∥p − q∥1 ≤√

2D(p∥q). We see from this sequence of inequalities that these two results are related
roughly as we would expect. (Compared to the result in Lemma 7.1 we loose only a factor
0.64 inside the square root.)

7.1.10 The problem with the min-max formulation

We have now surveyed how the min-max estimator behaves for various risks. One problem
we encounter is that min-max is really quite pessimistic. Yes, the worst case is as good as
we could hope for but the estimator could be quite bad for pretty much any case. In fact,
we have seen that the whole trick of proving what the min-max estimator was for the ℓ2
case was to come up with an estimator that was uniformly bad (so to speak). This brings
us to a slightly different point of view.

7.1.11 Competitive distribution estimation

One possible view point is that we want an estimator q that is close to optimal for every
distribution p. The key question is here: What is our comparison group? Let us make this
more formal.

Look at the probability simplex ∆k. Partition this space into groups P1, P2, · · · so that
∆k = ∪jPj . Call this partition P. Let L(·, ·) be the loss as usual. Then we are interested
in

rPn,k = min
q

max
j

[
max
p∈Pj

L(p, q)−min
q′

max
p′∈Pj

L(p′, q′)
]
.

This is easy to interpret. Assume at first that we pick the partition so that every element
of ∆k forms a group on its own. Within each group we compare to minq′ maxp′∈Pj

L(p′, q′).
This is the min-max estimator for that group. But since the group only exists of a single
distribution we can use an estimator that knows that particular distribution. This measure
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then collapses to our original min-max formulation and, as we have discussed, this is often
simply to pessimistic.

On the other hand, if our partition consists only of a single group, i.e., the “genie” we
compare ourselves to has no more knowledge than we have ourselves, then our loss is 0.
This is not very useful either.

The key hence is to find for every case a suitable partition. And for each partition we
compare ourselves in each group to a genie who knows that group a priori. E.g., the genie
might know the entropy of the distribution a priori. Or perhaps the genie knows the set of
probabilities but not which component has which of these probabilities.

This is a very rich setup and there are obviously many variations on the theme.

7.1.12 Multi-set genie estimator

Here is another way of avoiding the pessimistic nature of the min-max setup. Recall how
we proceeded in the adversarial bandit setup. Rather than giving the genie in that setting
only partial knowledge of the rewards table, we allowed it to see the whole table but we
restricted the choice of the bandit. We can proceed in the same fashion in the present case.

7.1.13 Natural Genie and Good-Turing Estimator

Hence, assume that the genie is knows the distribution but is forced to give the same
estimate to any group of symbols that appear the same number of times. E.g., X5 = 12213.
Then this genie will use the estimates

q1 = q2 =
p1 + p2

2
,

q3 = p3.

Let M(t) denote the total probability of all symbols that appear exactly t times. And
let us assume that we are using the KL divergence as loss function. Further, let ϕ(t) denote
the number of symbols that appeared t times.

The so-called Good-Turing estimator is then

qGT
i =

Ti + 1

n

ϕ(Ti + 1)

ϕ(Ti)
.

This estimator has a fabled history and was supposedly one of the tools used in breaking
the Enigma code. Good published it in 1953 based on an unpublished note by Turing.

Let us do an example. Assume that X9 = 121234555. We then have ϕ(1) = 2 since 3
and 4 appeared once, ϕ(2) = 2 since 1 and 2 appeared twice, and ϕ(3) = 1 since 5 appeared
three times. We then have

q3 =
T3 + 1

9

ϕ(2)

ϕ(1)
=

2

9

2

2
=

2

9
.

What is the intuition for this estimator? The intuition comes by looking at what the
natural genie will do. Recall, it will give the probability M(t)/ϕ(t) to each of the ϕ(t)
symbols that appear t times. We are trying to compete against this genie. So it makes
sense that we use an expression motivated by this estimate. Of course, we do not know
what M(t) is since we do not know the probabilities. We claim that

E[M(t)] =
t+ 1

n
E[ϕ(t+ 1)]. (7.2)
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To be slightly more precise. We claim that we have this indentity if we us Poisson sam-
pling. You will explore this more in the homework. It is a standard trick to get rid of the
dependency that you get between the various coefficients when you sample a fixed number
of samples.

Assume that we have given a distribution p on X = {1, · · · , k}. Let Xn denote a
sequence of n iid samples. Let Ti = Ti(X

n) be the number of times symbol i appears in
Xn. Then

P{Ti = ti} =

(
n

ti

)
ptii (1− pi)

n−ti .

Note that the random variables Ti are dependent, since
∑

i Ti = n. This dependence can
cause difficulties if we are using this distribution in a scheme and want to analyse its
performance.

There is a convenient way of getting around this problem. This is called Poisson sam-
pling. Let N be a random variable distributed according to a Poisson distribution with
mean n. Let XN be an iid sequence of N variables distributed according to p.

Then the following statements are true.

• Ti(X
N ) is distributed according to a Poisson random variable with mean pin.

• The Ti(X
N ) are independent.

• Conditioned on N = n, the induced distribution of the Poisson sampling scheme is
equal to the distribution of the original scheme.

We will verify (7.2) in a moment. Equation (7.2) does not completely solve our problem
since we do not know E[ϕ(t+1)]. But we do have its “instantaneous” value ϕ(t+1). Hence
define M̂(t) = t+1

n ϕ(t+ 1). If we now use M̂(t)/ϕ(t) instead of M(t)/ϕ(t) then we get our
Good-Turing estimator. Let us now verify (7.2). Note that

M(t) =

k∑

i=1

pi1{Ti(XN )=t},

where in the notation M(t) we omit the fact that this quantity depends on Xn. We now
have

E[M̂(t)] =
∑

i

t+ 1

n
E[1{Ti(XN )=t+1}]

=
∑

i

t+ 1

n
e−(npi)

(npi)
t+1

(t+ 1)!

=
∑

i

npi
n
e−(npi)

(npi)
t

(t)!

=
∑

i

pie
−(npi)

(npi)
t

(t)!

=
∑

i

piE[1{Ti(XN )=t}]

= E[M(t)].
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We can now write down the competitive loss. We have.

rnatn,k = min
M̂

max
p

E[
n∑

t=0

M(t) ln
M(t)

M̂(t)
].

One can show that an estimator based on the Good-Turing estimator and the empirical
estimator achieves

rnatn,k ∼ min{n− 1
3 ,
k

n
}.

7.2 Property Testing

We are given i.i.d. samples from an unknown distribution and we want to know if this
distribution has a particular property or if it is at least an ϵ away from having this property.
Here are a few examples.

1. We want to test if the distribution is uniform.

2. We want to test if the distribution is equal to a given distribution. This is called
identity testing.

3. We want to test if a distribution over X ×X is the product of two marginal distribu-
tions.

4. We want to test if the pdf is monotone.

5. We want to test if the pdf is log-concave.1

We can frame all these questions in the following manner. Let P and Q be two families
of distributions with P ∩ Q = ∅. Let P ∈ P ∪ Q and let Xn be n iid samples according
P . We are given Xn but do not know P . We are asked to decide whether the samples
where drawn according to a distribution in P or a distribution in Q. More formally we are
asked to design an estimator, C(Xn) → {P,Q} in such a way as to minimize the maximum
probability of error,

pn = max
P∈P∪Q;Xn∼P

max{P{C(Xn) = Q | P ∈ P},P{C(Xn) = P | P ∈ Q}}.

We could ask now how this probability of error behaves as n tends to infinity. This
would bring us back to questions of large deviations. But in the current context we are
more interested in how the quantity behaves for a small sample size; a sample size that is
just big enough so that our error probability is bounded away from 1

2 .

7.2.1 General Idea

Assume that we can design a so-called test statistics T (Xn) → R with the following prop-
erties: there exists a threshold τ so that

1. if P ∈ P then P{T (Xn) > τ} < 0.1,

1For discrete contiguous distributions we say that it is log-concave if P 2
i ≥ Pi−1Pi+1.
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2. if P ∈ Q then P{T (Xn) < τ} < 0.1.

In this case, given the sample Xn we simply evaluate this test statistics and make our
decision accordingly. I.e., we define

C(Xn) =

{
P, T (Xn) < τ,

Q, T (Xn) > τ.

In the above description we have assumed that the number of samples is fixed. As we
have seen this for distribution estimation it is sometimes useful to allow this number to be
itself a random variable distributed according to a Poisson distribution. We will then write
XN , N ∼ Poi(n).

7.2.2 Testing Against a Uniform Distribution

Even though there are many questions that fall under the category of property testing
we will consider only one – namely the question of testing whether samples come from a
uniform distribution.

We will assume that the alphabet size k is known and we will ask wether the samples
come from a uniform distribution with support on the whole alphabet size. It is important
to note that, even though this is a meaningful question, and it is mathematically simpler,
perhaps an even more meaningful question would be to allow distributions whose support
is not all of X .

Learning Approach

The first approach is obvious. Let us learn the distribution reasonably accurately and then
compute the distance of this learned distribution to the uniform one. In the following let us
assume that we measure the distance according to ℓ1. Let U denote the uniform distribution
on X = {1, · · · , k}. Then P = {U} and Q is the set of distributions that have ℓ1 distance
at least ϵ from U .

We then have the following algorithm.

1. Given Xn learn P̂ so that ∥P̂ − P∥1 ≤ ϵ/2 with probability at least 0.9.

2. Output decision according to

C(Xn) =

{
P, ∥P̂ − U∥ < ϵ/2,

Q, otherwise.

Let us quickly check that this scheme works as intended. If P ∈ P, i.e., P = U then
by assumption ∥P̂ − U∥1 ≤ ϵ/2 with probability at least 0.9. So we make a mistake
with probability at most 0.1. And if P ∈ Q, then by assumption ∥P − U∥1 is at least
ϵ. Since further by assumption ∥P̂ − P∥1 < ϵ/2, it follows by the triangle inequality that
∥P̂−U∥1 > ϵ/2. So we see that indeed we have constructed an appropriate decision statistics
and threshold for this case.

We have seen in Section 7.1.8 that in expectation the ℓ1-distance is upper bounded by√
k−1
n . This means that if we want the ℓ1 risk to be bounded by ϵ/2 with some fixed

probability then O(k/ϵ2) samples will suffice.
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A Better Approach

We can do better than that. There is no reason we first have to learn the whole distribution
if at the end we are only interested in this one bit of information. We will now see that√
k/ϵ2 samples suffice. This might not seem a big deal if the alphabet size is small but for

large alphabet sizes this is significant.

A Lower Bound

We claim that we need at least Ω(
√
k) samples for any fixed ϵ. This bound does not give

the correct scaling with respect to ϵ but it does tell us that we cannot hope to do better
than

√
k with respect to the alphabe size.

Recall that P = {U}, where U is the uniform distribution on {1, · · · , k}. Let XN be iid
samples according to U , where N is chosen according to a Poi(n) distribution, and assume
that n ≤ k. Recall that in this setting Ti(X

N ) has distribution Poi(n/k). The probability
that symbol i is chosen 2 or more times is equal to

∑

j≥2

e−n/k
(n/k)j

j!
.

But since for λ = n/k ≤ 1,
∑

j≥2
λj

j! ≤ λ2
∑

j≥2
1
j! ≤ λ2,

∑
j≥2 e

−n/k (n/k)j
j! ≤ e−n/k(n/k)2.

Therefore, the expected number of symbols that appear more than once is upper bounded
by ke−n/k(n/k)2 = e−n/kn2/k.

Assume that we pick n <
√
k/10. Then this expected value is upper bounded by 1/100.

So let us recap. We have a random variable, call it Z, that is integer-valued and non-negative
and whose expected value is upper bounded by 1/100. So

1/100 ≥ E[Z] =
∑

i≥0

P{Z = i}i ≥
∑

i≥1

P{Z = i} = P{Z ≥ 1}.

Thefore the probability that none of the symbols appear at least twice is upper bounded
by 1/100. This is called the first moment method.

Now consider a distribution, call it Ũ that is also uniform, but uniform on a subset of
{1, · · · , k} of size k/2. By exactly the same argument, replacing k with k/2 everywhere,
we have that with probability at most 1/50 we see any of the symbols repeated more than
once. We conclude that, under these conditions, we cannot hope to be able to distinguish
between those two distributions. And clearly these two distributions are quite different. In
fact, their ℓ1 distance is 1!

We recognize that n ∼
√
k is not an arbitrary threshold. This is the threshold that we

know from the birthday paradox. This is not a coincidence. As we will discuss in more depth
when we discuss property estimation, essentially the only information that is contained in
the samples are the overlaps. So n ∼

√
k is when we start getting useful information.

An Upper Bound

Now where we have the “right” (we don’t know this yet, but soon ...) scaling in k let us
look at an actual algorithm that gives us the desired result of

√
k/ϵ2 samples. Let us first

relate ℓ1 to ℓ2.

Lemma 7.2. Let P,Q ∈ ∆k. If ∥P −Q∥1 ≥ ϵ then ∥P −Q∥22 ≥ ϵ2/k.
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Proof. By Cauchy-Schwarz |⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v, v⟩, with u⊤ = (|P1 − Q1|, · · · , |Pk − Qk|),
and v⊤ = (1, · · · , 1) we have

∑

i

(Pi −Qi)
2

︸ ︷︷ ︸
⟨u,u⟩

k

︸︷︷︸
⟨v,v⟩

≥ (
∑

i

|Pi −Qi|)2 ≥ ϵ2.

Lemma 7.2 might give you pause. Why do we go via an ℓ2 route? Did we not claim a few
pages ago that ℓ2 is not a good metric when it comes to large alphabet sizes? Indeed this is
the case. In the current context we assumed that “uniform” means that the support of U is
all of the alphabet X = {1, · · · , k}. If we considered a slightly more general scenario where
we allowed U to have a support that was strictly smaller than k, as long as all symbols
with non-negative weight have equal weight, then we would have to proceed in a different
manner.

Before we proceed let us quickly recall some facts about Poisson distributions.

Lemma 7.3. Let X be a random variable with Poisson distribution Poi(λ). Then for l ≥ 1

E[X(X − 1) · · · (X − l + 1)] = λl.

Further, if µ is any real number then

Var((X − µ)2 −X) = 2λ2 + 4λ(λ− µ)2.

Proof. Consider the first statement. The generating function of the Poisson distribution is
eλ(x−1). Taking the derivative with respect to x and then setting x = 1 gives us the mean
since this corresponds to the weighted sum with weight i. We get λeλ(x−1)|x=1 = λ. More
generally, taking the l-th derivative of eλ(x−1) and then setting x = 1 gives us λl and this
corresponds to the stated expression.

Now consider the second statement. Expanding E[(X −µ)2−X] and using the previous
result we see that E[(X − µ)2 − X] = (µ − λ)2. To compute the variance write down the
corresponding expected value and expand in terms of X(X − 1) · · · (X − l+ 1) for l = 0 up
to l = 3. Use the previous trick to get the result.

Recall that we need a test statistics. We claim that

T (Xn) =
∑

i

(Ti(X
n)− n

k
)2 − Ti(X

n)

is a good candidate.

NOTE: This is perhaps not the best of notation. Ti(X
n) refers to the count of the

symbol i in the sample Xn, whereas T (Xn) refers to the test statistics.

Lemma 7.4. Let P,Q ∈ ∆k. Let N be chosen according to Poi(n) and let XN be N iid
samples according to P . Then

E[
∑

i

(Ti(X
N )− nQi)

2 − Ti(X
N )] = n2

∑

i

(Pi −Qi)
2.
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Proof. Recall that Ti(X
N ) has distribution Poi(nPi). Therefore,

E[
∑

i

(Ti(X
N )− nQi)

2 − Ti(X
N )] = E[

∑

i

Ti(X
N )(Ti(X

N )− 1)− 2nTi(X
N )Qi + n2Q2

i ]

Lemma 7.3
=

∑

i

[n2P 2
i − 2n2PiQi + n2Q2

i ]

=
∑

i

n2(Pi −Qi)
2.

Assume now that P ∈ P = {U}, i.e., P = U . Then Lemma 7.4 tells us that

E[T (XN )] = 0.

But if P is such that ∥P − U∥1 ≥ ϵ then

E[T (XN )]
Lemma 7.4

= n2
∑

i

(Pi −
1

k
)2

Lemma 7.2
≥ n2ϵ2

k
.

We are now ready to state the algorithm that has the claimed performance.

1. Obtain N ∼ Poi(n) iid samples XN from P , where P is unknown.

2. Ouput decision according to

{
P, T (XN ) < τ = n2ϵ2

2k ,

Q, T (XN ) > τ.

Lemma 7.5. Consider the previous algorithm and assume that n >
√
80k/ϵ2. Then

1. if P ∈ P then P{T (XN ) > τ} < 0.1,

2. if P ∈ Q then P{T (XN ) < τ} < 0.1.

Proof. Let us look at the two cases separately. If P = U then we know that E[T (XN )] =
0. From Lemma 7.3 with µ = λ = n/k, and taking into account that the Ti(X

N ) are
independent we get

Var(T (XN )) = k2(n/k)2 = 2
n2

k
.

By the Chebyshev inequality

P{T (XN ) > τ} ≤ Var(T (XN ))

τ2
=

2n2

k

4k2

n4ϵ4
=

8

n2ϵ4

If we want the right-hand-side to no more than say 0.1 then solving 8k
n2ϵ4

= 0.1 for n shows

that n ≥
√
80kϵ2, as promised. The second case follows in a similar manner and we skip

the details.
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7.3 Property Estimation

We now get the last topic. We have seen how to estimate distributions and how to test
properties of distributions. Let us now look how we can estimate properties of distributions.

There are plenty of properties that one might be interested in: entropy, support size, or
perhaps the mutual information between two densities.

The simplest approach is to use so-called plug-in estimators. This means, estimate the
distribution and then plug in these estimates into the functional that computes the desired
quantity. But the question is if it is really necessary (and optimal) first to learn the whole
distribution if all that we are interested in is one number.

7.3.1 Entropy Estimation

The set-up is very similar than what we used for in the distribution estimation scenario.
We have an alphabet X = {1, · · · , k}. We get iid samples Xn = X1, · · · , Xn that are drawn
according to a fixed but unknown distribution p.

We are given a functional f(p),

f(p) =

k∑

i=1

f(pi).

E.g., if we are interested in the entropy then we want to compute f(p) =
∑

i pi log2
1
pi
.

Our aim therefore is to design a functional f̂ : X n → R that is best in our usual min-max
sense,

min
f̂

max
p∈∆k

E[(f(p)− f̂(Xn))2]

As always one of the most natural such estimators is to use the empirical one

f̂ emp(Xn) =
∑

i

f(
Ti(X

n)

n
).

7.4 Problems

Problem 7.1 (ℓ1 versus Total Variation). In class we defined the ℓ1 distance as

∥p− q∥1 =
k∑

i=1

|pi − qi|.

Another important distance is the total variation distance dTV(p, q). It is defined as

dTV(p, q) = max
S⊆{1,··· ,k}

|
∑

i∈S
(pi − qi)|.

Show that if p, q are two probability mass vectors (i.e. elements of the simplex) we have
that dTV(p, q) =

1
2∥p− q∥1.
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Problem 7.2 (Poisson Sampling). Assume that we have given a distribution p on X =
{1, · · · , k}. Let Xn denote a sequence of n iid samples. Let Ti = Ti(X

n) be the number of
times symbol i appears in Xn. Then

P{Ti = ti} =

(
n

ti

)
ptii (1− pi)

n−ti .

