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Problem 1 (A perspective on PCA – 10 pts). Let X ∈ Rd be a zero-mean random vector

with covariance matrix

Σ = E[XX⊤].

Let λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 denote the eigenvalues of Σ.

(i) (2 pts) Let w ∈ Rd with ∥w∥2 = 1. Show that

Var(w⊤X) = w⊤Σw.

(ii) (4 pts) Show that the unit vector w maximizing w⊤Σw is the eigenvector correspond-

ing to the largest eigenvalue λ1.

(iii) (3 pts) Let u1 be the eigenvector associated with λ1, and define the rank-1 reconstruc-

tion

X̂ = u1u
⊤
1 X.

Compute the rank-1 reconstruction error

E

[
∥X− X̂∥22

]
.

(iv) (1 pt) Define the explained variance ratio of the first principal component as

EVR(1) =
λ1∑d
i=1 λi

.

Discuss and interpret EVR(1) in words. Then, give a practical criterion for deciding

whether a rank-1 PCA approximation is sufficient.

Solution 1.

(a)

Since E[X] = 0,

Var(⟨w,X⟩) = E[(w⊤X)2] = E[w⊤XX⊤w] = w⊤E[XX⊤]w = w⊤Σw.

(b)

Option 1 (Recommended): Spectral Decomposition Argument
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Let {ui}di=1 be an orthonormal eigenbasis of Σ, with Σ =
∑d

i=1 λiuiu
⊤
i and λ1 ≥ λ2 ≥ · · · ≥

λd ≥ 0. Write

w =
d∑

i=1

αiui,

then ∥w∥22 =
∑d

i=1 α
2
i = 1.

Then

w⊤Σw =

(
d∑

i=1

αiui

)⊤( d∑
i=1

λiuiu
⊤
i

)(
d∑

i=1

αiui

)
=

d∑
i=1

λiα
2
i ≤ λ1

d∑
i=1

α2
i = λ1.

Equality holds if and only if αi = 0 for all i such that λi < λ1. In particular, choosing

w = u1 yields

max
∥w∥2=1

w⊤Σw = λ1.

Option 2: Lagrange Multiplier Argument

We maximize w⊤Σw subject to the constraint ∥w∥22 = 1. Consider the Lagrangian

L(w, µ) = w⊤Σw − µ(w⊤w − 1).

Setting the gradient with respect to w to zero gives

2Σw − 2µw = 0,

which implies

Σw = µw.

Hence any stationary point must be an eigenvector of Σ corresponding to eigenvalue λ, and

the objective value at such a point is

w⊤Σw = µ∥w∥22 = µ.

Therefore the maximum is attained by choosing w as an eigenvector associated with the

largest eigenvalue λ1, and the maximum value equals λ1.

(c)

Using the eigendecomposition Σ =
∑d

i=1 λiuiu
⊤
i and the orthonormal basis {ui},

X =
d∑

i=1

⟨ui,X⟩ui.

The reconstruction keeps only the first component:

X̂ = ⟨u1,X⟩u1.
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Hence,

X− X̂ =
d∑

i=2

⟨ui,X⟩ui, ∥X− X̂∥22 =
d∑

i=2

⟨ui,X⟩2.

Taking expectation,

E[∥X− X̂∥22] =
d∑

i=2

E[⟨ui,X⟩2] =
d∑

i=2

u⊤
i Σui =

d∑
i=2

λi.

(d)

1. EVR(1) is the fraction of the total variance of the data explained by the first principal

component.

2. In practice, a rank-1 approximation is considered sufficient if EVR(1) exceeds a chosen

threshold (e.g. 90% or 95%), or if adding further components yields diminishing returns

(“elbow” criterion).
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Problem 2 (The Log-Likelihood Ratio – 10 pts). Given samples X1, X2, . . . , Xn, we studied

the problem of deciding whether the data consists of i.i.d. samples from distribution P0 or

from distribution P1. We saw that the key is the log-likelihood ratio

Λn(X1, . . . , Xn) =
1

n

n∑
i=1

log
P1(Xi)

P0(Xi)
. (1)

Now, let us assume that indeed, X1, X2, . . . , Xn, are i.i.d. samples from P1. In that case,

we showed in class that EP1 [Λn(X1, . . . , Xn)] = D(P1∥P0). Give a good upper bound on the

probability

PP1 {|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η} . (2)

The better your bound, the more points. As always, full step-by-step justifications are

required for full credit.

Hint: You may start by assuming that Xi are binary. In that case, P1 is a Bernoulli(α1)

distribution and P0 is a Bernoulli(α0) distribution.