Note that the random variables Ti are dependent, since
∑

i Ti = n. This dependence can
sometimes be inconvenient.

There is a convenient way of getting around this problem. Thit is called Poisson sam-
pling. Let N be a random variable distributed according to a Poisson distribution with
mean n. Let XN be then an iid sequence of N variables distributed according to p.

Conditioned onN = n, what is the induced distribution of the Poisson sampling scheme?
Show that

1. Ti(X
N ) is distributed according to a Poisson random variable with mean pin.

2. The Ti(X
N ) are independent.

Problem 7.3 (Add-β Estimator). The add-β estimator q+β over [k], assigns to symbol i a
probability proportional to its number of occurrences plus β, namely,

qi
def
= qi(X

n)
def
= q+β,i(X

n)
def
=

Ti + β

n+ kβ

where Ti
def
= Ti(X

n)
def
=
∑n

j=1 1(Xj = i). Prove that for all k ≥ 2 and n ≥ 1,

min
β≥0

r
l22
k,n(q+β) = r

l22
k,n(q+

√
n/k) =

1− 1
k

(
√
n+ 1)2

Furthermore, q+
√
n/k has the same expected loss for every distribution p ∈ ∆k.

Problem 7.4 (Uniformity Testing). Let us reconsider the problem of testing against unifor-
mity. In the lecture we saw a particular test statistics that required only O(

√
k/ϵ2) samples

where ϵ was the ℓ1 distance.
Let us now derive a test from scratch. To make things simple let us consider the ℓ22

distance. Recall that the alphabet is X = {1, · · · , k}, where k is known. Let U be the
uniform distribution on X , i.e., ui = 1/k. Let P be a given distribution with components
pi. Let X

n be a set of n iid samples. A pair of samples (Xi, Xj), i ̸= j, is said to collide if
Xi = Xj , if they take on the same value.

1. Show that the expected number of collisions is equal to
(
n
2

)
∥p∥22.

2. Show that the uniform distribution minimizes this quantity and compute this mini-
mum.

3. Show that ∥p− u∥22 = ∥p∥22 − 1
k .

NOTE: In words, if we want to distinguish between the uniform distribution and
distributions P that have an ℓ22 distance from U of at least ϵ, then this implies that
for those distributions ∥p∥22 ≥ 1/k + ϵ. Together with the first point this suggests
the following test: compute the number of collisions in a sample and compare it to(
n
2

)
(1/k+ ϵ/2). If it is below this threshold decide on the uniform one. What remains

is to compute the variance of the collision number as a function of the sample size.
This will tell us how many samples we need in order for the test to be reliable.
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4. Let a =
∑

i p
2
i and b =

∑
i p

3
i . Show that the variance of the collision number is equal

to

(
n

2

)
a+

(
n

2

)[(
n

2

)
−
(
1 +

(
n− 2

2

))]
b+

(
n

2

)(
n− 2

2

)
a2 −

(
n

2

)2

a2

=

(
n

2

)
[2b(n− 2) + a(1 + a(3− 2n))]

by giving an interpretation of each of the terms in the above sum.

NOTE: If you don’t have sufficient time, skip this step and go to the last point.

For the uniform distribution this is equal to

(
n

2

)
(k − 1)(2n− 3)

k2
≤ n2

2k
.

NOTE: You don’t have to derive this from the previous result. Just assume it.

5. Recall that we are considering the ℓ22 distance which becomes generically small when
k is large. Therefore, the proper scale to consider is ϵ = κ/k. Use the Chebyshev
inequality and conclude that if we have Θ(

√
k/κ) samples then with high probability

the empirical number of collisions will be less than
(
n
2

)
(1/k + κ/(2k)) assuming that

we get samples from a uniform distribution.

NOTE: The second part, namely verifying that the number of collisions is with high
probability smaller than

(
n
2

)
(1/k+κ/(2k)) when we get Θ(

√
k/κ) samples from a distribution

with ℓ22 distance at least κ/k away from a uniform distribution follows in a similar way.

HINT: Note that if p represents a vector with components pi then ∥p∥1 =
∑

i |pi| and
∥p∥22 =

∑
i p

2
i .

Problem 7.5 (Estimating Support Size). You are attending Balelec. You want to estimate
how many people are attending. Let this number be m. Here is a very simple algorithm.
You walk around randomly. Every 5 minutes you take a picture of the person who is right
next to at this moment. Assume that 5 minutes is sufficiently long so that in this manner
you sample participants at Balelec with uniform probability. Assume further that during
the whole time you do your experiment no person joins or leaves Balelec.

You do this N times, where N is a Poisson random variable with mean n = 100. Once
you are done you look at the photos. Assume that in total you have encountered K = 102
distinct people. Out of those 102, 100 you have seen only once, one you saw twice, and
one you saw three times. Give an estimate of the number of people attending Balelec (the
support size of the distribution). Call this number m̂. We do not expect a number as
answer since the estiate might involve an optimization step which might not be trivial to do
by hand. Simplify as far as you can and then write down how you would get final answer.

Hint: Follow your own path or answer the question according to the following steps.

1. Assume that there are m people attending Balelec. Take a specific person at Balelec.
Call this person “1”. Given the procedure outlined above, what is the probability
that this person appears c1, c1 ≥ 0, times on your photos?
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2. Now take two specific people. Call them “1” and “2”. What is the probability that
they appear {ci}2i=1 times on your photos?

3. Now consider all people all Balelec together. Assume as before that each has a specific
identity. What is the probability that the m people appear {ci}mi=1 times on your
photos?

4. Assume again that m people attend Balelec and also as before that we have the counts
{ci}mi=1. But this time we do not know who has what count, i.e., we do not know the
identites of the people. All we know is the counts themselves. What is the probability
of getting the counts {ci}mi=1? [Note: What we see are the non-zero counts, but since
we also assume that we know m, we know in fact all counts.]

5. How can you use the last expression to derive an estimate?

Problem 7.6 (Estimating Entropy). You are given n iid samples of a Bernoulli random
variable with parameter µ. The parameter is known to be in the range [κ, 1 − κ], where
0 < κ ≤ 1

2 . Let the samples be denoted by S = {X1, X2, · · · , Xn}, Xi ∈ {0, 1}, i = 1, · · ·n.
Your task is to estimate the entropy of the underlying distribution accurately. Let h

denote the true entropy of the distribution and ĥ = ĥ(S) be your estimate.

(i) Design a scheme to accurately estimate h. Give an explicit epression for ĥ as a function
of the samples S.

(ii) Since the samples S are random your estimate ĥ(S) is a random variable. Let δ, ϵ > 0.
Derive a bound of the form

P{|ĥ(S)− h| ≥ ϵ} ≤ δ.

(iii) [5pts] In the expression of (ii) assume that you set δ to some fixed constant. How
does the gap ϵ behave as a function of n?

Hint: Simple does it.

Problem 7.7 (l2 Estimation). Assume that we have two distributions p and q on {1, · · ·K}.
Let n ∈ N. Let N1, N2 ∼ Poi(n) be independent random variables. We are given N iid
samples from each, call them {Xj}N1

j=1 and {Yj}N2
j=1, respectively. Let tk(X

N1), k = 1, · · · ,K,

respectively, tk(Y
N2), denote the empirical counts. E.g.,

tk(x
n) = |{j ∈ {1, . . . n} : xj = k}|.

We want to estimate ∥p− q∥22.
Define Z =

∑K
k=1(tk(X

N1)− tk(Y
N2))2 − tk(X

N1)− tk(Y
N2). We claim that Z/n2 is a

good estimator for ∥p− q∥22.

(a) Show that Z is an unbiased estimator of n2∥p− q∥22.
Hint: The expression for Z should look somewhat familiar. The notes are your best
friend.
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(b) Assuming that ∥p∥22 ≤ b and ∥q∥22 ≤ b show that the variance of Z can be upper
bounded in the following way:

Var(Z)
(i)
=

K∑

k=1

4n3(pk − qk)
2(pk + qk) + 2n2(pk + qk)

2

(ii)

≤
K∑

k=1

8n3(pk − qk)
2 + 2n2(p2k + q2k + 2pkqk)

(iii)

≤ 8n3∥p− q∥22 + 8n2b.

Justify each of the three steps.

Hint: Define R = (U − V )2 − U − V , where U ∼ Poi(λ) and V ∼ Poi(µ). A
straighforward but tedious calculation shows that Var(R) = 4(λ−µ)2(λ+µ)+2(λ+µ)2.

(c) Show that P{|Z/n2 − ∥p− q∥22| ≥ ϵ} ≤ 8n∥p−q∥22+8b
n2ϵ2

.
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Chapter 8

Exponential Families and Maximum
Entropy Distributions

Exponential families are a class of parametrized distributions. They are important for
several reasons. First, many “standard” distributions we are well acquainted with (like the
Gaussian distribution) are members of this family. Therefore, they appear frequently in
applications. Second, all members of this family have nice theoretical properties. Hence,
rather than discussing these properties for each member of this family, it is convenient to
discuss them for the whole family at once.

To give some “practical motivations,” in machine learning exponential families are used
in the context of classification, giving rise to so-called generalized linear models. Further,
these are the distributions that maximize the entropy given constraints on the moments.
E.g., we will see that the Gaussian has the maximum entropy of any family with a given
second moment constraint. It is therefore natural to consider such distributions as prior
distributions since they make “the least assumptions” if all we know are constraints on
moments.

We will be relatively terse. If you want to dig deeper, we recommend the lecture notes by
John Duchi [10], Chapter 6 and 7, or the extensive monograph by Wainwright and Jordan
[11].

8.1 Definition

Definition 8.1. Let X be a given alphabet and let ϕ : X → Rd, d ∈ N. The exponential
family associated with ϕ is the set of distributions parametrized by θ ∈ Rd with densities
given by

pθ(x) = h(x)e⟨θ,ϕ(x)⟩−A(θ).

Note that A(θ) is a normalizing constant. As such it might not seem to play an important
role. But, as we will discuss soon, it in fact encodes (in its derivatives) crucial information.
The function A(θ) is some-times called the log-partition function (the partition function is
a term used in statistical physics for the normalization constant and A is the log of this).
In statistics it is known as the cumulant function.

In our definition of an exponential family we included the term h(x). In principle this
term can be absorbed by the underlying measure ν(x) and is in this sense redundant. But
it might sometimes be more “natural” to represent a distribution in this way. For all our

95
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subsequent computations and proofs of properties it does not really matter which point of
view we take, i.e., if we explicitly write out the term h(x) think of it as being included in
the underlying measure.

8.2 Examples

Example 8.1 (Gaussian). Let X = R and let ν be the Lebesgue measure on R. Then the
density of the normal distribution with mean µ and variance σ2 can be written as

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

= ex
µ

σ2−x2 1
2σ2−[ µ2

2σ2+
1
2
ln(2πσ2)]

= e⟨θ,ϕ(x)⟩−A(θ),

where h(x) = 1, θ = ( µ
σ2 ,− 1

2σ2 )
⊤, ϕ(x) = (x, x2)⊤, and

A =
µ2

2σ2
+

1

2
ln(2πσ2) = − θ21

4θ2
− 1

2
ln(−θ2/π).

Note that ϕ(x) is a vector of dimension 2, reflecting the fact that the Gaussian has two
degrees of freedom. Further, we have the following bijective relationships

θ = (θ1, θ2)
⊤ = (

µ

σ2
,− 1

2σ2
)⊤,

(µ, σ2)⊤ = (− θ1
2θ2

,− 1

2θ2
)⊤.

Example 8.2 (Poisson). Let X = N and let ν be the counting measure on X . We can
represent the Poisson distribution with parameter λ in the form

P (X = x) =
λxe−λ

x!

=
1

x!
ex ln(λ)−λ

=
1

x!
eθx−e

θ

= h(x)e⟨θ,ϕ(x)⟩−A(θ),

where h(x) = 1/x!, θ = ln(λ), ϕ(x) = x, and A(θ) = eθ.

Example 8.3 (Bernoulli). Let X = {0, 1} and let ν be the couting measure on X . We can
represent the Bernoulli distribution with P (X = 1) = p in the form

P (X = x) = px(1− p)1−x

= ex ln p+(1−x) ln(1−p)

= e
x ln p

1−p
+ln(1−p)

= h(x)e⟨θ,ϕ(x)⟩−A(θ),

where h(x) = 1, θ = ln p
1−p , so that p = eθ

1+eθ
, ϕ(x) = x, and A(θ) = − ln(1 − p) =

− ln(1− eθ

1+eθ
) = ln(1 + eθ).
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Example 8.4 (Multinomial). A generalization of the Bernoulli measure is the multinomial.
Let X = {0, · · · , n}d and let ν be the counting measure on X . Then the multinomial
distribution with parameter α = (α1, · · · , αd) can be expressed as

P (X1 = x1, · · · , Xd = xd) =

(
n

x1, · · · , xd

) d∏

i=1

αxii

=

(
n

x1, · · · , xd

)
e
∑d

i=1 ln(αi)xi

= h(x)e⟨θ,ϕ(x)⟩−A(θ),

where

h(x) =

(
n

x1, · · · , xd

)
,

θ = (ln(α1), · · · , ln(αd)), ϕ(x) = x = (x1, · · · , xd), and A(θ) = 0.

Example 8.5 (Dirichlet). The Dirichlet distribution of order d ≥ 2 with parameter α =
(α1, · · · , αd), αi > 0, has a density with respect to the Lebesgue measure on Rd−1 of the
form

pθ(x) =
1

B(α)

d∏

i=1

xαi−1
i

= h(x)e⟨θ,ϕ(x)⟩−A(θ)

where x belongs to the (d− 1)-dimensional simplex, i.e.,
∑d

i=1 xi = 1, xi ≥ 0, and where

B(α) =

∏d
i=1 Γ(αi)

Γ(
∑d

i=1 αi)
.

Further, h(x) = 1, θ = (α1 − 1, · · · , αd − 1), ϕ(x) = (ln(x1), · · · , ln(xd)), and A(θ) =
ln(B(α)).

If d = 2 then the Dirichlet distribution is called the Beta distribution.

8.3 Convexity of A(θ)

Theorem 8.1. Let Θ = {θ ∈ Rd : A(θ) < ∞}. The log-partition function A(θ) is convex
in θ on Θ.

Proof. Let θλ = λθ1+(1−λ)θ2, θ1, θ2 ∈ Θ. Let p = 1
λ and q = 1

1−λ so that pλ = q(1−λ) = 1.
Note that 1/p + 1/q = λ + (1 − λ) = 1 and that p, q ∈ [1,∞]. Hölder’s inequality states
that ∥fg∥1 ≤ ∥f∥p∥g∥q. In more detail,

(∫
|f(x)g(x)|dν(x)

)
≤
(∫

|f(x)|pdν(x)
) 1

p
(∫

|g(x)|qdν(x)
) 1

q

.
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Recall that pθ(x) = h(x)e⟨θ,ϕ(x)⟩−A(θ) so that 1 =
∫
pθ(x)dν(x) =

[∫
h(x)e⟨θ,ϕ(x)⟩dν(x)

]
e−A(θ),

or, A(θ) = ln
[∫
h(x)e⟨θ,ϕ(x)⟩dν(x)

]
. We have

A(θλ) = ln

[∫
h(x)e⟨θλ,ϕ(x)⟩dν(x)

]

= ln



∫ (

h(x)e⟨θ1,ϕ(x)⟩
)λ

︸ ︷︷ ︸
f(x)

(
h(x)e⟨θ2,ϕ(x)⟩

)(1−λ)
︸ ︷︷ ︸

g(x)

dν(x)




Hölder
≤ ln

[(∫ (
h(x)e⟨θ1,ϕ(x)⟩

)pλ
dν(x)

) 1
p
(∫ (

h(x)e⟨θ2,ϕ(x)⟩
)q(1−λ)

dν(x)

) 1
q

]

= ln

[(∫ (
h(x)e⟨θ1,ϕ(x)⟩

)pλ
dν(x)

) 1
p

]
+ ln

[(∫ (
h(x)e⟨θ2,ϕ(x)⟩

)q(1−λ)
dν(x)

) 1
q

]

pλ=q(1−λ)=1
=

1

p
ln

[(∫
h(x)e⟨θ1,ϕ(x)⟩dν(x)

)]
+

1

q
ln

[∫ (
h(x)e⟨θ2,ϕ(x)⟩dν(x)

)]

= λA(θ1) + (1− λ)A(θ2).

8.4 Derivatives of A(θ)

Without proof we state that A(θ) is infinitely often differentiable on Θ. In particular the
first two derivatives are of interest to us.

Let us compute the first derivative (gradient). We have

∇A(θ) = ∇ ln

∫
h(x)e⟨θ,ϕ(x)⟩dν(x)

=

∫
∇h(x)e⟨θ,ϕ(x)⟩dν(x)∫
h(x)e⟨θ,ϕ(x)⟩dν(x)

=

∫
h(x)e⟨θ,ϕ(x)⟩ϕ(x)dν(x)

eA(θ)

=

∫
h(x)e⟨θ,ϕ(x)⟩−A(θ)ϕ(x)dν(x)

= E[ϕ(x)].

For future reference, let us record that

∇A(θ) = E[ϕ(x)]. (8.1)

In a similar manner we have

∇2A(θ) = E[ϕ(x)ϕ(x)⊤]− E[ϕ(x)]E[ϕ(x)⊤].

Note that this gives us a second proof that A(θ) is convex since we see that the Hessian of
A(θ) is a convariance matrix and hence positive semidefinite.
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Example 8.6 (Bernoulli). For the Bernoulli distribution we have seen that A(θ) = ln(1+eθ)
and θ = ln p

1−p . Therefore,

dA(θ)

dθ
=
d ln(1 + eθ)

dθ
=

eθ

1 + eθ
= σ(θ) = p,

d2A(θ)

dθ2
=
dσ(θ)

dθ
= σ(θ)(1− σ(θ)) = p(1− p).

8.5 Application to Parameter Estimation and Machine Learning

The convexity of A(θ) is one of the main reason why this family of distributions is so
convenient to work with.

Assume that we have a set of samples x1, · · · ,xn and that we assume that they are iid
according to an exponential family with an unknown parameter θ. We want to estimate
this parameter.

We can then write down the likelihood as

pθ(x1, · · · ,xN ) =
N∏

n=1

h(xn)e
⟨θ,ϕ(xn)⟩−A(θ). (8.2)

Instead of maximizing this likelihood we can equivalently take the log of this expression,
multiply by minus one, and minimize instead. This gives us

− ln pθ(x1, · · · ,xN ) =
N∑

n=1

[− ln(h(xn))− ⟨θ, ϕ(xn)⟩+A(θ)] (8.3)

Now note that the function on the right is convex – it is the sum of the constant (with
respect to θ) −∑N

n=1 ln(h(xi)), the linear function −∑N
n=1⟨θ, ϕ(xn)⟩ and the convex func-

tion NA(θ). Greedy, local algorithms are therefore expected to work well in locating the
optimal parameter θ.

If we take the gradient of the above expression and set it to zero then we get the equation

Eθ[ϕ(x)] =
1

N

N∑

n=1

ϕ(xn). (8.4)

In words, we should choose the parameter θ in such a way that the expected value of ϕ(x)
equals its empirical value. From this we see why ϕ(·) is called the sufficient statistics. We
only need this quantity for the parameter estimation.

A word of caution is in order here. Just because a function is convex, it does not
mean that it is easy to minimize. We need in addition that the function itself (and per-
haps its derivative) is easy to compute. If you look ahead at the Ising model described in
Example 8.13, then you will see that even though the function A(θ) to be minimized is
convex, there is no low-complexity algorithm known to accomplish this minimization since
the computation of A(θ) requires in general exponential effort.

8.6 Conjugate Priors

In the previous section we considered an application in ML where we estimated the un-
derlying parameter θ, given some iid samples from the distribution by maximizing the
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likelihood. We have seen that for exponential distributions the underlying maximization
problem is “simple” since the underlying function is convex. The justification for maximiz-
ing the likelihood is that under some technical conditions this leads to a consistent estimator
(see Section 8.10.2).

Alternatively, in the Baysian setting, we assume that there is a prior on the set of
parameters and we will then maximize the posterior instead. In this case the question is
what prior we should pick. One part of the question is what priors are “meaningful” or
“appropriate.” Leaving out this question for the moment, there is still the question what
priors lead to “manageable” computational tasks, e.g., convex functions to be minimized.
Here is where conjugate priors enter. If we start with a likelihood that is a member of an
exponential family and use as a conjugate prior then we end up again with an element for
the exponential family. Rather than discussing this in the abstract, let us look at some
important examples.

Example 8.7 (Bernoulli). Consider a Bernoulli distribution with parameter p,

Pp(X = x) = px(1− p)1−x,

where we recall x ∈ {0, 1}. Assume that the parameter p ∈ [0, 1] is unknown and follows a
a Beta distribution q(p), i.e.,

q(p) = K(α1, α2)p
α1−1(1− p)α2−1,

where α, α2 > 0 so that the density can be normalized and where K(α1, α2) is the normal-

ization constant, K(α1, α2) =
Γ(α1+α2)
Γ(α1)Γ(α2)

.
Let us now quickly discuss, why this prior is convenient. Assume that we have a set of iid

samples x1, · · · ,xn. As in Section 8.5 we assume that they are iid according to a Bernoulli
distribution with an unknown parameter p. In addition we assume that the parameter itself
is distributed according to q(p) with the parameters α1 and α2 fixed. Let us then write
down the posterior distribution for the parameter p given the samples. We have

p(p | x1, · · · ,xN ) ∝ pα1−1(1− p)α2−1
N∏

n=1

pxn(1− p)1−xn (8.5)

∝ pα1−1+
∑N

n=1 xn(1− p)α2−1+N−∑N
n=1 xn . (8.6)

The key is to notice that this is again a beta distribution but now with parameters
∑N

n=1 xn+

α1 and N −∑N
n=1 xn + α2. In particular, this is again an exponential distribution and so

the optimization of this expression is again “simple.”

Example 8.8 (Multinomial). The conjugate prior of a Multinonomial is a Dirichlet distri-
bution.

Example 8.9 (Gaussian). The conjuate prior of a Gaussian is a Gaussian.

8.7 Maximum Entropy Distributions

Assume that we are given a function ϕ : X → Rd and a vector α ∈ Rd. What distribution
on X maximizes the entropy subject to the condition that the expected value of ϕ(X) is
equal to α? Mathematically, we are looking for

P ∗ = argmaxP :EP [ϕ(X)]=αH(P )
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Why are we interested in this problem? If all that we know is a constraint on the mean it
makes sense to look at the “most random” distribution that fulfills this constraint. This is
the distribution that makes the least “assumptions” if we use it as a prior.

When looking at maximum entropy distributions we will drop the factor h(x) from
exponential families. As we have mentioned earlier, any specific factor h(x) can be absorbed
into the underlying measure ν(x) and this is indeed the natural view point for our current
purpose.

Theorem 8.2. For θ ∈ Rd, let Pθ have density

pθ(x) = exp{⟨θ, ϕ(x)⟩ −A(θ)}

with respect to the measure ν. If EPθ
[ϕ(X)] = α, then Pθ maximizes H(P ) over {P :

EPθ
[ϕ(X)] = α} and it is the unique distribution with this property.

Proof. Let θ be a parameter so that Epθ [ϕ(X)] = α and let P be any other distribution so
that Ep[ϕ(X)] = α. Then

H(P ) = −
∫
p(x) log p(x)dν(x)

= −
∫
p(x) log pθ(x)dν(x) +

∫
p(x) log pθ(x)dν(x)−

∫
p(x) log p(x)dν(x)

= −
∫
p(x) log pθ(x)dν(x)−

∫
p(x) log

p(x)

pθ(x)
dν(x)

= −
∫
p(x)[⟨θ, ϕ(x)⟩ −A(θ)]dν(x)−D(p(x)∥pθ(x))

= −
∫
pθ(x)[⟨θ, ϕ(x)⟩ −A(θ)]dν(x)−D(p(x)∥pθ(x))

= H(Pθ)−D(p(x)∥pθ(x))︸ ︷︷ ︸
≥0

≤ H(Pθ).

In all three of the following examples we pick ϕ(x) = x2 and α = 1, i.e., we are
constraining the distribution P by asking that the second moment is equal to 1, EP [X

2] = 1.
The general form of the density that maximizes the entropy is then

pθ(x) =
exp{x2θ}

Z
, (8.7)

where Z is the normalizing constant.

Example 8.10. If the measure ν is the counting measure on {−1, 1} then the distribution
P is of the form

(P (x = −1) =
eθ

Z
,P (X = 1) =

eθ

Z
),

where we have the condition EP [X
2] = 2 e

θ

Z = 1. Hence the maximum entropy distribution
P (x) is (P (x = −1) = 1

2 , P (X = 1) = 1
2), the uniform distribution.
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Example 8.11. If the measure ν is the counting measure on Z then the distribution P is
of the form

pθ(x) =
e−θx

2

∑
i e

−θi2 , x ∈ Z,

where θ is chosen so that

∑

x∈Z
x2

e−θx
2

∑
i e

−θi2 = 1.

Example 8.12. If the measure ν is the Lebesque measure on R then we recognize from the
basic form of the density given in (8.7) that the density that maximizes the entropy is the
Gaussian distribution with mean 0 and variance 1,

p(x) =
1√
2π
e−

x2

2 .

In the proof of Theorem 8.2 we have seen that if an exponential distribution exists that
yields the right moment then it is the maximum entropy distribution with this moment.
Assume for a moment that we did not already know the form of this distribution. It is then
perhaps insightful to “derive” the form of the distribution from first principles. Consider
the following Lagrangian:

L =

∫
p(x) log p(x)dν(x) + θ⊤(µ−

∫
p(x)ϕ(x)dν(x)) + κ(1−

∫
p(x)dν(x)).

Our aim is to minimize this Lagrangian. The first term is equal to −H(P ). Indeed, we
want to maximize H(P ), i.e., equivalenty we want to minimize −H(P ). The second term
corresponds to all the constraints on the moments. Here, θ is a vector of length d. And
the third term corresponds to the normalization constraint on the density. Note that we
have not included any term to ensure that the “density” is non-negative. We will see in a
second that even without adding this constraint the solution will automatically fulfill this
constraint, hence there is no need to add this constraint explicitly.

If we now take the “derivative” with respect to p(x) and set it to 0 we get

0 = 1 + log(p(x))− ⟨θ, ϕ(x)⟩ − κ.

Solving for p(x),

p(x) = e⟨θ,ϕ(x)⟩+κ−1.

This is of course an exponential distribution as expected. Note that due to the special
structure of the solution p(x) ≥ 0 is automatically fulfilled.

8.8 Application To Physics

Let us re-derive one of the basic laws of physics – the Maxwell-Boltzmann distribution.

Assume that we have particles in R3. They each have a position and a velocity vector
associated to them. We will not be interested in the position but we are asking how the
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velocity vectors are distributed. Let v = (v1, v2, v2) be the velocity vector associated to a
particular particle.

We associate an average “kinetic energy” E (per particle) to the distribution

∫
p(v)

1

2
m(v2

1 + v2
2 + v2

3)dv = E, (8.8)

where m is the mass of a particle (all are assumed to have equal mass).

Let s =
√

v2
1 + v2

2 + v2
3, the speed. What is the maximum entropy distribution p(s)?

Note that in this case ϕ(v) = v2
1+v2

2+v2
3. Therefore, the form of the maximizing distribution

is

p(v) = eθ(v
2
1+v2

2+v2
3)−A(θ).

We recognize this to be a three-dimensional zero-mean Gaussian distribution with inde-
penden and identically distributed components. We conclude that each component is dis-
tributed according to

p(v) =
1√
2πσ2

e
v2

2σ2 ,

for some value of σ2. Going back to our orignal constraint (8.8) we see that σ2 = 2E
3m .

Summarizing, the velocity distribution of each component has the form

p(v) =

√
3m

4πE
e−

3mv2

4E .

What is the induced distribution of the overall speed s? Recall that the surface of a
sphere (in 3 D) of radius s has area 4πs2. Hence,

P{s ≤ S ≤ s+ ds} =

(
3m

4πE

) 3
2

e−
3ms2

4E 4πs2ds,

so that

p(s) =

√
27m3

4πE3
s2e−

3ms2

4E . (8.9)

Appealing to thermodynamics, we write E as E = 3/2kT , where k is the Boltzmann
constant and T is the temperature. The factor 3 accounts for the three degrees of freedom
and 1

2kT is the kinetic energy per degree of freedom. Then we get the usual form

p(s) =

√
2m3

πk3T 3
s2e−

ms2

2kT .

As an alternative derivation, we could have found p(s) by directly finding the maximum
entropy distribution on X = R+ with measure dν(s) = 4πs2ds, for s ≥ 0. In this case we
know that

p(s) = e−θs
2−A(θ)1{s≥0}.
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The normalizing condition reads
∫

s≥0
p(s)dν(s) =

∫

s≥0
e−θs

2−A(θ)4πs2ds =
π3/2

θ3/2
e−A(θ) = 1.

This tells us that A(θ) = 3
2 ln

π
θ . The second moment requires that

Ep(s)[s
2] =

∫

s≥0

(
θ

π

)3/2

e−θs
2
s2dν(s) =

3

2θ
=

2E

m
,

so that θ = 3m
4E . It follows that the distribution that maximizes this entropy when written

with respect to the Lebesque measure on R+ is equal to

p(s) =

(
θ

π

)3/2

4πs2e−θs
2 |θ= 3m

4E
,

which is equal to what we got in (8.9).

8.9 I-Projections

In previous lectures we have discussed at length Sanov’s theorem. Recall that if we have
given a family of distributions, call the family Π, and a fixed distribution P , then the
chance that we will mistake samples from P for samples from one of the elements of Π, is
exponentially small and the exponent is asymptotically equal to argminQ∈ΠD(Q∥P ). The
operation of finding the “closest” element of Π is called an I-projection. In general it is
difficult to compute this projection. But if the family is linear then the projection is again
easy to compute as we will see now.

Theorem 8.3. Let P be a fixed distribution with density p(x) and let Π be the set of all
distributions so that Eq[ϕ(x)] = µ for q ∈ Π. If Pθ has density

pθ = p(x)e⟨θ,ϕ(x)⟩−A(θ)

and EPθ
[ϕ(x)] = µ then

Pθ = argminQ∈ΠD(Q∥P ).
In words, Pθ is the I-projection of P onto Π.

Proof. The proof uses the same idea as we used to show that exponential distributions solve
the maximum entropy problem. We have

D(Q∥P ) =
∫
q(x) log

q(x)

p(x)
dν(x)

=

∫
q(x) log

pθ(x)

p(x)
dν(x) +

∫
q(x) log

q(x)

pθ(x)
dν(x)

=

∫
q(x)[⟨θ, ϕ(x)⟩ −A(θ)]dν(x) +D(Q∥Pθ)

=

∫
pθ(x)[⟨θ, ϕ(x)⟩ −A(θ)]dν(x) +D(Q∥Pθ)

=

∫
pθ(x) log

pθ(x)

p(x)
dν(x) +D(Q∥Pθ)

= D(Pθ∥P ) +D(Q∥Pθ)
≥ D(Pθ∥P ).
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8.10 Relationship between θ and E[ϕ(x)]

8.10.1 The forward map ∇A(θ)

Assume that we fix h(x) and ϕ(x). Then for every θ ∈ Θ there is a distribution pθ(x) and
an associated “mean” EPθ

[ϕ(x)]. This mapping θ 7→ µ = EPθ
[ϕ(x)] is called the “forward”

map. We have seen in (8.1) that it is given by ∇θA(θ).
Clearly this mapping is important. For simple distributions as for Bernoulli, Poisson,

or Gaussian this map is simple to state and simple to compute. But there are important
classes of distributions in the exponential family where this map is computationally difficult.
Let us give one such example.

Example 8.13 (Ising Model). The Isingmodel is a classical example from statistical physics
which was initially introduced in order to study magnetism. The associated exponential
distribution has the form

pθ(x) = e
∑

s∈V θsxs+
∑

(s,t)∈E θstxsxt−A(θ).

Here, the xs take values in {±1} and they are called spins. The set of spins is V and there
is an underlying undirected graph with vertex set V and edge set E. The strength of the
“interactions” between two spins that are connected by an edge (s, t) is θst. There are also
the “local fields” θs for every spin s ∈ V .

Note that we are here in a much “higher dimensional” setting – ϕ(x) has dimension
|V | + |E|. Given the local fields and the strength of the interactions we are typically
interested in the marginals and the pairwise correlations, i.e., we are exactly interested in
µ = EPθ

[ϕ(x)]. In particular we are interested if, e.g., some marginals become strongly
“biased” or pairs become strongly correlated. If we stay with the physical interpretation of
this model then such an “emergent” bias would represent the emergence of a global magnetic
field given the local interaction rules. “Emergent” here means that we envision that we
change the parameters of the model (the θs and θst) and that for some such parameters
even a small extra change might suddenly lead to biased marginals.

In summary, we are interested in the foward map θ 7→ µ. But this map is in general
exponentially complex to compute. E.g., if you look at the expression of A(θ), it has the
form

A(θ) = ln
∑

x∈{0,1}|V |

e
∑

s∈V θsxs+
∑

(s,t)∈E θstxsxt ,

requiring a sum over an exponential number of terms. And the same is true if you look
at the gradient of this expression since A(θ) is part of this gradient computation. So even
though the map is well-defined and mathematically simple to describe, it might be difficult
to compute.

Definition 8.2 (Set of Feasible Means). For a fixed ϕ(x) let

M = {µ ∈ Rd : ∃P so that EP [ϕ(x)] = µ}.
In words, for a fixed sufficient statistics, M is the set of all means that can be achieved
by some distribution. It is important here that P is not assumed to be an element of the
exponential family.
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Definition 8.3 (Regular Families). Let ϕ(x) be given. We say that the associated expo-
nential family is regular if Θ is open.

Definition 8.4 (Minimal Families). Let ϕ(x) be given. We say that the associated expo-
nential family is minimal if there does not exist a vector η so that

η⊤ϕ(x) = const,

ν(x)-almost everywhere.

Theorem 8.4. For a regular family the gradient ∇θA(θ) : Θ → M is one-to-one if and
only if the exponential representation is minimal.

Proof. Assume at first that the family is not minimal, i.e., there does exist an η so that
η⊤ϕ(x) = c, a constant, ν(x)-almost everywhere. Pick a θ1 ∈ Θ. Then for a sufficiently
small ϵ, θ2 = θ1 + ϵη ∈ Θ since we assumed that Θ was open (the family is regular). Note
that A(θ2) = A(θ1) + ϵc. Therefore

∇θA(θ1) = ∇θA(θ2).

Conversely, assume that the family is minimal. We claim that in this case A(θ) is strictly
convex. This implies that

A(θ2) > A(θ1) + ⟨∇θA(θ1), θ2 − θ1⟩,
A(θ1) > A(θ2) + ⟨∇θA(θ2), θ1 − θ2⟩.

We therefore have

⟨∇θA(θ1), θ1 − θ2⟩ > A(θ1)−A(θ2) > ⟨∇θA(θ2), θ1 − θ2⟩.

This implies that

⟨∇θA(θ1)−∇θA(θ2), θ1 − θ2⟩ > 0.

It remains to explain why A(θ) is strictly convex for a minimal family. Recall that ∇2
θA(θ)

is the convariance matrix of ϕ(x). So A(θ) is always convex. If the family is minimal then
for no η is ⟨η, ϕ(x)⟩ a constant. We conclude that the covariance of ⟨η, ϕ(x)⟩ is strictly
positive. But this covariance is equal to η⊤∇2

θA(θ)η, and so this quantity is strictly positive
for any η ∈ Θ.

8.10.2 The backward map

When we discussed the maximum entropy problem we had to assume that for a given mean
vector µ there exists a parameter θ so that EPθ

[ϕ(x)] = µ. Only then could we conclude
that the maximum entropy solution is an element of the exponential distribution. As we
will see now, this is not really much of a restriction as long as there is some distribution
that has this mean.

Theorem 8.5. In a minimal exponential family, the gradient map ∇θA(θ) : Θ → M is
onto the interior of M.
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We will not provide a proof here but refer the reader to [11].
We can therefore define a backward map from the interior of M onto Θ. This has the

pleasing consequence that if we are looking for a maximum entropy distribution then as
long as we pick a mean vector from the interior of M then the solution will be an element
of the exponential family.

This has another important consequence. Let us go back to the parameter estima-
tion problem discussed in Section 8.5. Assume that the samples do come from a minimal
exponential family with sufficient statistic ϕ(x) and that the parameter θ0 is such that
∇A(θ0) = µ is in the interior of M. Assume that we compute the empirical mean

µ̂ =
1

N

N∑

n=1

ϕ(x).

We know that µ̂
N→∞→ µ almost surely. Therefore, if we estimate the parameter by applying

the inverse map to µ̂ then this estimate will converge almost surely to the true parameter
θ0. In other words, this estimator is consistent. This gives us an well-founded justifcation
for using the ML estimator in the first place.

8.11 Problems

Problem 8.1. Find the parametric form of the maximum entropy density f satisfying the
Laplace transform condition

∫
f(x)e−xdx = α,

and give the constraints on the parameter.

Problem 8.2 (Exponential Families and Maximum Entropy 2). Find the maximum entropy
density f , defined for x ≥ 0, satisfying E[X] = α1, E[lnX] = α2. That is, maximize−

∫
f ln f

subject to
∫
xf(x)dx = α1,

∫
(lnx)f(x)dx = α2, where the integral is over 0 ≤ x < ∞.

What family of densities is this?

Problem 8.3. What is the maximum entropy distribution p(x, y) that has the following
marginals?

x
y

1 2 3

1 p11 p12 p12
1
2

2 p21 p22 p23
1
4

3 p31 p32 p33
1
4

2
3

1
6

1
6

Problem 8.4. (a) What is the parametric-form maximum entropy density f(x) satisfying
the two conditions

E[X8] = a E[X16] = b

(b) What is the maximum entropy density satisfying the condition

E[X8 +X16] = a+ b

(c) Which entropy is higher?
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Problem 8.5. What is the maximum entropy distribution, call it p(x, i), on [0,∞] × N,
both of whose marginals have mean µ > 0. (I.e., in one axis the distribution is over the
positive reals, whereas in the other one it is over the natural numbers.)