Solution 2. We present two different approaches to tackle this problem.

1. Chernoff/Hoeffding approach: Given the contents of our class, this is what we

expected you would do. Namely, leveraging what we saw in class, we study the random

variables

Zi = log
P1(Xi)

P0(Xi)
, (3)

where Xi is distributed according to P1.

The key observation is that the random variables Zi are i.i.d., that is, they

are independent and identically distributed. This is because the Xi are i.i.d., and each

Zi is a deterministic function (“remapping”) of the corresponding Xi. Moreover, as we

saw in class (and as is given in the problem statement), the mean of Zi (when Xi is

distributed according to P1) is

µ := EP1 [Zi] = D(P1∥P0). (4)

With this notation, we can write the quantity that we need to bound as follows:

PP1 {|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η} = PP1

{∣∣∣∣∣ 1n
n∑

i=1

Zi − µ

∣∣∣∣∣ ≥ η

}
. (5)
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This is exactly of the form that we have studied again and again in class (including,

for example, in the context of multi-armed bandits). Specifically, just like in class, we

can write

PP1

(∣∣∣∣∣ 1n
n∑

i=1

Zi − µ

∣∣∣∣∣ ≥ η

)
= PP1

(
1

n

n∑
i=1

Zi − µ ≥ η

)
+ PP1

(
1

n

n∑
i=1

Zi − µ ≤ −η

)
.

(6)

To use the tools we learned in class, we would now like to assert that the Zi are sub-

gaussian and find the corresponding variance proxy σ2. Clearly, if we can establish this,

then we immediately, without any further thinking, have the bound

PP1

{∣∣∣∣∣ 1n
n∑

i=1

Zi − µ

∣∣∣∣∣ ≥ η

}
≤ 2e−

nη2

2σ2 , (7)

from Lemma 2.6 in the lecture notes (Hoeffding’s Bound).

But is there reason to believe that Zi are indeed subgaussian? — This is where the

hint comes in. Namely, starting with the simple binary setting, we realize that the

random variable Zi only has two different values, namely,

Zi =

{
log 1−α1

1−α0
, with probability 1− α1

log α1

α0
, with probability α1

(8)

Let us assume that 0 < α0 < 1 and 0 < α1 < 1. In this case, Zi ∈ [a, b] is a bounded

random variable, and the length of the interval is

b− a =

∣∣∣∣log 1− α1

1− α0

− log
α1

α0

∣∣∣∣ , (9)

which is finite. (We discuss the more general case below.) By Lemma 2.5 from

the Lecture Notes, we can thus assert that Zi are subgaussian with variance proxy(
log (1−α1)α0

(1−α0)α1

)2
/4. Hence, we can give the following bound:

PP1 (|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η) ≤ 2e−
nη2

2σ2 , (10)

where σ2 =
(
log (1−α1)α0

(1−α0)α1

)2
/4. This is the bound we expected you to find.

How to generalize this to the case where the Xi are not just binary? Let us continue

with Xi that are discrete, supported on an alphabet of size k. Then, again, we can

assert that Zi only takes k different values. Assuming all of these values are

finite, we again directly have that Zi is a bounded random variable. And the interval

is simply given by [
min
x

log
P1(x)

P0(x)
,max

x
log

P1(x)

P0(x)

]
. (11)
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If you want to know more (but nothing of the sort was expected!): To beautify

notation, let us define

D∞(P1∥P0) = max
x

log
P1(x)

P0(x)
. (12)

(This is a standard definition in the literature, called Rényi divergence of order ∞.)

With this, we can express the interval as

[−D∞(P0∥P1), D∞(P1∥P0)] , (13)

and the length of the interval can be written as D∞(P1∥P0) + D∞(P0∥P1). Note the

pleasing fact that this formula is symmetric in P0 and P1. That is, the variance proxy

is given by σ2 = (D∞(P1∥P0) +D∞(P0∥P1))
2/4. And with this, just for kicks, we can

write the full bound as

PP1 (|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η) ≤ 2e
− 2nη2

(D∞(P1∥P0)+D∞(P0∥P1))
2 . (14)

An interesting follow-up discussion concerns the case when there exists an x such that

log P1(x)
P0(x)

is infinite. Evidently, we can exclude all values of x for which P1(x) = 0.

Under P1, these values do not even show up. So the issue is only that there is an x

for which P0(x) = 0 (but P1(x) > 0). For such value of x, we have log P1(x)
P0(x)

= ∞.