Problem 8.6 (Exponential Families and Maximum Entropy: I-projections). Let P denote
the zero-mean and unit-variance Gaussian distribution. Assume that you are given N iid
samples distributed according to P and let P̂N be the empirical distribution.

Let Π denote the set of distributions with second moment E[X2] = 2. We are interested
in

lim
N→∞

1

N
log Pr{P̂N ∈ Π} = − inf

Q∈Π
D(Q∥P ).

(a) Determine −arginfQ∈ΠD(Q∥P ), i.e., determine the element Q for which the infinum
is taken on.

(b) Determine − infQ∈ΠD(Q∥P ).

Problem 8.7. We learned in the course that as long as the set of feasible means is open
then every such mean can be realized by an element of the exponential family. In the
following verify this explicitly (by not referring to the above statement for the following
scenario).

(i) Let ϕ(x) = (x2).
(ii) Let ϕ(x) consist of all elements xixj , where i and j go from 1 to K.

Problem 8.8 (Exponential Families and Maximum Entropy). Let Y = X1+X2. Find the
maximum entropy of Y under the constraint E[X2

1 ] = P1, E[X
2
2 ] = P2 :

(a) If X1 and X2 are independent.
(b) If X1 and X2 are allowed to be dependent.

Problem 8.9 (Exponential Families and Maximum Entropy). For t > 0, consider a family
of distributions supported on [t,+∞] such that E[lnX] = 1

α + ln t, α > 0.

1. What is the parametric form of a maximum entropy distribution satisfying the con-
straint on the support and the mean?

2. Find the exact form of the distribution.
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Signal Representations

It is generally assumed that the student has basic familiarity with the early topics in this
chapter, such as bases, projections, and so on. Canonical references include [12, 13, 14].

Introduction

“Signal representation” refers to the act of representing a “signal” x as a linear combination
of elements in a “dictionary” composed of elements ϕℓ, where ℓ runs over integers :

x =
∑

ℓ∈Z
Xℓϕℓ. (9.1)

In (9.1) the signal is represented exactly but sometimes it is also useful to consider approxi-
mations. The coefficients Xℓ (9.1) are real or complex numbers. The basic idea is that once
we have such a representation, instead of working with the signal x, we may work with its
representation. Often this turns out to be convenient.

The primary object of study is to find good and “suitable” dictionaries {ϕℓ}ℓ∈Z. In this
module, we discuss the main methods and arguments relating to this quest. What is meant
by “suitable” above will vary on the application. But common criteria are that this leads
to sparse representations or to efficient processing.

Why do we discuss such representations in a course about Data Science? Before the lat-
est ML revolution, scientists and engineers spent a considerable effort into how to represent
signals efficiently. Much of this effort was seemingly swept away by the latest developments
in neural networks and the attitude right now is to let the system itself learn a suitable
representation. This works quite well. But it also has drawbacks. Neural networks can
represent a very large class of signals. The downside is that for a particular application you
might in fact not need this level of generality and you pay a price by potentially needing
more samples or having a considerable larger computational cost. Therefore, depending on
the application, it might be of considerable advantage to start with a representation that
is taylored to the given use case. And this means being aware of some of the underlying
trade-offs.

There is a second important connection. The representations we discuss can be consid-
ered as one form of “signal compression”. We want to use as few dimensions as possible to
represent a signal. We will discuss several other forms of compression, namely the Johnson-
Lindenstrauss dimensionality reduction scheme discussed in Section 10.2.2, as well as the
information-theoretic notion of compression. All three of these schemes try in some sense
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to accomplish a similar aim, but there are important distinctions between them. This does
not only make for good exam questions but it is important to clarify their differences when
deciding in an application how to proceed.

9.1 Fourier Representations

It is assumed that you have come across Fourier representations at least three times in your
previous education (specifically, in your classes Analysis III, Circuits & Systems II, and
Signal Processing for Communications). We here present a very brief overview, emphasizing
some of the more advanced aspects.

Among all signal representations, Fourier representations are arguably the most impor-
tant ones. This is due to several important reasons. First of all, they represent eigenvectors
of LTI systems. Further reasons include important connections to wide-sense stationary
signals and observations that many naturally occurring signal classes (audio, images, etc)
have specific characteristics in the frequency domain. Moreover, Fourier representations
can be calculated efficiently and have many desirable properties.

9.1.1 DFT and FFT

For the discrete Fourier transform (DFT), we follow the notation used in your prerequisite
class, see [15, Section 4.2]. In line with this, let

WN = e−j
2π
N . (9.2)

The Fourier matrix W is the matrix whose entry in row k, column n, is given by

{W}kn = W
(k−1)(n−1)
N , for n, k ∈ {1, 2, . . . , N}. (9.3)

and the DFT of the vector x is the vector X defined as

X = Wx. (9.4)

With this, the inverse transform is

x =
1

N
WHX. (9.5)

Explicitly, we can express the (k + 1) entry of the vector X (for k = 0, 1, . . . , N − 1) as

X[k] = ⟨x,wk⟩ = wH
k x =

N−1∑

n=0

x[n]e−j2π
kn
N , (9.6)

where the very last expression illustrates a slight notational anomaly, namely, we denote
the elements of the signal vector x by x[0], x[1], · · · , x[N −1], that is, we number them from
0 to N − 1. With this, we choose to follow the terminology used in [15, Section 4.2]. Also,

we have used the notation wk = (1,W k
N ,W

2k
N , · · · ,W (N−1)k

N )H .
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Properties of the DFT

One of the most important reasons for the importance of the DFT is the wealth of useful
properties it has. You have encountered these in detail in [15, Chapter 4].

Cyclic shifts. Consider the signal vector x of length N and with entries denoted
x[0], . . . , x[N−1]. Let y be the signal vector x, cyclically shifted to the right by n0 positions.
We have the following DFT pair:

y[n] = x[(n− n0) mod N ] ◦−• Y [k] =W kn0
N X[k], (9.7)

where X[0], · · · , X[N − 1] denote the entries of the DFT vector X =Wx.
To establish this property, it is more convenient to use the sum representation than the

matrix-vector representation. Namely,

Y [k] =

N−1∑

n=0

y[n]e−j
2π
N
kn =

N−1∑

n=0

x[(n− n0) mod N ]e−j
2π
N
kn (9.8)

and change summation variables by defining m = n− n0, which yields

Y [k] =

N−1−n0∑

m=−n0

x[m mod N ]e−j
2π
N
k(m+n0). (9.9)

We can rewrite the exponent as e−j
2π
N
k(m+n0) = e−j

2π
N
k(m mod N)e−j

2π
N
kn0 and introduce

ℓ = m mod N to obtain Y [k] = e−j
2π
N
kn0
∑N−1

ℓ=0 x[ℓ]e−j
2π
N
kℓ, which completes the proof.

Modulation property. Consider the signal vector x of length N and with entries denoted
x[0], . . . , x[N − 1]. Let y be the signal vector with entries

y[n] =W−k0n
N x[n] ◦−• Y [k] = X[(k − k0) mod N ], (9.10)

and the proof can be done following exactly the same steps as for the cyclic shift property.
Duality. A key observation is that these two properties are essentially one and the same.

This is a reflection of the fact that DFT and inverse DFT are essentially the same (up to a
complex-conjugate), and thus, the time and frequency variables can be exchanged.

9.1.2 The Other Fourier Representations

In your prerequisite classes, you have encountered several Fourier representations. For the
theoretical understanding of the underpinnings and underlying ideas, the most important
is the Fourier transform,

X(jω) =

∫ ∞

−∞
x(t)e−jωtdt, (9.11)

whose inverse is given by

x(t) =
1

2π

∫ ∞

−∞
X(jω)ejωtdω. (9.12)

As you recall, there are several subtle aspects as to whether this inversion formula will
indeed give back the original signal. Those will not be of particular interest to our class.
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9.2 The Hilbert Space Framework for Signal Representation

Perhaps the most powerful framework to understand signal representation and approxima-
tion is that of Hilbert space which you have briefly encountered in the class Signal Processing
for Communications [15, Chapter 3].1

A (real or complex) vector space is a set of vectors x ∈ E with an addition for vectors,
denoted by +, and a scalar multiplication (i.e., multiplication of a vector x by a real- or
complex-valued scalar α) such that for all x,y, z ∈ E and all scalars α, β :

• Commutativity : x+ y = y + x.

• Associativity : (x+ y) + z = x+ (y + z), and α(βx) = (αβ)x.

• Distributive laws : α(x+ y) = αx+ αy, and (α+ β)x = αx+ βx.

• There exists a vector 0 ∈ E such that x+ 0 = x for all x ∈ E.

• For all x ∈ E, there exists an element −x ∈ E such that x+ (−x) = 0.

• For all x ∈ E, 1 · x = x.

A (real or complex) inner product space is a (real or complex) vector space together with
an inner product ⟨x,y⟩ ∈ R or C satisfying, for all x,y, z ∈ E and scalars α,

• ⟨x+ z,y⟩ = ⟨x,y⟩+ ⟨z,y⟩.
• ⟨αx,y⟩ = α⟨x,y⟩.
• ⟨x,y⟩ = ⟨y,x⟩∗.
• ⟨x,x⟩ ≥ 0, with equality if and only if x = 0.

The induced norm of the inner product space is defined as ∥x∥ def
=
√

⟨x,x⟩. This definition
directly implies the following important and useful facts:

• Cauchy-Schwarz inequality: |⟨x,y⟩| ≤ ∥x∥ ∥y∥ for all x,y ∈ E, with equality if and
only if x = αy for some scalar α.

• Triangle inequality: ∥x+ y∥ ≤ ∥x∥ + ∥y∥, with equality if and only if x = αy for
some real-valued non-negative scalar α.

• Paralellogram identity: ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).
For example, to establish the Cauchy-Schwarz inequality, we may start by observing that
∥x − ⟨x,y⟩

∥y∥2 y∥2 ≥ 0, which holds by the definition of the norm. Writing this norm in terms

of inner products and repeatedly applying the properties of the inner product leads to the
Cauchy-Schwarz inequality.

The final key ingredient pertains to the convergence of sequences of vectors xn ∈ E.
Quite naturally, we say that such a sequence converges to x ∈ E if limn→∞ ∥xn−x∥ = 0. A
sequence xn ∈ E is called a Cauchy sequence if limm,n→∞ ∥xm − xn∥ = 0. Then, a Hilbert
space is an inner product space with the additional property that every Cauchy sequence
converges to a vector x ∈ E. (This can be thought of as a technical condition which for the
purpose of our class will not matter too much since it is satisfied for all examples of interest
to us.)

Example 9.1 (n-dimensional complex vector space). This is the usual vector space with
inner product ⟨x,y⟩ =∑n

i=1 xiy
∗
i . The induced norm is ∥x∥ =

√∑n
i=1 |xi|2.

1Our treatment here closely follows the development in the excellent textbook by Pierre Brémaud [13].
Alternatively, you may consult [14, Chapter 2] and/or follow the class COM-514 Mathematical Foundations
of Signal Processing.
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Example 9.2 (Square-integrable functions (often denoted as L2(R) or L2(R))). The set of
all functions f(t) satisfying

∫∞
−∞ |f(t)|2dt <∞, with inner product ⟨f, g⟩ =

∫∞
−∞ f(t)g∗(t)dt,

is a Hilbert space. The induced norm is ∥f∥ =
√∫∞

−∞ |f(t)|2dt.

Projection Theorem

For signal representation problems, the main reason why the Hilbert space framework is
powerful is the projection theorem. This theorem tackles the following question : Given a
Hilbert space H and a subspace G of H such that G is also a Hilbert space (meaning that
G is also closed). Then, a very common task is that of representing any element x ∈ H
only using elements from the subspace G “in the best possible way.” Of course, since G is
smaller than H, this leads to a more compact (approximate) representation of x, and is thus
of obvious interest for many applications. More precisely, for any x ∈ H, we are looking
for an approximation x̂ ∈ G such that ∥x − x̂∥ is as small as possible. The projection
theorem guarantees existence and uniqueness of this miminizer, and it establishes that the
minimizer has the very useful property that it is orthogonal to the approximation error,
i.e., ⟨x̂,x − x̂⟩ = 0. This last relationship is often called the orthogonality principle and
considerably simplifies the problem of finding the best approximation x̂. For any Hilbert
subspace G, let us define G⊥ = {z ∈ H : ⟨z,x⟩ = 0, ∀x ∈ G}. Then, we have the following
statement:

Theorem 9.1. Let x ∈ H. There exists a unique element y ∈ G such that x− y ∈ G⊥.
Moreover, ∥y − x∥ = infu∈G ∥u− x∥.

A proof can be found e.g. in [13, Sec. C1] or in [14, Ch.2]. We will also explore it to
some extent in the Homework.

Orthonormal Basis

A collection of vectors {en}n≥0 in a Hilbert space H is called an orthonormal system if
⟨en, ek⟩ = 0 for all n ̸= k, and ∥en∥ = 1, for all n ≥ 0.

Theorem 9.2 (Hilbert Basis Theorem). {en}n≥0 is an orthonormal system in H. Then,
the following statements are equivalent:

• {en}n≥0 generates the Hilbert space H.

• For all x ∈ H, we have ∥x∥2 =∑n |⟨x, en⟩|2.
• For all x ∈ H, we have x =

∑
n⟨x, en⟩en

Theorem 9.3 (Projection theorem, revisited). Suppose G is spanned by the orthonormal
basis {gn}n≥0. Then, the element y ∈ G that attains minu∈G ∥u− x∥ is given by y =∑

n⟨x,gn⟩gn.
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9.3 General Bases, Frames, and Time-Frequency Analysis

9.3.1 The General Transform

Definition

A useful general way of thinking of transforms is in the shape of inner products with a set
of “basis” functions:

Tx(γ) = ⟨x(t), ϕγ(t)⟩ (9.13)

=

∫ ∞

−∞
x(t)ϕ∗γ(t)dt, (9.14)

where ∗ denotes the complex conjugate.
The idea here is that ‘T’ denotes what kind of “basis” functions are being used and γ

is the index of a basis function. The basis functions are ϕγ(t) for all values of γ.
A good way of thinking about this is that for a fixed γ, the transform coefficient Tx(γ)

is the result of projecting the original signal x(t) onto the “basis” element ϕγ(t).
An example is the Fourier transform, where instead of the letter γ, we more often use

the letter Ω, and where ϕΩ(t) = ejΩt. Hence, in line with the above general notation, we
could write

FTx(Ω) = ⟨x(t), ϕΩ(t)⟩ (9.15)

=

∫ ∞

−∞
x(t)e−jΩtdt, (9.16)

Of course, we more often simply write X(Ω) (or X(jΩ)) in place of FTx(Ω).

Alternative Formulation

For our next step, we need the (general) Parseval/Plancherel formula, which asserts that
∫ ∞

−∞
f(t)g∗(t)dt =

1

2π

∫ ∞

−∞
F (jΩ)G∗(jΩ)dΩ. (9.17)

Using this, we can rewrite the general transform as

Tx(γ) = ⟨x(t), ϕγ(t)⟩ (9.18)

=

∫ ∞

−∞
x(t)ϕ∗γ(t)dt (9.19)

=
1

2π

∫ ∞

−∞
X(jΩ)Φ∗

γ(jΩ)dΩ (9.20)

= ⟨X(jΩ),
1

2π
Φγ(jΩ)⟩ (9.21)

Hence, we now have two good ways of thinking about transforms: For a fixed γ, the trans-
form coefficient Tx(γ) is the result of projecting the original signal x(t) onto the “basis”
element ϕγ(t), and equivalently, of projecting the original spectrum X(jΩ) onto the spec-
trum of the “basis” element ϕγ(t), which is 1

2πΦγ(jΩ).
Consider Figure 9.1: Merely as a thought experiment, let us think of a “basis” element

ϕγ(t) that lives
2 only inside the box illustrated in Figure 9.1. Then, a great way of thinking

about the transform coefficient Tx(γ) is that it tells us “how much” of the original signal
x(t) sits inside that box.

2In the next section, we will make precise what “lives” means.
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Figure 9.1: A conceptual picture: We imagine that the basis element ϕγ(t)
only lives in the shaded box, i.e., that the signal is very small outside the interval
t0 ≤ t ≤ t1, and that its spectrum Φγ(jΩ) is very small outside of the interval

Ω0 ≤ Ω ≤ Ω1.
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In line with this intuition, for the Fourier transform, the transform coefficient Tx(Ω)
tells us “how much” of the original signal x(t) sits at frequency Ω, and the ”box” shown in
Figure 9.1 is infinitesimally thin in frequency and infinitely long in time.

9.3.2 The Heisenberg Box Of A Signal

Reconsider the conceptual picture given in Figure 9.1. Now, we want to make this precise.
In order to do so, consider any signal ϕ(t). For simplicity (and without loss of generality),
we assume that the signal is “normalized” such that

∫ ∞

−∞
|ϕ(t)|2dt = 1. (9.22)

Note that by Parseval, this also means that 1
2π

∫∞
−∞ |Φ(jΩ)|2dΩ = 1.

We define the following quantities. The “middle” of the signal ϕ(t) is given by

mt =

∫ ∞

−∞
t|ϕ(t)|2dt. (9.23)

If you have taken a class in probability, you will recognize this to be the mean value of the
distribution |ϕ(t)|2.

Similarly, we define the “middle” of the spectrum Φ(jΩ) to be

mΩ =

∫ ∞

−∞
Ω

1

2π
|Φ(jΩ)|2dΩ, (9.24)

with a similar probability interpretation.
Moreover, we define:

σ2t =

∫ ∞

−∞
(t−mt)

2|ϕ(t)|2dt, (9.25)

σ2Ω =

∫ ∞

−∞
(Ω−mΩ)

2 1

2π
|Φ(jΩ)|2dΩ. (9.26)

Again, these can be understood as the respective variances of the two “probability distri-
butions.”

With these definitions, we can now draw a more precise picture of the time-frequency
box of the signal ϕ(t), as given in Figure 9.2.

We should also point out that for the Fourier transform, the basis functions are of the
form ϕ(t) = ejΩ0t, and for those, the above integrals do not all converge, so special care
is required mathematically. However, the right intuition is to say that the Heisenberg box
(the term appears in [12], and perhaps earlier) of the function ϕ(t) = ejΩ0t is a horizontal
line at frequency Ω0.

9.3.3 The Uncertainty Relation

So, what are the possible Heisenberg boxes?

Theorem 9.4 (uncertainty relation). For any function ϕ(t), the Heisenberg box must satisfy

σtσΩ ≥ 1

2
. (9.27)
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Figure 9.2: The Heisenberg box of the function ϕ(t) (i.e., the place in time and
frequency where the function ϕ(t) is really alive).

That is, Heisenberg boxes cannot be too small. Or: transforms cannot have a very high
time resolution and a very high frequency resolution at the same time.

Proof. Without loss of generality assume that mt = 0 and ∥ϕ(t)∥ = 1, i.e., the signal has
mean zero and norm 1. Further, let us assume that the signal ϕ(t) is real-valued to simplify
the proof somewhat. This in particular implies that mf = 0 as well. We then have

∣∣∣∣
∫ ∞

−∞
tϕ(t)ϕ′(t)dt

∣∣∣∣
2

≤
(∫ ∞

−∞
|tϕ(t)|2dt

)(∫ ∞

−∞
|ϕ′(t)|2dt

)

≤
(∫ ∞

−∞
|tϕ(t)|2dt

)
1

2π

(∫ ∞

−∞
|jΩΦ(jΩ)|2dΩ

)

≤ σ2t σ
2
Ω.

To finish the proof note that

∫ ∞

−∞
tϕ(t)ϕ′(t)dt =

1

2

∫ ∞

−∞
t
dϕ(t)2

dt
dt

=
1

2
tϕ(t)2 |∞−∞
︸ ︷︷ ︸

=0

−1

2

∫ ∞

−∞
ϕ(t)2dt

︸ ︷︷ ︸
=1

= −1

2
.
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9.3.4 The Short-time Fourier Transform

It has long been recognized that one of the most significant drawbacks of the Fourier trans-
form is its lack of time localization: An event that is localized in time (such as a signal
discontinuity) affects all of the frequencies (remember the Gibbs phenomenon). This feature
is clearly undesirable for many engineering tasks, including compression and classification.

To regain some of the time localization, one could do a “short-time” Fourier trans-
form, essentially chopping up the signal into “short” pieces and taking Fourier transforms
separately for each piece. Kind of trivially, this gives back some time localization.

More generally, the following form can be given:

STFTx(τ,Ω) =

∫ ∞

−∞
x(t)g∗(t− τ)e−jΩtdt, (9.28)

where the function g(t) is an appropriate “window” function that cuts out a piece of the
signal x(t). With the parameter τ, we can place the window wherever we want.

With regard to the general transform, here, instead of the letter γ, we use the pair (τ,Ω),
and

ϕτ,Ω(t) = g(t− τ)ejΩt. (9.29)

Many different window functions g(t) are being used, but one of the easiest to understand
is the Gaussian window:

g(t) =
1

4
√
πσ2

e−
t2

2σ2 . (9.30)

Note that strictly speaking, this window is never zero, so it does not really “cut” the signal.
However, if |t| is large, g(t) is tiny, so this is “almost the same as zero,” but much easier to
analyze. With this window, we find the “basis” elements to be

ϕτ0,Ω0(t) =
1

4
√
πσ2

e−
(t−τ0)

2

2σ2 ejΩ0t. (9.31)

Now, we want to find explicitly the Heisenberg box of this “basis” function. To this end,
we need the Fourier transform of the Gaussian window, which is known to be

G(jΩ) =
4
√
4πσ2e−

Ω2σ2

2 , (9.32)

and thus, using the standard time- and frequency-shift properties of the Fourier transform,

Φτ0,Ω0(jΩ) =
4
√
4πσ2e−

(Ω−Ω0)
2σ2

2 e−jΩτ0 . (9.33)

Now, we can find the corresponding parameters of the Heisenberg box as:

mt = τ0, (9.34)

mΩ = Ω0 (9.35)

σ2t =
σ2

2
(9.36)

σ2Ω =
1

2σ2
, (9.37)

and so, we can draw the corresponding Figure 9.2. It is also interesting to note that for
the Gaussian window, the Heisenberg uncertainty relation (Theorem 9.4) is satisfied with
equality. It can be shown that the Gaussian window is (essentially) the only function that
satisfies the uncertainty relation with equality, see e.g. [12, p.31].
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9.4 Problems

Problem 9.1 (The Fourier matrix diagonalizes all circulant matrices.). The discrete Fourier
transform (DFT) X of the vector x is given by

X =Wx and x =
1

N
WHX. (9.38)

In this homework problem, you will prove that the Fourier matrix diagonalizes all circulant
matrices.

(a) To cut the derivation into two simpler steps, we introduce an auxiliary matrix M ,
defined as

M =WA = W




b0 bN−1 bN−2 bN−3 . . . b1
b1 b0 bN−1 bN−2 . . . b2
b2 b1 b0 bN−1 . . . b3
b3 b2 b1 b0 . . . b4
...

...
...

...
. . .

...
bN−1 bN−2 bN−3 bN−4 . . . b0




︸ ︷︷ ︸
This is a circulant matrix

. (9.39)

Let us denote the unitary DFT of the sequence {b0, b1, . . . , bN−1} by {B0, B1, . . . , BN−1}.
Write out the matrix M in terms of {B0, B1, . . . , BN−1}. Hint: The first column of the
matrix M is simply given by

W




b0
b1
b2
b3
...

bN−1




=




B0

B1

B2

B3
...

BN−1




(9.40)

To find the second column, you will need to use some Fourier properties.
(b) Using the matrix M from above, compute the full matrix product

WAWH = MWH . (9.41)

Hint: Handle every row of the matrix M separately. Define the vector m such that mH is
simply the first row of the matrixM . But the product mHWH is easily computed, recalling
that mHWH = (Wm)H .

Problem 9.2 (Inner Products). Consider the standard n-dimensional vector space Rn.

1. Characterize the set of matrices W for which yTWx is a valid inner product for any
x,y ∈ Rn.

2. Prove that every inner product ⟨x,y⟩ on Rn can be expressed as yTWx for an appro-
riately chosen matrix W.

3. For a subspace of dimension k < n, spanned by the basis b1,b2, . . . ,bk ∈ Rn, express
the orthogonal projection operator (matrix) with respect to the general inner product
⟨x,y⟩ = yTWx. Hint: For any vector x ∈ Rn, express its projection as x̂ =

∑k
j=1 αjbj .
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Problem 9.3 (A Hilbert space of matrices). In this problem, we consider the set of matrices
A ∈ Rm×n with standard matrix addition and multiplication by scalar.

(a) Briefly argue that this is indeed a vector space, using the definition given in class.
(b) Show that ⟨A,B⟩ = trace(BHA) is a valid inner product.
(c) Explicitly state the norm induced by this inner product. Is this a norm that you

have encountered before?
(d) Consider as a further inner product candidate the form ⟨A,B⟩ = trace(BHWA),

where W is a square (m×m) matrix. Give conditions on W such that this is a valid inner
product. Explicit and detailed arguments are required for full credit.

Problem 9.4 (Canonical Correlation Analysis). Let X and Y be zero-mean real-valued
random vectors with covariance matrices RX and RY, respectively. Moreover, let RXY =
E[XYT ]. Our goal is to find vectors u and v such as to maximize the correlation between
uTX and vTY, that is,

max
u,v

E[uTXYTv]√
E[|uTX|2]

√
E[|vTY|2]

. (9.42)

Show how we can find the optimizing choices of the vectors u and v from the problem
parameters RX, RY, and RXY.

Hint: Recall for the singular value decomposition that

max
v

∥Av∥
∥v∥ = max

∥v∥=1
∥Av∥ = σ1(A), (9.43)

where σ1(A) denotes the maximum singular value of the matrix A. The corresponding
maximizer is the right singular vector v1 (i.e., eigenvector of ATA) corresponding to σ1(A).
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Compression and Dimensionality
Reduction

In this chapter we will investigate two kinds of “compressions.” First, we will go back to
classical data compression and explore the connection between entropy (entropy rate) and
the amount of data we need in order to losslessly describe a source. Second, and closer
to the SVD example, we explore how data in high dimensions can often be represented in
lower dimensions without essential loss in accuracy.

10.1 Data compression

Notation. Given a set A we denote by A∗ the set of all finite sequences {(a1, . . . , an) :
n ≥ 0, ai ∈ A} (including the null sequence λ of length 0). In particular {0, 1}∗ =
{λ, 0, 1, 00, 01, 10, 11, 000, . . . }.

Consider the problem of assigning binary sequences (also called binary strings) to ele-
ments of a finite set U . Such an assignment c : U → {0, 1}∗ is called a binary code for the
set U . The binary string c(u) is called the codeword for u. The collection {c(u) : u ∈ U} is
thus the set of codewords.

Definition 10.1. A code c is called injective if for all u ̸= v we have c(u) ̸= c(v).

Definition 10.2. A code c is called prefix-free if c(u) is not a prefix of c(v) for all u ̸= v.
In particular, if c is prefix-free then c is injective. (To be clear: a string a1 . . . am is a prefix
of a string b1 . . . bn if m ≤ n and ai = bi for i = 1, . . . ,m. Thus, the null string is a prefix
of any string, and each string is a prefix of itself.)

Lemma 10.1. Suppose c : U → {0, 1}∗ is injective. Then,
∑

u 2
−length(c(u)) ≤ log2(1+ |U|).

Proof. Without loss of generality, we can assume that whenever k = length(c(u)) for some
u, then for every binary string b of length i < k there is a v with b = c(v). (Otherwise, there
is a b with length(b) < k which is not a codeword, and replacing c(u) with b will preserve
the injectiveness of c and increase the left hand side of the inequality.)

For such a code c, with k denoting the length of the longest codeword, the set of
codewords is the union of

⋃k−1
i=0 {0, 1}i with a non-empty subset of {0, 1}k. With 1 ≤ r ≤ 2k

denoting the cardinality of this last subset, we have |U| = 2k− 1+ r and
∑

u 2
−length(c(u)) =

k + r2−k. As log2(1 + |U|) = k + log2(1 + r2−k) and 0 < r2−k ≤ 1, all we need to show

121
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is x ≤ log2(1 + x) for 0 < x ≤ 1. As equality obtains for x = 0 and x = 1, the inequality
follows from the concavity of log.

Lemma 10.2. Suppose c : U → {0, 1}∗ is prefix-free. Then,
∑

u 2
−length(c(u)) ≤ 1. Con-

versely, if ℓ : U → {0, 1, 2, . . . } with
∑

u 2
−ℓ(u) ≤ 1, then there exists a prefix-free code

c : U → {0, 1}∗ with length(c(u)) = ℓ(u).

Proof. Given a binary sequence a = a1 . . . am, let p(a) =
∑m

i=1 ai2
−i denote the rational

number whose binary expansion is 0.a1 . . . am. With this notation, a binary sequence a =
a1 . . . am is a prefix of a binary sequence b = b1 . . . bn if and only the p(b) lies in the interval
I(a) = [p(a), p(a) + 2−m).

For the first claim, observe that c being prefix-free thus implies that the intervals I(c(u))
are disjoint. As I(c(u)) is of size 2−length(c(u)) and all of the intervals are included in [0, 1),
the inequality follows.

For the second claim, order the elements of U as u1, . . . , uK such that ℓ1 := ℓ(u1) ≤ · · · ≤
ℓK := ℓ(uK). Let pk =

∑
i<k 2

−ℓi and set Ik = [pk, pk + 2−ℓk). Observe that the intervals
I1, . . . , IK are disjoint, and Ik ⊂ [0, 1). Furthermore, for each k, 2ℓkpk is an integer, thus
pk can be expressed in binary as 0.b(k) with b(k) a binary string of length ℓk. The code
c(uk) = b(k) now has the required properties — it being prefix free a consequence of the
disjointness of the collection intervals Ik.

Lemma 10.3. Suppose P ∈ Π(U) is a probability distribution on U and U is random
variable with distribution P . Then, with H(U) = −∑u P (u) log2 P (u) denoting the entropy
of U ,

(i) for any prefix-free c : U → {0, 1}∗, E[length(c(U))] ≥ H(U);

(ii) there exists a prefix-free c : U → {0, 1}∗ with E[length(c(U))] ≤ H(U) + 1;

(iii) for any injective c : U → {0, 1}∗, E[length(c(U))] ≥ H(U)− log2 log2(1 + |U|),

(iv) there exists an injective c : U → {0, 1}∗ with E[length(c(U))] ≤ H(U).

Proof. For (i) and (iii) let Q(u) = 2−length(c(u)) and observe that

H(U)− E[length(c(U))] =
∑

u

P (u) log2
Q(u)

P (u)
≤ log2

∑

u

Q(u),

where the inequality is because log is concave. When c is prefix-free
∑

uQ(u) ≤ 1 by
Lemma 10.2, and when c is injective

∑
uQ(u) ≤ log2(1+ |U|) by Lemma 10.1. The inequal-

ities (i) and (iii) thus follow.

For (ii) set ℓ(u) = ⌈− log2 P (u)⌉. As 2−ℓ(u) ≤ P (u), we see that
∑

u 2
−ℓ(u) ≤ 1 and

by Lemma 10.2 there exists a prefix-free code c with length(c(u)) = ℓ(u). As ℓ(u) <
− log2 P (u) + 1, (ii) follows.

For (iv) order the elements of U as u1, . . . , uK with P (u1) ≥ · · · ≥ P (uK). Let c(uk) = bk
where bk is the kth element of the sequence λ, 0, 1, 00, 01, 10, 11, 000, 001, . . . , (e.g., b1 = λ,
b2 = 0, b3 = 1, b4 = 00, . . . , b9 = 001, . . . ). Observe that length(bk) = ⌊log2 k⌋ ≤ log2 k.
Also note that 1 ≥ ∑k

i=1 P (ui) ≥ kP (uk), and thus log2 k ≤ − log2 P (uk). Consequently,
for this c, E[length(c(U))] ≤ −∑k P (uk) log2 P (uk) = H(U).
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Corollary 10.4. Suppose U1, U2, . . . is a stochastic process. Then for any sequence cn :
Un → {0, 1}∗ of injective codes

lim inf
n

1

n
E[length(cn(U

n))] ≥ lim inf
n

1

n
H(Un),

and there exists a sequence cn of prefix-free codes for which

lim sup
n

1

n
E[length(cn(U

n))] ≤ lim sup
n

1

n
H(Un).

In particular, if r = limn
1
nH(Un) exists, all faithful representations of the process U1, U2, . . .

with bits will asymptotically require at least r bits per letter, and there is a representation
that asymptotically requires exactly as much.

Proof. The first inequality follows from noting that

E[length(cn(U
n))] ≥ H(Un)− log2 log2(1 + |U|n)

and observing that limn
1
n log2 log2(1+ |U|n) = 0. The second inequality follows from noting

that there exist prefix-free cn with

E[length(cn(U
n))] ≤ H(Un) + 1

and that limn 1/n = 0.

Remark. Lemma 10.2 gives evidence of a strong connection between prefix-free codes and
probability distributions. On the one hand, given a prefix-free code c, one can construct a
probability distribution Q that assigns the letter u the probability Q(u) = 2−length(c(u)). By
the lemma,

∑
uQ(u) ≤ 1; if equality holds Q is indeed a probability distribution, otherwise,

we can assign 1−∑uQ(u) as the probability Q(u0) of a fictitious symbol u0 ̸∈ U . If U is a
random variable with distribution P , we then have (by assigning P (u0) = 0 if necessary),

E[length(c(U))]−H(U) =
∑

u

P (u)[length(c(U)) + logP (u)] = D(P∥Q).

On the other hand, given a distribution Q ∈ Π(U), by Lemma 10.2 we can construct a
prefix-free code c : U → {0, 1}∗ with length(c(u)) = ⌈− log2Q(u)⌉. As − log2Q(u) ≤
length(c(u)) < − log2Q(u) + 1, we see that

E[length(c(U))]−H(U) =
∑

u

P (u)[length(c(u)) + log2 P (u)]

is bounded from below by D(P∥Q), and from above D(P∥Q) + 1.
These observations give the divergence D(P∥Q) an interpretation as the expected num-

ber of “excess” bits (beyond the minimum possible H(U)) a code based on Q requires when
describing a random variable with distribution P .

Consequently, if we are given S ⊂ Π and told that the distribution P of a random variable
U belongs to S, a reasonable strategy to design a code c is to look for a distribution Q ∈ Π
such that

sup
P∈S

D(P∥Q)

is small (e.g., by finding the Q that minimizes this quantity) and construct a code c based
on Q as above.
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Example 10.1. To illustrate the remark above, suppose we are told that U1, U2, . . . are
binary and i.i.d. random variables. The distribution of Un can be parametrized by θ =
Pr(U1 = 1), and is given by

Pr(Un = un) = Pnθ (u
n) = (1− θ)n0(un)θn1(un)

where n0(u
n) and n1(u

n) are the number of zeros and ones in the sequence u1 . . . un. With
this notation, Sn = {Pnθ : 0 ≤ θ ≤ 1} is the class of distributions that we are told the
distribution of Un belongs to.

Consider now a sequence of conditional distributions

QUk+1|Uk(u|uk) = nu(u
k) + 1

k + 2

where nu(u
k) is as above, denoting the number of u’s in u1 . . . uk. Note that QU1(0) =

QU1(1) = 1/2. Define

Qn(u
n) =

n∏

i=1

QUi|U i−1(ui|ui−1).

One can prove by induction on n, that for any n ≥ 1 and any un ∈ {0, 1}n,

Qn(u
n) ≥ 1

n+ 1

(
n0(u

n)

n

)n0(un)(n1(un)
n

)n1(un)

.

If U1, . . . , Un are i.i.d. with common distribution Pθ,

D(Pnθ ∥Qn) = E

[
log

Pnθ (U
n)

Qn(Un)

]

≤ log(n+ 1) + E

[
log

Pnθ (U
n)

(n0(Un)/n)n0(Un)(n1(Un)/n)n1(Un)

]

= log(n+ 1) + E

[
n0(U

n) log
n(1− θ)

n0(Un)
+ n1(U

n) log
nθ

n1(Un)

]

≤ log(n+ 1) + n(1− θ) log
n(1− θ)

n(1− θ)
+ nθ log

nθ

nθ
= log(n+ 1),

where the inequality in the last line is because x 7→ x log[1/x] is concave and E[n0(U
n)] =

n(1− θ), and E[n1(U
n)] = nθ.

Consequently, we see that supPn∈Sn
D(Pn∥Qn) ≤ log(n + 1). If Qn were used to con-

struct a prefix-free code cn : {0, 1}n → {0, 1}∗, by the remark above, cn will satisfy

1

n
E[length(cn(U

n))]−H(P ) ≤ 1

n
[log(n+ 1) + 1]

whenever Un is i.i.d. with distribution P . As the right hand side vanishes as n gets large,
it would be appropriate to call the sequence of codes cn “asymptotically universal for the
class of binary i.i.d. data”. In the exercises we will see another choice of Qn which improves
the upper bound on D(Pn∥Qn) to 1

2 log n.
Note that, had we chosen Qn to be a member of Sn, say Qn = Pnθ0 for some θ0, then

D(Pnθ ∥Qn) would have grown linearly in n for any θ ̸= θ0. Thus, even if we know that the
true distribution P is in S, choosing Q outside of S (as we have done above) may lead to a
better code construction.
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Remark. The example above also illustrates a connection between compression and pre-
diction. (One can also use the term ‘learning’ instead of prediction.) Suppose we have a
family Sn of distributions on Un, and we are given a prefix-free code cn : Un → {0, 1}∗
performs well, in the sense that

sup
P∈Sn

1

n
EP [length(cn(U

n))]− 1

n
H(Un)

is small. Construct the distributionQ associated with the code c, i.e., Q(un) = 2−length(cn(un))

and factorize it as Q(un) =
∏n
i=1Q(ui|ui−1). As the code c performs well, 1

nD(P∥Q) is small
for all P ∈ Sn. But

1

n
D(P∥Q) =

1

n

∑

un

P (un) log
P (un)

Q(un)

=
1

n

n∑

i=1

∑

un

P (un) log
P (ui|ui−1)

Q(ui|ui−1)

=
1

n

n∑

i=1

∑

ui

P (ui) log
P (ui|ui−1)

Q(ui|ui−1)

=
1

n

n∑

i=1

∑

ui−1

P (ui−1)
∑

ui

P (ui|ui−1) log
P (ui|ui−1)

Q(ui|ui−1)

=
1

n

n∑

i=1

∑

ui−1

P (ui−1)D(P (·|ui−1)∥Q(·|ui−1)),

so we conclude that for a large fraction of i’s in 1, . . . , n, and for a set of ui−1’s with large
P probability, the quantity D(P (·|ui−1)∥Q(·|ui−1)) is small.1 Which is to say, no matter
what P from Sn is the true distribution of the data, if after observing ui−1 we predicted
the distribution of the next symbol ui to be Q(·|ui−1), our prediction will be close to the
true distribution P (·|ui−1) for most i’s and for a high probability set of ui−1’s.