The simple key observation now is that in this case, the Kullback-Leibler divergence

D(P1∥P0) (and thus, the mean µ) is also infinite. Hence, this case is uninteresting in

the sense that we cannot give any bound of the type that we are looking for (that is

better than the trivial upper bound of 1).

Finally, you may be interested in the case of general real-valued random variables.

Extrapolating from above, we can see that if our distributions P0(x) and P1(x) are

such that minx log
P1(x)
P0(x)

and maxx log
P1(x)
P0(x)

are both finite, then we are done. Namely,

we again get the variance proxy given by σ2 = (D∞(P1∥P0) +D∞(P0∥P1))
2/4.

2. Chebyshev approach: Another approach is to directly plug into Equation (2.4) from

the lecture notes, which is the Chebyshev inequality. Namely,

PP1 {|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η} ≤ Var(Λn(X1, . . . , Xn))

η2
, (15)

where we now have to find (or at least bound) the variance of Λn(X1, . . . , Xn) when

the Xi are i.i.d. according to P1. To do this, we note

Var(Λn(X1, . . . , Xn)) = Var

(
1

n

n∑
i=1

log
P1(Xi)

P0(Xi)

)
(16)

=
1

n2

n∑
i=1

Var

(
log

P1(Xi)

P0(Xi)

)
, (17)
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where the last step is an argument that we have used several times during the semester:

The random variables Zi := log P1(Xi)
P0(Xi)

are independent (and identically distributed)

random variables. Therefore, the variance of the sum is equal to the sum of the

variances (easy to prove — do it again if you are unsure!). Finally, because the Zi are

also identically distributed (and hence, all the variance terms in the sum are equal),

we can write our bound as

PP1 {|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η} ≤
Var

(
log P1(X)

P0(X)

)
nη2

, (18)

where the dummy random variable X is distributed according to P1. This is already

a nice result: Since the variance term does not depend on n, the bound goes to zero

as n becomes large and is thus an interesting and non-trivial bound. (Although, as we

emphasized in class, this bound is only inversely proportional to n, by contrast to the

Chernoff/Hoeffding approach, which leads to an exponential decay as a function of n.)

This is true as long as the variance term is finite.

So, the next question is: What can we say about the variance term? This is where

the hint comes in: Let us take P0 and P1 to be Bernoulli distributions, as suggested.

Then, (as above) we know that

Z := log
P1(X)

P0(X)
=

{
log 1−α1

1−α0
, with probability 1− α1

log α1

α0
, with probability α1

(19)

It is straightforward (but perhaps a bit tedious) to express the variance of this random

variable. For example,

Var(Z) = E[Z2]− (E[Z])2 (20)

= (1− α1)

(
log

1− α1

1− α0

)2

+ α1

(
log

α1

α0

)2

− (D(P1∥P0))
2 , (21)

which (as long as 0 < α0 < 1) is a well-defined finite number.

Alternatively, you can also just bound the variance. A very simple bound for any

random variable W is Var(W ) ≤ maxw |w|2, where the maximum can be limited to

all values w for which pW (w) > 0. (Of course, this bound is only interesting if this

maximum value is finite. Otherwise, more careful work is needed.) For our case, we

can write this as

Var

(
log

P1(X)

P0(X)

)
≤
(
max

{
−min

x
log

P1(x)

P0(x)
,max

x
log

P1(x)

P0(x)

})2

(22)

= (max{D∞(P0∥P1), D∞(P1∥P0)})2 (23)

≤ (D∞(P0∥P1) +D∞(P1∥P0))
2 , (24)
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where we have only added the last, loose bounding step to connect to the Cher-

noff/Hoeffding approach. Namely, via Chebyshev, we can thus establish the bound

PP1 {|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η} ≤ (D∞(P1∥P0) +D∞(P0∥P1))
2

nη2
, (25)

while Chernoff-Hoeffding permitted to have the bound

PP1 (|Λn(X1, . . . , Xn)−D(P1∥P0)| ≥ η) ≤ 2e
− 2nη2

(D∞(P1∥P0)+D∞(P0∥P1))
2 . (26)
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Problem 3 (Projection Theorem – 10 pts). Consider a Hilbert space H spanned by the

orthonormal basis {zi}i∈Z+ . Let G ⊆ H be a (Hilbert) subspace of H, spanned by the first

N basis vectors, that is, G = span{z1, z2, . . . , zN}.

(i) (3 pts) For a fixed vector d ∈ H, give an expression for mind̂∈G ∥d− d̂∥2 in terms of d

and z1, z2, . . . , zN :

min
d̂∈G

∥d− d̂∥2 = . . . (27)

The simpler your expression, the more points you get. Hint: Check your lecture notes.

Recall that we are given an orthonormal basis of G!

(ii) (1 pt) Now let H be the space of all zero-mean finite variance (real-valued) random

variables. Here, we prefer to denote the abstract vectors d and zi more explicitly as

random variables D and Zi. Take as the inner product ⟨d, z⟩ = E[DZ]. This is known

to be a Hilbert space. As above, let G ⊆ H be a subspace spanned by N orthonormal

basis vectors, that is, G = span{z1, z2, . . . , zN}. Explicitly write what this means for

the random variables Z1, Z2, . . . , ZN .

(iii) (3 pts) Take your general result from Part (i) and write it now for the special Hilbert

space from Part (ii), that is, in terms of standard random variable notation:

min
D̂∈span{...}

. . . = . . . (28)

(iv) (3 pts) In class, we have carefully studied estimation problems with respect to the

mean-squared error (MSE) criterion, identifying the MMSE estimator and the LMMSE

estimator as well as their respective performance. See Section 6.2 of the Lecture Notes.

Precisely explain the connection between your result from Part (iii) above to MSE

estimation! Feel free to refer to formulas from the lecture notes simply by their equation

number.

Solution 3. We take up the items in turn:

(i) As we have seen in class, Theorem 9.3 of the lecture notes, in the special case where

we have an orthonormal basis of G, the minimizer takes a very simple shape, namely,

it is given by d̂ =
∑N

i=1⟨d, zi⟩zi. One way to proceed is

∥d− d̂∥2 = ⟨d− d̂,d− d̂⟩ (29)

= ⟨d,d− d̂⟩ − ⟨d̂,d− d̂⟩ (30)

= ⟨d,d− d̂⟩, (31)
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where we have used the orthogonality principle, Theorem 9.1, to drop a term. This

nicely simplifies our manipulations. Namely,

∥d− d̂∥2 = ⟨d,d⟩ − ⟨d, d̂⟩ (32)

= ∥d∥2 − ⟨d,
N∑
i=1

⟨d, zi⟩zi⟩ (33)

= ∥d∥2 −
N∑
i=1

⟨d, zi⟩∗⟨d, zi⟩ (34)

= ∥d∥2 −
N∑
i=1

|⟨d, zi⟩|2. (35)

Hence, we have found the result

min
d̂∈G

∥d− d̂∥2 = ∥d∥2 −
N∑
i=1

|⟨d, zi⟩|2. (36)

Alternatively, the following slightly longer approach also works:

∥d− d̂∥2 = ⟨d− d̂,d− d̂⟩ (37)

=

〈
d−

N∑
i=1

⟨d, zi⟩zi,d−
N∑
j=1

⟨d, zj⟩zj

〉
(38)

and then work through several steps of breaking the inner product, just like the steps

we did together in class. This ultimately leads exactly to the same formula.

(ii) The first observation is that the abstract vectors of our general Hilbert space are

random variables in the special Hilbert space under consideration here. So, we write

G = span{Z1, Z2, . . . , ZN}, where Zi are zero-mean finite variance random variables.

Moreover, we know that this is an orthonormal basis. This means that ⟨zi, zi⟩ = 1,

or in our more explicit notation for the special Hilbert space at hand, E[Z2
i ] = 1. It

also means that for i ̸= j, we have ⟨zi, zj⟩ = 0, or in our more explicit notation for the

special Hilbert space at hand, E[ZiZj] = 0.

(iii) Now, in Part (i), we found

min
d̂∈G

∥d− d̂∥2 = ∥d∥2 −
N∑
i=1

|⟨d, zi⟩|2. (39)

Specializing to the Hilbert space at hand, we thus write

∥d− d̂∥2 = ⟨d− d̂,d− d̂⟩ = E[(D − D̂)(D − D̂)] = E[(D − D̂)2] (40)
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and

∥d∥2 −
N∑
i=1

|⟨d, zi⟩|2 = ⟨d,d⟩ −
N∑
i=1

|⟨d, zi⟩|2 (41)

= E[D2]−
N∑
i=1

(E[DZi])
2. (42)

Combining, this gives us

min
D̂∈span{Z1,Z2,...,ZN}

E[(D − D̂)2] = E[D2]−
N∑
i=1

(E[DZi])
2. (43)

(iv) Part (iii) is precisely the Linear MMSE estimation problem of Section 6.2.2. In there,

the estimate D̂ is formed based on the observed random vector X. Here, we denote this

random vector by Z. As observed above, the components of this vector are orthonormal,

meaning that E[ZiZj] = 0 and E[Z2
i ] = 1. In this special case, the matrix RZ in

Equation (6.13) of the lecture notes is simply the identity matrix. Therefore, the

optimal coefficients in Equation (6.15) are given by w = E[DZ]. Therefore, the incurred

error in Equation (6.20) is given by E[D2] − E[DZ]HE[DZ] = E[D2] −
∑N

i=1(E[DZi])
2.