10.2 Dimensionality Reduction

Assume that we are given n data points in Rd, call them u1, · · ·un. If d is very large then
it might be challenging to store and process this “raw” data set. We are asking if we can
represent this data in lower dimension, let us say Rk, while maintaining some of its basic
properties. In the sequel, we discuss two versions of this.

10.2.1 PCA

In this section, we discuss Principal Components Analysis (PCA), sometimes also referred
to as the Karhunen-Loève Transform (KLT). This goes back to [16, 17, 18]. We start by
fixing a certain k < d. The goal is to find a good k-dimensional basis such that most of
the data points can be represented quite accurately in terms of this basis. It is not initially

1To be concrete, if 1
n
D(P∥Q) is less than ϵ, then, except for a ϵ1/3 fraction of the i’s, we have∑

ui−1 P (ui−1)D(P (·|ui−1)∥Q(·|ui−1)) < ϵ2/3, and except for a set of P probability ϵ1/3 of ui−1’s, we have

D(P (·|ui−1)∥Q(·|ui−1)) < ϵ1/3.
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clear what “most” and “quite accurately” should mean. One intuitively pleasing metric is
to select the basis (and corresponding coefficients for each data sample) so as to minimize
the overall mean-squared error, that is:

n∑

j=1

∥x(j) − x̂(j)∥2, (10.1)

where x̂(j) represents the best approximation to x(j) within the chosen basis. In spite of
appearance, this problem actually has a clean solution : This is precisely the Eckart-Young
theorem.

To see this, let us denote the (yet unknown) basis vectors by ϕ1, ϕ2, · · · , ϕk ∈ Rd and
collect them (as column vectors) into the d× k matrix

Φ =
(
ϕ1 ϕ2 · · · ϕk

)
. (10.2)

Then, we can express

x̂(j) = Φf (j), (10.3)

where f (j) ∈ Rk is the feature vector corresponding to data sample x(j). Hence, we are
looking for

min
feature vectors {f (j)}nj=1∈Rk



 min

basis vectors {ϕi}ki=1∈Rd

n∑

j=1

∥x(j) − Φf (j)∥2


 . (10.4)

To see how to proceed, we can rewrite

n∑

j=1

∥x(j) − Φf (j)∥2 =
n∑

j=1

trace
(
(x(j) − Φf (j))(x(j) − Φf (j))H

)

= trace




n∑

j=1

(x(j) − Φf (j))(x(j) − Φf (j))H




= trace
(
(X − ΦF )(X − ΦF )H

)

= ∥X − ΦF∥2F , (10.5)

where we have collected all the data samples into the d × n matrix X and all the feature
vectors into the k × n matrix F.

This problem is precisely addressed by the Eckart–Young theorem that we have discussed
earlier. The answer is simply to determine the SVD of the matrix X, and retain only the p
largest singular values along with their corresponding singular vectors. Explicitly:

X = UΣV H =

r∑

i=1

σiuiv
H
i , (10.6)

where r is the rank of the matrix X and where, as always, we assume that the singular
values are ordered in decreasing order. Then, from the Eckart–Young theorem, we know
that our error criterion is minimized if

ΦF =
k∑

i=1

σiuiv
H
i . (10.7)
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In other words, we may select our basis vectors of length d to be the left singular vectors
of X (that is, the eigenvectors of XXH),

ϕ1 = u1, ϕ2 = u2, · · · , ϕk = uk, (10.8)

in which case the matrix of feature vectors (of dimension k × n) is given by

F =




σ1v
H
1

σ2v
H
2

...
σkv

H
k


 . (10.9)

For example, the first column of this matrix is the feature vector corresponding to the first
data sample, x(1). Of course, this feature vector (of length k) can also be found by projecting
the data sample successively into the k basis elements u1,u2, · · · ,uk. It is left as an exercise
to the reader to show that this indeed leads to the same answer.

Let us also remark that this is, quite obviously, not the unique basis — we can always
rotate the basis to find an alternative basis (spanning exactly the same space). This will
change the feature vectors, but it will not change the approximation quality.

We should note that many textbooks present PCA without proof simply as follows:
We first find the covariance matrix of the data samples (using the above notation, this is
the matrix XXH), and then find its eigendecomposition. Clearly, the eigenvectors of the
matrix XXH are precisely the vectors u1,u2, · · · ,ud above, and the PCA stipulates to use
the eigenvectors corresponding to the k largest eigenvalues of XXH as the approximate
basis — exactly the same solution as the one we found above.

10.2.2 Johnson-Lindenstrauss

In this section, we present an insight found by Johnson and Lindenstrauss in [19]. We start
from n data points in Rd, call them u1, · · ·un. We ask if we can find a map F : Rd 7→ Rk,
for 1 ≤ k ≤ d, so that for a given δ ∈ (0, 1) and all 1 ≤ i, j ≤ n

(1− δ)∥ui − uj∥22 ≤ ∥F (ui)− F (uj)∥22 ≤ (1 + δ)∥ui − uj∥22.

We then talk of an embedding of the data in Rn that approximately preserves Euclidean
distances. We then interested in the following questions.

1. For what dimensions 1 ≤ k ≤ d and parameters 0 < δ < 1 does such a mapping exist?

2. Can this mapping be found efficiently?

It turns out that a random linear mapping will do the trick as long as k is of order log(n).
Note that in this statement the required dimension depends on the number of points we are
embedding but not on the dimension that the original points came from. Our plan is simple.
We define a random linear map so that in expectation the squared norm of vectors stays
preserved. Since the map is linear this implies that the squared distance between two points
also stays preserved in expectation under such a map. We will then use a suitable tail to
show that with high probability the squared distance is not too far away from this expected
value and, finally, use the union bound to show that by a suitable choice of parameters we
can guarantee that for all

(
n
2

)
pairs the squared distances stay approximately preserved.
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Lemma 10.5 (Johnson-Lindenstrauss). Let S = {u1, · · · , un} be a set of n points in Rd,
n, d ∈ N. Let 0 < δ < 1 and let k ∈ N,

k >
16

δ2
log(n).

Then there exists a function F : Rd 7→ Rk so that for all ui, uj ∈ S

(1− δ)∥ui − uj∥2 ≤ ∥F (ui)− F (uj)∥2 ≤ (1 + δ)∥ui − uj∥2.

In words, we can embed the set S of points in Rd into the k-dimensional space Rk with only
a small distortion of the pairwise Euclidean distances.

Proof. Let X be a k × d real-valued random matrix with i.i.d. entries that are zero-mean,
unit-variance Gaussians. Let F be given by

F (u) =
1√
k
Xu.

We claim that E[∥F (u)∥22] = ∥u∥22. Let X(i) denote the i-th row of X. Fix u ∈ Rd.

Note that X(i)u
∥u∥2 is a Gaussian random variable with mean zero and variance 1, call it

Zi (the randomness here comes from the map). Then F (u) = 1√
k
(Z1, · · · , Zn)T ∥u∥2 and

∥F (u)∥22 = 1
k (
∑k

i=1 Z
2
i )∥u∥22. The claim follows by taking the expectation over this equality.

Consider the statement

(1− δ)∥u∥2 ≤ ∥F (u)∥2 ≤ (1 + δ)∥u∥2.

This statement is equivalent to the statement that

1− δ ≤ 1

k

k∑

i=1

Z2
i ≤ 1 + δ.

In other words we are looking for tail bounds for the sum of squares of Gaussians. Note
that if Z is a Gaussian then Z2 follows a χ2 distribution (with one degree of freedom).
Note that a χ2 distribution is not subgaussian, but it is subexponential. Therefore, from
Lemma 2.7, we can obtain the following tail bound

P{|1
k

k∑

i=1

Z2
i − 1| > δ} ≤ 2e−δ

2k/8.

Now note that the map F is linear. If u = ui − uj , for ui, uj ∈ S, this means that
F (ui) − F (uj) = F (ui − uj) = F (u). Therefore, the above condition is equivalent to the
condition that the random linear map preserves the distance of a fixed pair.

To finish the proof note that there are
(
n
2

)
pairs of points and that we want to approxi-

mately preserve all these distances. Using the union bound we see that the probability that
not all of these distances are preserved is upper bounded by

(
n

2

)
2e−δ

2k/8.
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Let us say that we want this probability to be upper bounded by ϵ, 0 < ϵ < 1. Solving for
k we then get the condition

k ≥ 8

δ2
log(n2/ϵ).

If all we want is to show the existence of a suitable map then we can let ϵ tend to 1 and
make the inequality strict. This would apply if we are allowed to generate such a random
map, check if it works, and repeat the procedure until we have found a suitable map. If
we cannot check (e.g., perhaps we do not even have the set S at the point in time when
we need to decide) we likely want to pick a sufficiently small ϵ and choose the dimension k
according to this ϵ.

10.3 Problems

Problem 10.1 (Elias coding). Let 0n denote a sequence of n zeros. Consider the code (the
subscript U a mnemonic for ‘Unary’), CU : {1, 2, . . . } → {0, 1}∗ for the positive integers
defined as CU (n) = 0n−1.

(a) Is CU injective? Is it prefix-free?

Consider the code (the subscript B a mnenonic for ‘Binary’), CB : {1, 2, . . . } → {0, 1}∗
where CB(n) is the binary expansion of n. I.e., CB(1) = 1, CB(2) = 10, CB(3) = 11,
CB(4) = 100, . . . . Note that

lengthCB(n) = ⌈log2(n+ 1)⌉ = 1 + ⌊log2 n⌋.

(b) Is CB injective? Is it prefix-free?

With k(n) = lengthCB(n), define C0(n) = CU (k(n))CB(n).

(c) Show that C0 is a prefix-free code for the positive integers. To do so, you may find it
easier to describe how you would recover n1, n2, . . . from the concatenation of their
codewords C0(n1)C0(n2) . . . .

(d) What is length(C0(n))?

Now consider C1(n) = C0(k(n))CB(n).

(e) Show that C1 is a prefix-free code for the positive integers, and show that length(C1(n)) =
2 + 2⌊log(1 + ⌊logn⌋)⌋+ ⌊logn⌋ ≤ 2 + 2 log(1 + log n) + log n.

Suppose U is a random variable taking values in the positive integers with Pr(U = 1) ≥
Pr(U = 2) ≥ . . . .

(f) Show that E[logU ] ≤ H(U), [Hint: first show iPr(U = i) ≤ 1], and conclude that

E[lengthC1(U)] ≤ H(U) + 2 log(1 +H(U)) + 2.

Problem 10.2 (Code Extension). Suppose |U| ≥ 2. For n ≥ 1 and a code c : U → {0, 1}∗
we define its n-extension cn : Un → {0, 1}∗ via cn(un) = c(u1) . . . c(un). In other words
cn(un) is the concatenation of the binary strings c(u1), . . . , c(un). A code c is said to be
uniquely decodeable if for any uk and ũm with uk ̸= ũm, ck(uk) ̸= cm(ũm).
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(a) Show that if c is uniquely decodable, then for all n ≥ 1, cn is injective.

(b) Show that if c is not uniquely decodable, there are uk and ũm with u1 ̸= ũ1 and
ck(uk) = cm(ũm).

(c) Show that if c is not uniquely decodable, then there is an n for which cn is not injective.
[Hint: try n = k +m.]

Problem 10.3 (Prediction and coding). After observing a binary sequence u1, . . . , ui, that
contains n0(u

i) zeros and n1(u
i) ones, we are asked to estimate the probability that the

next observation, ui+1 will be 0. One class of estimators are of the form

P̂Ui+1|U i(0|ui) = n0(u
i) + α

n0(ui) + n1(ui) + 2α
P̂Ui+1|U i(1|ui) = n1(u

i) + α

n0(ui) + n1(ui) + 2α
.

We will consider the case α = 1/2, this is known as the Krichevsky–Trofimov estimator.
Note that for i = 0 we get P̂U1(0) = P̂U1(1) = 1/2.

Consider now the joint distribution P̂ (un) on {0, 1}n induced by this estimator,

P̂ (un) =
n∏

i=1

P̂Ui|U i−1(ui|ui−1).

(a) Show, by induction on n that, for any n and any un ∈ {0, 1}n,

P̂ (u1, . . . , un) ≥
1

2
√
n

(n0
n

)n0
(n1
n

)n1

,

where n0 = n0(u
n) and n1 = n1(u

n).

[Hint: if 0 ≤ m ≤ n, then (1 + 1/n)n+1/2 ≥ m+1
m+1/2(1 + 1/m)m]

(b) Conclude that there is a prefix-free code C : U → {0, 1}∗ such that

lengthC(u1, . . . , un) ≤ nh2

(
n0(u

n)

n

)
+

1

2
log n+ 2,

with h2(x) = −x log x− (1− x) log(1− x).

(c) Show that if U1, . . . , Un are i.i.d. Bernoulli, then

1

n
E[lengthC(U1, . . . , Un)] ≤ H(U1) +

1

2n
log n+

2

n

Problem 10.4 (Lempel Ziv 78). Suppose . . . , U−1, U0, U1, . . . is a stationary process, i.e.,
for any k = 1, 2, . . . , any u0, . . . , uk−1, and any n = . . . ,−1, 0, 1, . . .

P(Un . . . Un+k−1 = u0 . . . uk−1) = P(U0 . . . Uk−1 = u0 . . . uk−1).

Suppose also that U is a recurrent process, i.e., any letter u0 with P(U0 = u0) > 0, the
event A = {there exists i ≥ 0 and j > 0 such that Ui = U−j = u0} has P(A) = 1. (That is,
a positive probability letter u0 will occur infinitely often.)

Fix u0 with P(U0 = u0) > 0. For i ≥ 0 and j < 0, let

Aij = {Ui = u0} ∩ {U−j = u0} ∩
i−1⋂

k=−j+1

{Uk ̸= u0}

denote the event that j is the last time before time 0 that u0 was seen and i was the first
time after time 0 that u0 is seen.
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(a) Show that
∑

i≥0,j>0 P(Aij) = P(A) = 1.

(b) Show that P(Aij) = f(i+ j), where

f(k) = P(U−k = u0, U−l ̸= u0 for l = 1, . . . , k − 1, U0 = u0).

(c) Using (a) and (b), show that

1 =
∑

k≥1

kf(k) = 1.

(d) Let K = inf{k > 0 : U−k = u0} (i.e., the negative index of the most recent time before
time 0 u0 was seen). Observe that the event {K = k, U0 = u0} is the event whose
probability is f(k). Using (c) show that

E[K|U0 = u0] = 1/P(U0 = u0)

and that E[logK] ≤ H(U0).

Suppose we have a stationary and ergodic source . . . , X−1, X0, X1, . . . . This means, in
particular, that for any n > 0, the process {Ui} defined by Ui = (Xi, Xi+1, . . . , Xi+n−1) is
stationary and recurrent.

Fix a sequence x0, . . . , xn−1 with P
(
(X0 . . . Xn−1) = (x0 . . . xn−1)

)
> 0. Let

K = inf{k > 0 : (X−k . . . X−k+n−1) = (x0 . . . xn−1)}.

(e) Show that E[logK] ≤ H(X0 . . . Xn−1).

(f) Consider the following data compression method. Assuming that the encoder has al-
ready described the infinite past . . . , X−2, X−1 to the decoder, he describesX0, . . . , Xn−1

by (i) finding the most recent occurrence X0 . . . Xn−1 in the past, (ii) describing the
index K of this occurrence by the method of problem 2(f). Now that the decoder
knows . . . , Xn−1, the encoder describes Xn . . . X2n−1 is the same way, etc. Show that
this method uses fewer than

1

n
H(X0 . . . Xn−1) +

2

n
log(1 +H(X0 . . . Xn−1)) +

2

n

bits per letter on the average.

Problem 10.5 (Lower bound on Expected Length). Suppose U is a random variable taking
values in {1, 2, . . . }. Set L = ⌊log2 U⌋. (I.e., L = j if and only if 2j ≤ U < 2j+1; j =
0, 1, 2, . . . .

(a) Show that H(U |L = j) ≤ j, j = 0, 1, . . . .

(b) Show that H(U |L) ≤ E[L].

(c) Show that H(U) ≤ E[L] +H(L).

(d) Suppose that Pr(U = 1) ≥ Pr(U = 2) ≥ . . . . Show that 1 ≥ iPr(U = i).

(e) With U as in (d), and using the result of (d), show that E[log2 U ] ≤ H(U) and conclude
that E[L] ≤ H(U).
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(f) Suppose that N is a random variable taking values in {0, 1, . . . } with distribution pN
and E[N ] = µ. Let G be a geometric random variable with mean µ, i.e., pG(n) =
µn/(1 + µ)1+n, n ≥ 0.

Show that H(G)−H(N) = D(pN∥pG), and conclude that H(N) ≤ g(µ) with g(x) =
(1 + x) log2(1 + x)− x log2 x.

[Hint: Let f(n, µ) = − log2 pG(n) = (n + 1) log2(1 + µ) − n log2(µ). First show that
E[f(G,µ)] = E[f(N,µ)], and consequently H(G) =

∑
n pN (n) log2(1/pG(n)).]

(g) Show that for U as in (d) and g(x) as in (f),

E[L] ≥ H(U)− g(H(U)).

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet U , and c : U →
{0, 1}∗ is an injective code. Show that

E[lengthc(U)] ≥ H(U)− g(H(U)).

[Hint: the best injective code will label U = {a1, a2, a3, . . . } so that Pr(U = a1) ≥
Pr(U = a2) ≥ . . . , and assign the binary sequences λ, 0, 1, 00, 01, 10, 11, ... to the
letters a1, a2, . . . in that order. Now observe that the i’th binary sequence in the list
λ, 0, 1, 00, 01, . . . is of length ⌊log2 i⌋.]

Problem 10.6 (Nonsingular and Uniquely Decodable Codes). Recall that for a code C :
U → {0, 1}∗ we define Cn : Un → {0, 1}∗ as Cn(u1, . . . , un) = C(u1) . . . C(un).

If a code C is uniquely decodable, it is clear that for each n, Cn is non-singular (indeed
Cn is uniquely decodable).

1. Suppose C is not uniquely decodable. Show that there is an n ≥ 1 such that Cn is
singular.

2. Suppose K : {0, 1, 2, . . . } → {0, 1}∗ is a prefix-free code for non-negative integers.
Show that for any non-singular code C for any alphabet U , the code C′ : U → {0, 1}∗
with

C′(u) = K(length(C(u)))C(u)

is prefix free.

Recall from Homework 4, Problem 1 that there is a prefix-free C1 : {1, 2, . . . } → {0, 1}∗ for
positive-integers for which length(C1(n)) ≤ 2+2 log(1+ log n)+ log n. Let K : {0, 1, . . . } →
{0, 1}∗ be defined as K(n) = C1(n+ 1).

3. Show that for any non-singular code C for U with E[length(C(U))] = L, there is a
prefix-free code C′ for U with

E[length(C′(U))] ≤ L+ 2 + 2 log(1 + log(1 + L)) + log(1 + L).
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Problem 10.7 (Quantization with two criteria). Suppose Un has i.i.d. components with
distribution P . We want to describe Un at rate R, i.e., we want to design a function
f : Un → {1, . . . , 2nR}.

We are given two distortion measures d1 : U ×V1 → R and d2 : U ×V2 → R, and we wish
to ensure that from i = f(Un) we can reconstruct V n

1 = g1(i) ∈ Vn1 and V n
2 = g2(i) ∈ Vn2 so

that
E[d1(U

n, V n
1 )] ≤ D1 and E[d2(U

n, V n
2 )] ≤ D2

with given distortion criteria D1 and D2. (As in class d(Un, V n) = 1
n

∑n
i=1 d(Ui, Vi).)

(a) What is the rate distortion function R(D1, D2)?

(b) Suppose R1(D1) is the rate distortion function with the first distortion criterion alone,
and R2(D2) is the rate distortion function with the second criterion alone. What
relationship exists between R(D1, D2) and R1(D1) +R2(D2)?

Problem 10.8 (Choose the Shortest Description). Suppose C0 : U → {0, 1}∗ and C1 : U →
{0, 1}∗ are two prefix-free codes for the alphabet U . Consider the code C : U → {0, 1}∗
defined by

C(u) =
{
[0, C0(u)] if lengthC0(u) ≤ lengthC1(u)
[1, C1(u)] else.

Observe that length(C(u)) = 1 +min{length(C0(u)), length(C1(u))}.

(a) Is C a prefix-free code? Explain.

(b) Suppose C0, . . . , CK−1 are K prefix-free codes for the alphabet U . Show that there is
a prefix-free code C with

length(C(u)) = ⌈log2K⌉+ min
0≤k<K−1

length(Ck(u)).

(c) Suppose we are told that U is a random variable taking values in U , and we are also
told that the distribution p of U is one of K distributions p0, . . . , pK−1, but we do not
know which. Using (b) describe how to construct a prefix-free code C such that

E[length(C(U))] ≤ ⌈log2K⌉+ 1 +H(U).

[Hint: From class we know that for each k there is a prefix-free code Ck that descibes
each letter u with at most ⌈− log2 pk(u)⌉ bits.]

Problem 10.9 (Universal codes). Suppose we have an alphabet U , and let Π denote the
set of distributions on U . Suppose we are given a family of S of distributions on U , i.e.,
S ⊂ Π. For now, assume that S is finite.

Define the distribution QS ∈ Π

QS(u) = Z−1max
P∈S

P (u)

where the normalizing constant Z = Z(S) =
∑

umaxP∈S P (u) ensures that QS is a distri-
bution.

(a) Show that D(P∥Q) ≤ logZ ≤ log |S| for every P ∈ S.
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(b) For any S, show that there is a prefix-free code C : U → {0, 1}∗ such that for any
random variable U with distribution P ∈ S,

E[lengthC(U)] ≤ H(U) + logZ + 1.

(Note that C is designed on the knowledge of S alone, it cannot change on the basis of
the choice of P .) [Hint: consider L(u) = − log2QS(u) as an ‘almost’ length function.]

(c) Now suppose that S is not necessarily finite, but there is a finite S0 ⊂ Π such that
for each u ∈ U , supP∈S P (u) ≤ maxP∈S0 P (u). Show that Z(S) ≤ |S0|.

Now suppose U = {0, 1}m. For θ ∈ [0, 1] and (x1, . . . , xm) ∈ U , let

Pθ(x1, . . . , xn) =
∏

i

θxi(1− θ)1−xi .

(This is a fancy way to say that the random variable U = (X1, . . . , Xn) has i.i.d. Bernoulli
θ components). Let S = {Pθ : θ ∈ [0, 1]}.
(d) Show that for u = (x1, . . . , xm) ∈ {0, 1}m

max
θ
Pθ(x1, . . . , xm) = Pk/m(x1, . . . , xm)

where k =
∑

i xi.

(e) Show that there is a prefix-free code C : {0, 1}m → {0, 1}∗ such that whenever
X1, . . . , Xn are i.i.d. Bernoulli,

1

m
E[lengthC(X1, . . . , Xm)] ≤ H(X1) +

1 + log2(1 +m)

m
.

Problem 10.10 (Universality via Typicality). Given an alphabet U , and a rate 0 ≤ R ≤
log |U|, consider the sequence of sets

An =
⋃

Q∈Πn:H(Q)<R

Tn(Q), n = 1, 2, . . .

(i.e., An is the union of the typical sets of all empirical probability distributions with entropy
at most R.)

(a) Find lim
n→∞

1

n
log |An|.

Hint: For a lower bound, fix Q with H(Q) < R, and a sequence of types Q1, Q2, . . .
with limn→∞Qn = Q. Now observe that for large n, An includes Tn(Qn).

Suppose P ∈ Π with H(P ) < R (i.e., P is probability distribution on U with entropy strictly
less than R.)

(b) With Acn denoting the complement of An, find lim
n→∞

Pn(Acn).

(c) Show that there is a injective code Cn : Un → {0, 1}∗ such that

length(Cn(un)) =
{
1 + ⌈log |An|⌉ un ∈ An

1 + ⌈n log |U|⌉ else
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(d) Show that there is a sequence of injective codes Cn : Un → {0, 1}∗ such that for any
P ∈ Π with H(P ) < R and any ϵ > 0,

lim
n→∞

P
(
length(Cn(Un)) > n(R+ ϵ)

)
= 0.

Problem 10.11 (Fibonacci Coding). Consider the following binary encoding of a positive
integer n: CF (n) = I1 . . . Ir1, where n =

∑r
i=1 IiFi+1 and Fi is i-th Fibonacci number,

F0 = 0, F1 = 1, F2 = F0 + F1 = 1, · · · , Fi = Fi−1 + Fi−2, i ≥ 2, and Ii ∈ {0, 1}. E.g., 1011
denotes the integer 1× 1 + 0× 2 + 1× 3 = 4.

For every positive integer n such a representation exists. In order to make it unique,
given an integer, find the largest Fibonacci number that it contains. Note it and remove
its value from the integer. Proceed recursively to find the unique representation. E.g., for
n = 4, F4 = 3 is the largest Fibonacci number that is contained in 4 and F2 = 1 is the
largest Fibonanni number that is contained in n−F4 = 1. This gives us the representation
1011.

Recall that besides a recursive description of the Fibonacci numbers there exists an

explicit formula Fi = ⌊ ϕi√
5
+ 1

2⌋, where ϕ = 1+
√
5

2 ∼ 1.618 is the golden ratio.

(i) What is the length of CF (n)?

(ii) Show that the code is prefix-free. Hint : Use the property of Fibonacci numbers.

(iii) Show that logϕ(
√
5i) ≤ 3 + 2 log2 i.

(iv) Consider a random variable U that takes values on the positive integers s.t. P (U = i)
is decreasing. Show that E[length(CF (U))] ≤ 3 + 2H(U). Hint : First show that
iP (U = i) ≤ 1.

Problem 10.12 (Projections). Assume that we get m samples in Rd, call them u1, . . . , um.
The dimension d is very large. Therefore we would like to compress the data. We fix n < d
and we would like to produce n-dimensional representations û1, . . . , ûm that are close to
the original ones. Assume that we collect our data samples into a d×m matrix U and the
desired representations into a n×m matrix Û .

In the course we learned that two possible compression techniques for this scenario are
the PCA and random projections.

Recall that random projections are linear maps f(u) : Rd → Rn, defined as f(u) =
1√
n
Xu, where X is a real-valued matrix with iid zero-mean unit-variance entries.

(i) Assume that your ”goodness” criterion is the spectral norm ||UTU − ÛT Û ||2. What
guarantees to you get for both methods? You can assume that the smallest eigenvalue
of XTX is 0.

(ii) Assume your ”goodness” criterion is maxi,j |||ui−uj ||2−||ûi− ûj ||2|. What guarantees
do you get for both methods? No need for complicated computations.

Problem 10.13. (Johnson-Lindenstrauss for subgaussians)

(a) In preparation for this problem, establish the following facts:
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– If U is a subexponential random variable with parameters (ν, b), then αU (where
we assume α > 0) is a subexponential random variable with parameters (αν, αb).

– If U and V are independent subexponential random variables with parameters
(νu, bu) and (νv, bv), respectively, then U+V is a subexponential random variable
with parameters (

√
ν2u + ν2v ,max(bu, bv)).

In this problem, we reconsider the Johnson-Lindenstrauss Lemma (Lemma 10.5 in the
lecture notes). The only change is that inside the real-valued k × d matrix X in the proof
of the Lemma, we no longer assume that the entries are independent Gaussians. We still
assume the entries Xij to be independent. We also still assume that they each have mean
zero and variance 1. But beyond this, we only assume that they are subgaussian with
variance proxy σ2.

To proceed, exactly as in the Johnson-Lindenstrauss Lemma, consider an arbitrary real-
valued vector u of length d. As in the proof of the Johnson-Lindenstrauss Lemma, we define,
for i = 1, 2, . . . , k,

Zi =
1

∥u∥2

d∑

j=1

ujXij .

(b) Show the following facts (short justifications are sufficient, and you may refer freely
to the lecture notes)

– The random variables Zi are independent of each other.

– Each Zi is subgaussian. Find the corresponding variance proxy.

– We have E[Z2
i ] = 1.

To continue, we will need the following theorem:
Theorem. If Y is subgaussian with variance proxy σ2, then Y 2 with mean E[Y 2] is

subexponential with parameters (cσ2, dσ2) for some absolute constants c and d.

(c) Exactly as in the proof of the Johnson-Lindenstrauss Lemma, we next need to analyze
S = 1

k

∑k
i=1 Z

2
i . Leveraging the theorem, show that S is subexponential with mean 1

and find the corresponding parameters.

(d) Give a concentration bound, that is, an upper bound of the form

P

{∣∣∣∣∣
1

k

k∑

i=1

Z2
i − 1

∣∣∣∣∣ > δ

}
≤ . . .

(e) Discuss the differences of the resulting lemma with respect to what is proved in the
lecture notes.
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Information Measures and
Generalization Error

In this chapter, we consider the generalization error of a learning algorithm. Roughly
speaking, it tries to capture the idea of model “overfitting”.

11.1 Setup and Problem Statement

The standard setup of statistical learning theory is as follows: we have an instance space
X , a hypothesis space H, and a loss function ℓ : H×X → R+.

We observe D = (X1, X2, . . . , Xn) i.i.d samples from some unknown distribution PX .
Using these training samples, the learning algorithm picks a hypothesis in H. We can think
of the hypotheses as models we use to explain our data, and we use the loss function to
evaluate the performance of our chosen model.

Example 11.1. X = R×R,H = {affine functions from R to R}, and ℓ (h, (x, y)) = (y − h(x))2.
That is, we observe pairs of values {(xi, yi}ni=1, and we want to find the best linear approx-
imation of yi in terms of xi. This setup with the choice of the squared error loss is referred
to as linear regression.

Definition 11.1. Given h ∈ H, the population risk of h is defined as:

LPX
(h) := EX [ℓ(h,X)].

The population risk indicates how well the hypothesis h models the data. We would like
this risk to be small, but we cannot evaluate directly since PX is unknown. On the other
hand, given a data set D, we can evaluate the empirical risk (or training error).

Definition 11.2. Given a data set D = (X1, X2, . . . , Xn) and a hypothesis h, the empirical
risk is defined as:

LD(h) =
1

n

n∑

i=1

ℓ(h,Xi).

The learning algorithm that chooses a hypothesis h ∈ H based on D does not need to
be deterministic. Therefore, we model the learning algorithm as a conditional distribution
PH|D. We observe that this induces a joint distribution over D and H, which we will denote
as PDH . The key definition for the present section is the (expected) generalization error:

137
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Definition 11.3. Given a learning algorithm PH|D, the generalization error is defined as

gen(PX , PH|D) = |EPDH
[LD(H)− LPX

(H)]| ,

that is, the difference between the loss on the training data and the loss on fresh test data.

Let us now give some intuition about the generalization error. If the chosen hypothesis
“depends too much” on the given data, then the generalization error can be large, i.e., we
are “overfitting”. We can bound the error by controlling the degree of dependence, and
we will use again information measures to do so. Note that, in this setting, if H is chosen
independently from the data, then the generalization error will be zero but the population
risk will be large, which we ultimately want to be small. So we have a tension where on the
one hand, if H is independent from D so the learning algorithm is not “learning” anything;
and on the other hand, if H depends too much on the data, it will be overfitting.

11.2 Bounds on the Generalization Error

In order to analyze the generalization error, it is instructive to rewrite Definition 11.1 slightly
differently as

LPX
(h) = ED̃

[
1

n

n∑

i=1

ℓ(h, X̃i)

]
, (11.1)

where X̃i are i.i.d. samples from the distribution PX , independent of the training set D, and
we use the notation D̃ = (X̃1, . . . , X̃n). This shows the close relationship to the empirical
risk defined in Definition 11.2.

With this, we can rewrite the generalization error as follows:

gen(PX , PH|D) =

∣∣∣∣∣ EH,D
[
1

n

n∑

i=1

ℓ(H,Xi)− ED̃

[
1

n

n∑

i=1

ℓ(H, X̃i)

]]∣∣∣∣∣ (11.2)

=

∣∣∣∣∣ EH,D
[
1

n

n∑

i=1

ℓ(H,Xi)

]
− EH,D̃

[
1

n

n∑

i=1

ℓ(H, X̃i)

]∣∣∣∣∣ . (11.3)

This is the difference of two expected values of the same function, but under two differ-
ent probability distributions: In the first expectation, since H was indeed chosen (via the
learning procedure) as a function of the training data D, we have that H and D are depen-
dent on each other. In the second expectation, H is independent of D̃ = (X̃1, . . . , X̃n). To
drive home this point, let us call Z = (H,X1, . . . , Xn). Then, our goal is to understand the
following quantity:

|EP [f(Z)]− EQ[f(Z)]|, (11.4)

where P and Q are two different distributions. In the special case of the generalization
error, P is the joint distribution of the training set and the hypothesis chosen by the
learning procedure, and Q is the product of the corresponding marginals. In the sequel, we
derive bounds on the quantity from Equation (11.4). These bounds can then be applied to
the generalization error, but are also of independent interest.
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11.2.1 L1-Distance Bound

Our first bound for the quantity from Equation (11.4) starts from the following well-known
relationship:

Lemma 11.1. Let P and Q be two probability mass functions on a finite set Z. Then,

∥P −Q∥1 = 2max
S⊆Z

P (S)−Q(S).

Proof. Let A = {z ∈ Z : P (z) ≥ Q(z)}, and Ac the complement of A in Z. Then,

∥P −Q∥1 =
∑

z∈A
P (z)−Q(z) +

∑

z∈Ac

Q(z)− P (z) = P (A)−Q(A) +Q(Ac)− P (Ac)

= P (A)−Q(A) + 1−Q(A)− 1 + P (A) = 2(P (A)−Q(A)).

To complete the proof, start by considering any other set S by adding elements to A
to observe that for such S, we have P (S) − Q(S) ≤ P (A) − Q(A). Then, consider any
other set S by removing elements from A, and again observe that for such S, we have
P (S)−Q(S) ≤ P (A)−Q(A).

Note that for any subset S, P (S) can also be seen as EP [fS(Z)] where fS(z) =

{
1, z ∈ S,

0, z /∈ S
.

Moreover, the proof of Lemma 11.1 can be simply modified to show the following:

Lemma 11.2.

∥P −Q∥1 = 2 max
f :Z→[0,1]

EP [f(Z)]− EQ[f(Z)].

Proof: Let A = {z ∈ Z : P (z) ≥ Q(z)}. Then,

EP [f(Z)]− EQ[f(Z)] =
∑

z∈A
f(z) (P (z)−Q(z)) +

∑

z /∈A
f(z) (P (z)−Q(z))

≤
∑

z∈A
(P (z)−Q(z))

=
∥P −Q∥1

2
.

Equality can be achieved if we choose f(z) =

{
1, z ∈ A,

0, z /∈ A
. ■

Remark. The form of the equality in Lemma 11.2 is called the variational representation of
L1-distance. More generally, we can represent any convex function (such as the L1-distance)
as the supremum of affine functions.

We now have a bound on (11.4) for bounded f :

Corollary 11.3. For any distributions P and Q of a finite set Z, and any function f :
Z → [0, 1], we have

|EP [f(Z)]− EQ[f(Z)]| ≤
∥P −Q∥1

2
.
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Exercise 11.1. The statement of Lemma 11.2 does not include the absolute value. Verify
that the corollary follows by applying Lemma 11.2 twice: once using f , and another using
g = 1− f .

As noted earlier, our initial setup corresponds to choosing P to be some joint distribution
PXY , and Q to be the product of the marginals PXPY . Then, the closer PXY is to PXPY ,
the closer they are to independence (i.e., the less Y depends on X), which makes the
exploration bias smaller, as captured in the corollary.

One disadvantage of the above bound is that it is restricted to bounded functions. And
as noted in the remark, the main property that allowed us to derive such bound is the
convexity of the L1-distance. Hence, we can derive similar bounds using other convex
dependence measures. In particular, we will turn to the KL divergence.

11.2.2 Mutual Information Bound

Our second bound for the quantity from Equation (11.4) can be expressed in the following
compact form:

Lemma 11.4. Suppose that f(Z) − EQ[f(Z)] is subgaussian with variance proxy σ2 when
Z is distributed according to Q. Then,

|EP [f(Z)]− EQ[f(Z)]| ≤ σ
√
2D(P ||Q). (11.5)

Proof. This lemma is a clever application of the Donsker-Varadhan variational representa-
tion, see Lemma 4.12. Specifically,

D(P ||Q) = sup
g
EP [g(Z)]− log EQ[e

g(Z)] (11.6)

= sup
g
EP [g(Z)]− EQ[g(Z)]− log EQ[e

g(Z)−EQ[g(Z̃)]] (11.7)

Hence, in particular, selecting g(z) = λf(z), we have

D(P ||Q) ≥ λ (EP [f(Z)]− EQ[f(Z)])− log EQ[e
λ(f(Z)−EQ[f(Z̃)])]︸ ︷︷ ︸

M(λ)

, (11.8)

where M(λ) is the moment generating function of the random variable f(Z) − EQ[f(Z)]
when Z is distributed according to Q. The assumption given in the lemma statement is
precisely the requirement that M(λ) ≤ eλ

2σ2/2, see Lemma 2.1. Hence,

D(P ||Q) ≥ λ (EP [f(Z)]− EQ[f(Z)])− λ2σ2/2. (11.9)

This bound holds for all λ. Maximizing over λ gives the claimed bound.

From Lemma 11.4, we obtain the following theorem.