This is precisely the formula we found in Part (iii).
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Problem 4 (The Maximum Likelihood Estimator and I-projections – 10 pts). Let Xn be

i.i.d. random variables taking values in a finite set X of size k. Recall that when restricted

to distributions from a set P , the maximum likelihood estimator p̂MLE : X n → P is given as

P ∗
MLE = p̂MLE(x

n) = argmax
P∈P

P (Xn = xn) .

Note that the two parts of this problem are independent of each other.

(i) (4 pts) Show that the maximum likelihood estimate P ∗
MLE is equal to the I-projection

P ∗ := argmin
P∈P

D
(
P̂
∥∥∥P)

where P̂ denotes the empirical distribution of xn.

(ii) (6 pts) Let P0 be a distribution over X and let P be defined as the minimal exponential

family

P :=
{
P : P (x) = P0(x)e

−⟨θ,ϕ(x)⟩−A(θ), θ ∈ Θ
}

for some open parameter space Θ ⊆ Rd, sufficient statistic ϕ, and normalization func-

tion A. Then show that the maximum likelihood estimate P ∗
MLE is the I-projection P ∗

of P0 onto the linear family

L(xn) :=

{
P : EP [ϕ(X)] =

1

n

n∑
i=1

ϕ(xi)

}
.

In other words, show that

argmin
P∈L(xn)

D (P0∥P ) = argmax
Q∈P

Q(Xn = xn).
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Solution 4. 1. Since the logarithm is an increasing function, we can equivalently maxi-

mize the log likelihood of the sequence xn as follows:

argmax
P∈P

P (Xn = xn) = argmax
P∈P

logP (Xn = xn) = argmax
P∈P

log
n∏

i=1

P (xi)

= argmax
P∈P

n∑
i=1

logP (xi)

(a)
= argmax

P∈P

∑
x∈X

nP̂ (x) logP (x)

(b)
= argmin

P∈P

∑
x∈X

n
(
P̂ (x) log P̂ (x)− P̂ (x) logP (x)

)
=argmin

P∈P
nD

(
P̂
∥∥∥P) = argmin

P∈P
D
(
P̂
∥∥∥P) ,

where (a) is true because the term logP (x) is added exactly nP̂ (x) times in the sum-

mation for each x ∈ X , and (b) follows from the fact that adding the constant term

n
∑

x∈X P̂ (x) log P̂ (x) to the objective does not change the minimizing argument.

2. From section 8.5 of the notes, we know that when P is the exponential family with

base density h and sufficient statistic ϕ, the MLE also lies in the linear family L. Also,
from Theorem 8.3 in the notes, we know that the I-projection of P onto the linear

family L lies precisely the intersection of the exponential family with the linear family.

Invoking Theorem 8.4 for the uniqueness of θ, since the sample mean lies in the set

of feasible means M := [minx ϕ(x),maxx ϕ(x)] with probability 1 (why?), the proof is

complete.

Alternate method for showing that P ∗ ∈ P ∩ L:
Consider the problem of finding the I-projection of P0 onto L:

P ∗ = argmin
P∈L

D (P∥P0)

Using Lagrange multipliers once again, write the Lagrangian function L(µ1, µ2) as∑
x∈X

(
P (x) logP (x)− P (x) logP0(x) + µ1P (x)

(
ϕ(x)− 1

n

n∑
i=1

ϕ(xi)

))
+ µ2

(∑
x∈X

P (x)− 1

)
Taking partial derivatives w.r.t. P (x)and equating to zero, we get

∂

∂P (x)
L(µ) =1 + P (x)− logP0(x) + µ1ϕ(x)− µ1

1

n

n∑
i=1

ϕ(xi) + µ2 = 0

=⇒ P (x) =P0(x) exp

(
−µ1ϕ(x)−

(
µ2 + 1− µ1/n

n∑
i=1

ϕ(xi)

))
.

Writing −µ1 as θ and µ2 + 1− µ1/n
∑n

i=1 ϕ(xi) as A(θ), we find that P ∗ ∈ P .
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