Theorem 11.5. If for all h ∈ H, ℓ(h,X) − E[ℓ(h,X)] is subgaussian with variance proxy
σ2, then

gen(PX , PH|D) ≤
√

2σ2

n
I(D;H). (11.10)
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Proof. First of all, let us recall (see for example in the proof of Hoeffding’s bound, Lemma 2.6)
that if ℓ(h,X)− E[ℓ(h,X)] is subgaussian with variance proxy σ2, then the function

f(h,D) =
1

n

n∑

i=1

(ℓ(h,Xi)− E[ℓ(h,Xi)]) (11.11)

is subgaussian with variance proxy σ2/n.
We apply Lemma 11.4 separately for each instance h. Specifically, in Lemma 11.4, we

select P = PD|H=h and Q = PD (the marginal distribution of the data). Then, Lemma 11.4
establishes the bound

|EP [f(h,D)]− EQ[f(h, D̃)]| ≤ σ√
n

√
2D(PD|H=h||QD). (11.12)

The theorem follows by taking expectations over H on both sides. Specifically, for the left
hand side, we observe

gen(PX , PH|D) = |EPDH
[LD(H)− LPX

(H)]| (11.13)

≤ EPH

∣∣∣EPD|H [LD(H)− LPX
(H)]

∣∣∣ , (11.14)

and the last expression is precisely the left hand side of Equation (11.12) with expectation
over H. For the right hand side, we observe that by Jensen (square root is concave)

EPH

[
σ√
n

√
2D(PD|H=h||QD)

]
≤ σ√

n

√
2EPH

[
D(PD|H=h||QD)

]
, (11.15)

and the last expectation is by definition simply the mutual information I(D;H).

11.3 Exploration Bias

In this section, we study a seemingly unrelated question that arises frequently in Data
Science: A given data set is first used to test a certain hypothesis. Unfortunately, the
statistician ends up concluding that the answer is not statistically significant. She then
dreams up a new hypothesis to test against the same data set, and so on. If we proceed in
this way, selecting the hypothesis to be tested after seeing the data, we introduce what is
referred to as an exploration bias. As we will see, the methods and bounds derived in the
previous section will be useful here, too.

Let X denote the sample space, and D ∈ X n denote the data set. Assume that we have
m hypotheses, i ∈ {1, · · · ,m}. Let ϕi(D), i ∈ {1, 2, . . . ,m}, denote the test statistics for
hypothesis i. It might be useful to think of the m hypotheses as the m functions we have
to choose from in a learning task and the ϕi(D) might be the empirical risk for hypothesis
i based on the sample i in case we use an empirical risk minimizer as learning algorithm.

Since D is random, so is ϕi(D). The true mean associated to ϕi is µi = E[ϕi(D)], where
the expectation is over the randomness of the dataset. On a particular dataset D, if the
learning algorithm decides on T (D) = i the output of data exploration is the value ϕT (D)(D).
The reported value is thus E[ϕT (D)(D)], resulting in a bias of E[ϕT (D)(D)]− µT (D).

We would like to bound

∣∣E[ϕT (D)(D)− µT (D)]
∣∣ . (11.16)
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Note that T is not necessarily a deterministic function of D, rather there exists a conditional
distribution PT |D. In the remainder, we will assume that T is chosen based on the measure-
ments ϕ = (ϕ1, ϕ2, . . . , ϕm) and suppress D in the notation. That is, we can rewrite (11.16)
as

|E[ϕT − µT ]| . (11.17)

The next observation is that this quantity is exactly of the type of Equation (11.4). To
see this, in Equation (11.4), we select Z = Rm × {1, 2, . . . ,m} (where Rm and {1, 2, . . . ,m}
represent the sets in which ϕ and T live, respectively), f(ϕ, t) = ϕt, P = PϕT (i.e., the joint
distribution of T and ϕ), and Q = PϕPT (i.e., the product of the marginals of T and ϕ).

Example 11.2. Let ϕ1 and ϕ2 ∼ N (µ, σ2) i.i.d. Let T0 = argmaxi∈{1,2}ϕi and generate T

as follows: T =

{
T0, with probability 1− p

3− T0, with probability p
for some p ∈ [0, 1]. Now to compute the

exploration bias, note that E[µT ] = µ . On the other hand,

E[�T ] = Pr(T = T0)E[�T0 ] + Pr(T = 3 � T0)E[�(3�T0)]

= (1 � p)E[max{�1, �2}] + pE[min{�1, �2}].

Now let S = �1 + �2 and � = �1 � �2 . It is straightforward to check that S ⇠ N (2µ, 2�2) ,

� ⇠ N (0, 2�2) , max{�1, �2} = S+|�|
2 , and min{�1, �2} = S�|�|

2 . Then,

E[�T ] =
1

2

⇣
(1 � p)E[S + |�|] + pE[S ��]

⌘

=
1

2

⇣
E[S] + (1 � 2p)E[|�|]

⌘

=
1

2

 
2µ + (1 � 2p)

r
4�2

⇡

!

= µ + (1 � 2p)�

r
1

⇡
.

Hence, the exploration bias is given by

|E[�T ] � E[µT ]| = |1 � 2p|�
r

1

⇡
.

Note that for p = 1
2 , the bias is zero. Indeed, for p = 1/2 , T is independent of (�1, �2) ; hence

the index does not depend on the data, so we are not introducing any bias. As we decrease p
from 1

2 to 0 , we “increase the dependence” between T0 and (�1, �2) , and the exploration bias
increases accordingly.

As we saw in the above example, the exploration bias depends on the degree to which T depends
on � . Hence, we will use dependence measures to find good bounds on the bias.

We can rewrite (2) in a more abstract way. In particular, suppose we have an alphabet Z , two
distributions on Z denoted by P and Q , and a function f : Z ! R. We want to bound

|EP [f(Z)] � EQ[f(Z)]| (3)

In the above setup Z = Rm ⇥ {1, 2, . . . , m} (where Rm and {1, 2, . . . , m} represent the sets in
which � and T live, respectively), f(�, t) = �t , P = P�T (i.e., the joint distribution of T and
� ), and Q = P�PT (i.e., the product of the marginals of T and � ).

2 L1 -Distance Bound

We have already seen a result somewhat similar to a bound on (3). In particular,

2

exploration bias, note that E[µT ] = µ. On the other hand,

E[ϕT ] = P(T = T0)E[ϕT0 ] + P(T = 3− T0)E[ϕ(3−T0)]

= (1− p)E[max{ϕ1, ϕ2}] + pE[min{ϕ1, ϕ2}].
Now let S = ϕ1 + ϕ2 and ∆ = ϕ1 − ϕ2. It is straightforward to check that S ∼ N (2µ, 2σ2),

∆ ∼ N (0, 2σ2), max{ϕ1, ϕ2} = S+|∆|
2 , and min{ϕ1, ϕ2} = S−|∆|

2 . Then,

E[ϕT ] =
1

2

(
(1− p)E[S + |∆|] + pE[S −∆]

)

=
1

2

(
E[S] + (1− 2p)E[|∆|]

)

=
1

2

(
2µ+ (1− 2p)

√
4σ2

π

)

= µ+ (1− 2p)σ

√
1

π
.

Hence, the exploration bias is given by

|E[ϕT ]− E[µT ]| = |1− 2p|σ
√

1

π
.

Note that for p = 1
2 , the bias is zero. Indeed, for p = 1/2, T is independent of (ϕ1, ϕ2);

hence the index does not depend on the data, so we are not introducing any bias. As we
decrease p from 1

2 to 0, we “increase the dependence” between T0 and (ϕ1, ϕ2), and the
exploration bias increases accordingly.

As we saw in the above example, the exploration bias depends on the degree to which
T depends on ϕ. Hence, we will use dependence measures to find good bounds on the bias.
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11.3.1 Mutual Information Bound

We are now ready to prove the main bound for this section on the exploration bias |E[ϕT −
µT ]|, where ϕ = (ϕ1, ϕ2, . . . , ϕm) and T ∈ {1, 2, . . . ,m}.
Theorem 11.6. Suppose for each i ∈ {1, 2, . . . ,m}, ϕi − µi is σ

2-subgaussian. Then,

|E[ϕT − µT ]| ≤ σ
√

2I(T ;ϕ).

Remark. As expected, if T is independent of ϕ, then the exploration bias is zero. If T does
not depend “too much” on ϕ, as captured by mutual information, then we can guarantee a
small bias.

Proof. We apply Lemma 11.4 separately for each instance T = i, letting P = Pϕi|T=i and
Q = Pϕi . This gives the bound

∣∣∣EPϕi|T=i
[ϕi]− µi

∣∣∣ ≤ σ
√
2D(Pϕi|T=i||Pϕi). (11.18)

The theorem then follows by averaging both sides of T. Specifically,

|E[ϕT − µT ]| =
∣∣∣∣∣
m∑

i=1

P(T = i)EPϕi|T=i
[ϕi]− µi

∣∣∣∣∣
(a)

≤
m∑

i=1

P(T = i)
∣∣∣EPϕi|T=i

[ϕi]− µi

∣∣∣

≤
m∑

i=1

P(T = i)σ
√

2D(Pϕi|T=i||Pϕi)

(b)

≤
m∑

i=1

P(T = i)σ
√

2D(Pϕ1,ϕ2,...,ϕm|T=i||Pϕ1,ϕ2,...,ϕm)

(c)

≤ σ

√√√√2
m∑

i=1

P(T = i)D(Pϕ|T=i||Pϕ)

= σ
√

2D(PϕT ||PϕPT ) = σ
√
2I(T ;ϕ),

where (a) and (c) follow from Jensen’s inequality, and (b) follows from the data processing
inequality.

Exercise 11.2. Show that, if ϕi − µi is σ
2
i -subgaussian for each i ∈ {1, 2, . . . ,m}, then

|E[ϕT − µT ]| ≤
√
E[σ2T ]

√
2I(T ;ϕ).

Let’s revisit the initial example:

Example 11.3. Let ϕ1 and ϕ2 ∼ N (µ, σ2) i.i.d. Let T0 = argmaxi∈{1,2}ϕi and generate T

as follows: T =

{
T0, with probability 1− p

3− T0, with probability p
for some p ∈ [0, 1].

Since ϕi − µi ∼ N (0, σ2), it is σ2-subgaussian, thus satisfying the assumption of Theo-
rem 11.6. To compute I(T ;ϕ):

I(T ;ϕ) = H(T )−H(T |ϕ).
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exploration bias, note that E[µT ] = µ . On the other hand,

E[�T ] = Pr(T = T0)E[�T0 ] + Pr(T = 3 � T0)E[�(3�T0)]

= (1 � p)E[max{�1, �2}] + pE[min{�1, �2}].

Now let S = �1 + �2 and � = �1 � �2 . It is straightforward to check that S ⇠ N (2µ, 2�2) ,

� ⇠ N (0, 2�2) , max{�1, �2} = S+|�|
2 , and min{�1, �2} = S�|�|

2 . Then,

E[�T ] =
1

2

⇣
(1 � p)E[S + |�|] + pE[S ��]

⌘

=
1

2

⇣
E[S] + (1 � 2p)E[|�|]

⌘

=
1

2

 
2µ + (1 � 2p)

r
4�2

⇡

!

= µ + (1 � 2p)�

r
1

⇡
.

Hence, the exploration bias is given by

|E[�T ] � E[µT ]| = |1 � 2p|�
r

1

⇡
.

Note that for p = 1
2 , the bias is zero. Indeed, for p = 1/2 , T is independent of (�1, �2) ; hence

the index does not depend on the data, so we are not introducing any bias. As we decrease p
from 1

2 to 0 , we “increase the dependence” between T0 and (�1, �2) , and the exploration bias
increases accordingly.

As we saw in the above example, the exploration bias depends on the degree to which T depends
on � . Hence, we will use dependence measures to find good bounds on the bias.

We can rewrite (2) in a more abstract way. In particular, suppose we have an alphabet Z , two
distributions on Z denoted by P and Q , and a function f : Z ! R. We want to bound

|EP [f(Z)] � EQ[f(Z)]| (3)

In the above setup Z = Rm ⇥ {1, 2, . . . , m} (where Rm and {1, 2, . . . , m} represent the sets in
which � and T live, respectively), f(�, t) = �t , P = P�T (i.e., the joint distribution of T and
� ), and Q = P�PT (i.e., the product of the marginals of T and � ).

2 L1 -Distance Bound

We have already seen a result somewhat similar to a bound on (3). In particular,

2

Since ϕ1 and ϕ2 are i.i.d, then P(T0 = 1) = P(T0 = 2) = 1
2 . Hence, H(T ) = log 2. Since

both ϕ − T0 − T and T0 − ϕ − T are Markov chains, we get H(T |ϕ, T0) = H(T |ϕ) and
H(T |ϕ, T0) = H(T |T0). Hence,

I(T ;ϕ) = H(T )−H(T |ϕ) = log 2−H(T |T0) = log 2−H(p).

Hence, by the above theorem,

|E[ϕT − µT ]| ≤ σ
√
2 (log 2−H(p)).

Example 11.4. Suppose ϕi ∼ N (0, σ2) i.i.d. for i ∈ {1, 2, . . . ,m}, and T = argmaxiϕi.
Then,

I(T ;ϕ) = H(T ) = logm,

and
E [max{ϕ1, ϕ2, . . . , ϕm}] ≤ σ

√
2 logm.

11.4 Problems

Problem 11.1 (Cumulant Generating Function). Given a real random variable X taking
values on a finite set X ⊂ R, define ψ(λ) = log E

[
eλX

]
. Show that

(a) ψ′(λ) = E[Xλ] where E[Xλ] is a random variable taking values on X , with distribution
pλ(x) = p(x) exp(λx) exp(−ψ(λ)). Hence ψ′(0) = E[X].

(b) ψ′′(λ) = Var(Xλ). Conclude that ψ is convex.

Problem 11.2 (Exploration Bias). (a) Let X1, X2, . . . , Xn ∼ i.i.d. N (0, 1). Let Y =
argmaxiXi and T ∈ {1, 2, . . . , n} is such that

PT |Y (t|y) =
{
p, t = y
1−p
n−1 , t ̸= y

for some p ∈ [0, 1]. (11.19)

1. Compute I(X;T ) where X = (X1, X2, . . . , Xn). (Hint: write I(X;T ) = H(T )−
H(T |X). What is the marginal distribution of T?)

(b) Let X1, . . . , X4 ∼ i.i.d. N (0, 1) and X5 ∼ N (0, 4). Let Y and T be as in part (a) with
p = 0.3.

1. Show that P(Y = 5) =
∫∞
−∞

1√
8π
(1−Q(x))4e−x

2/8dx, where we are using Q(x) =
∫∞
x

1√
2π
e−u

2/2du, and find a corresponding numerical approximation (using Math-

ematica, for example).
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2. Using the previous numerical approximation, find the marginal distributions PY
and PT .

Problem 11.3 (Gibbs Algorithm). Let X be the sample space, W the hypothesis space, and
let ℓ : W ×X → R+ be a corresponding loss function. On a dataset D = (X1, X2, . . . , Xn),
the empirical risk for a hypothesis w is given by LD(w) =

1
n

∑n
i=1 ℓ(w,Xi). We saw in class

that I(D;W ) can be used to bound the generalization error. Hence, we can use it as a
regularizer in empirical risk minimization.

(a) First, show that given any joint distribution PXY on X ×Y and marginal distribution
Q on Y, D(PXY ||PXPY ) ≤ D(PXY ||PXQ).

Since we cannot directly compute D(PDW ||PDPW ), we will use D(PDW ||PDQ) as a proxy,
where Q is a distribution on W.

(b) Let

P ⋆W |D = arg min
PW |D

(
E[LD(W )] +

1

β
D(PDW ||PDQ)

)
.

1. Show that

min
PW |D

(
E[LD(W )] +

1

β
D(PDW ||PDQ)

)
= ED

[
min

PW |D=d

(
E[Ld(W )] +

1

β
D(PW |D=d||Q)

)]
.

2. Show that the minimizer on the right-hand side P ⋆W |D=d is given by

P ⋆W |D=d =
e−βLd(w)Q(w)

EQ
[
e−βLd(W )

] .

This is known in the literature as the Gibbs algorithm. (Hint: Write E[βLd(W )] =
E[log eβLd(W )], combine with the KL divergence term and use non-negativity of
KL divergence.)

3. Show that P ⋆W |D=d is 2β/n-differential private if ℓ ∈ [0, 1].

Problem 11.4 (Dependence and large error events). In the lecture notes we have seen how
to bound the expected generalization error using information measures. With this exercise
we will work on large error events and provide bounds on the probabilities of such events.
The setting is the same: we observe n iid samples D = (X1, . . . , Xn) (according to some
unknown distribution P ) and based on this observation we will choose a hypothesis w ∈W .
We also consider the usual definition of empirical and population risk, i.e. given a loss
function ℓ, some hypothesis w, LD(w) = 1

n

∑n
i=1 ℓ(w,Xi), and LP (w) = EP [ℓ(w,X)]. We

are interested in controlling the following quantity:

Pr (|LP (W )− LD(W )| > ϵ) . (11.20)

(a) Suppose that the loss is such that ℓ(w, x) ∈ {0, 1} for every w ∈ W and x ∈ X .
Suppose also that |W| <∞, i.e., the number of hypotheses is finite.

1. Show that for every fixed w ∈W Pr (|LP (w)− LD(w)| > ϵ) ≤ 2 exp(−2nϵ2);
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2. Show that
Pr (|LP (W )− LD(W )| > ϵ) ≤ |W | · 2 exp(−2nϵ2); (11.21)

Hint: denote with E = {(d,w) : |LP (w)− Ld(w)| > ϵ}.
You have that Pr (|LP (W )− LD(W )| > ϵ) = Pr(E) =

∑
(w,d)∈E P (w, d).

(be careful: Pr (|LP (W )− LD(W )| > ϵ|W = w) is not necessarily≤ 2 exp(−2nϵ2).Why?)

(b) Now consider the following information measure, given two discrete random variables
X,Y :

L(X → Y ) = log
∑

y

max
x:PX(x)>0

PY |X(y|x). (11.22)

This quantity is known in the literature as Maximal Leakage and quantifies the leakage
of information between X and Y .

1. Show that if the alphabet of Y (denoted with Y) is finite then

L(X → Y ) ≤ log |Y|,

which distributions achieve the bound with equality?

2. It is possible to show that
L(X → Y ) ≥ 0,

which distributions achieve the bound with equality?

3. LetX be a binary random variable and let Y be an observation ofX after passing
through a Binary Symmetric Channel with parameter δ. More precisely we have
PY |X=x(x) = 1− δ, for x ∈ {0, 1}.
What is the maximal leakage L(X → Y )?

Which values of δ allow you to achieve the bounds in (1), (2) with equality?

4. Suppose further that the space of samples D is finite. Denote with Ew = {d :
(d,w) ∈ E}, for w ∈ W; Show that:

Pr (|LP (W )− LD(W )| > ϵ) ≤ exp(L(D →W )) max
w∈W

Pr(Ew);

5. Conclude that

Pr (|LP (W )− LD(W )| > ϵ) ≤ 2 exp(L(D →W )− 2nϵ2);

6. Compare the two bound retrieved in (a2) and (b4), what do you notice? Is one
of the two better than the other? When are they equal? What conclusions can
you draw?
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