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This exam is open book. No electronic devices of any kind are allowed. There are 4 problems.
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Problem 1 (A perspective on PCA — 10 pts). Let X € R? be a zero-mean random vector
with covariance matrix

¥ = E[XX].

Let Ay > Ay > -+ > Ay > 0 denote the eigenvalues of 3.

(i) (2 pts) Let w € R? with ||w]|o = 1. Show that

Var(w'X) = w' Zw.

(ii) (4 pts) Show that the unit vector w maximizing w' Xw is the eigenvector correspond-
ing to the largest eigenvalue \;.

(iii) (3 pts) Let uy be the eigenvector associated with A\;, and define the rank-1 reconstruc-
tion

A

X = uu, X.

Compute the rank-1 reconstruction error
112
E[IX - X|Ig] .

(iv) (1 pt) Define the explained variance ratio of the first principal component as

At
Z?:l /\i'

Discuss and interpret EVR(1) in words. Then, give a practical criterion for deciding
whether a rank-1 PCA approximation is sufficient.

EVR(1) =

Solution 1.

(a)
Since E[X] = 0,

Var((w, X)) = E[(w'X)?}] = Elw ' XX'w] = w'E[XX|w = w' Zw.

(b)

Option 1 (Recommended): Spectral Decomposition Argument



Let {u;}%_; be an orthonormal eigenbasis of X, with X = Z?Zl Auga) and Ay > g > - >
Ag > 0. Write

d
W = g a; Uy,
i=1

then [[wlf3 = 327, of = 1.

Then

d T/ a d d d
WTEW = (Z aiui> (Z )\Zuzuj) (Z oziui> = Z )\ZCM? < )\1 Z Oj? = )\1,
i=1 i=1 i=1 i=1 i=1

Equality holds if and only if o; = 0 for all ¢ such that A\; < A;. In particular, choosing
w = u; yields
”mHaxl W' EwW = )\

Option 2: Lagrange Multiplier Argument

We maximize w' Xw subject to the constraint ||w||2 = 1. Consider the Lagrangian
Lw,p) =w'Zw — p(w'w —1).
Setting the gradient with respect to w to zero gives
2YXw — 2puw = 0,

which implies
YW = uw.

Hence any stationary point must be an eigenvector of ¥ corresponding to eigenvalue A, and
the objective value at such a point is

W' Sw = pl|wlf; = p.

Therefore the maximum is attained by choosing w as an eigenvector associated with the
largest eigenvalue A\;, and the maximum value equals \;.

(c)

Using the eigendecomposition 3 = % | \iu;u; and the orthonormal basis {u;},

X = Z(ui,XﬁJ_i.

i=1

The reconstruction keeps only the first component:

~

X = (uy, X)u;.

3



Hence,

d d
X-X=> (X, [X-X[3=>) (u,X)
=2 1=2
Taking expectation,
d d d
E[X — X[I3] = > E[(u;, X)?] = > u/Tu; =) A\
=2 =2 =2

(d)

1. EVR(1) is the fraction of the total variance of the data explained by the first principal

component.

2. In practice, a rank-1 approximation is considered sufficient if EVR(1) exceeds a chosen
threshold (e.g. 90% or 95%), or if adding further components yields diminishing returns
(“elbow” criterion).



Problem 2 (The Log-Likelihood Ratio — 10 pts). Given samples X1, X, ..., X,,, we studied
the problem of deciding whether the data consists of i.i.d. samples from distribution P, or
from distribution P;. We saw that the key is the log-likelihood ratio

1<, P(Xy)
AnX,...,Xn:—E 1 ) 1
(X3 ) n < 8 Py(X;) (1)
Now, let us assume that indeed, X, X»,..., X, are i.i.d. samples from P;. In that case,

we showed in class that Ep, [A, (X1, ..., X,)] = D(P1||Py). Give a good upper bound on the
probability

Pp {[An(X1, ..., X0) — D(B1[[F)| = 1} (2)
The better your bound, the more points. As always, full step-by-step justifications are

required for full credit.

Hint: You may start by assuming that X; are binary. In that case, P, is a Bernoulli(a;)
distribution and P is a Bernoulli(cy) distribution.

Solution 2. We present two different approaches to tackle this problem.

1. Chernoff/Hoeffding approach: Given the contents of our class, this is what we
expected you would do. Namely, leveraging what we saw in class, we study the random
variables

Po(Xy)

Z; = log (3)

where X is distributed according to P;.

The key observation is that the random variables Z; are i.i.d., that is, they
are independent and identically distributed. This is because the X; are i.i.d., and each
Z; is a deterministic function (“remapping”) of the corresponding X;. Moreover, as we
saw in class (and as is given in the problem statement), the mean of Z; (when X; is
distributed according to P;) is

= Ep[Z] = D(P|| Fy). (4)

With this notation, we can write the quantity that we need to bound as follows:

> ?7}- (5)

1 n
Pp {|An(X1,.... X)) — D(P||P)| >0} =Pp |- Z —
P {AR (X ) = D(P1[|Po)| = n} =Pp {i”;:l T



This is exactly of the form that we have studied again and again in class (including,
for example, in the context of multi-armed bandits). Specifically, just like in class, we

can write
P 1i2 > =P 1iZ > + P 1i2 <
P, ni:1 i M ZN | =P ni:1 i T =T Py ni:1 Pl I T
(6)

To use the tools we learned in class, we would now like to assert that the Z; are sub-

gaussian and find the corresponding variance proxy o2. Clearly, if we can establish this,
then we immediately, without any further thinking, have the bound

Ppl{ %Zzi—/i
i=1

from Lemma 2.6 in the lecture notes (Hoeffding’s Bound).

nn2
>n e <227, (7)

But is there reason to believe that Z; are indeed subgaussian? — This is where the
hint comes in. Namely, starting with the simple binary setting, we realize that the
random variable Z; only has two different values, namely,

1—ag’

7 — {log o1 with probability 1 — N

log g—é, with probability oy

Let us assume that 0 < ap < 1 and 0 < o < 1. In this case, Z; € [a, b] is a bounded
random variable, and the length of the interval is

1—0[1

€51
1 -
og 1

— log , (9)

— Oy &%)

b—a=

which is finite. (We discuss the more general case below.) By Lemma 2.5 from
the Lecture Notes, we can thus assert that Z; are subgaussian with variance proxy

2
(10g (lfal)o“)) /4. Hence, we can give the following bound:

(1—ap)an

2

Pp, (|An(X1, ..., X,) — D(P||P)] > 1) < 2 27, (10)

2
%) /4. This is the bound we expected you to find.

where 02 = (log
How to generalize this to the case where the X; are not just binary? Let us continue
with X; that are discrete, supported on an alphabet of size k. Then, again, we can
assert that Z; only takes k different values. Assuming all of these values are
finite, we again directly have that Z; is a bounded random variable. And the interval

is simply given by

Pi(a)

: Py (z)
min lo max lo . 11
g 8 Bo(r) (11)




If you want to know more (but nothing of the sort was expected!): To beautify
notation, let us define

PI(ZL’)
Py(z)

Dac(P1[|Py) = max log (12)

(This is a standard definition in the literature, called Rényi divergence of order cc.)
With this, we can express the interval as

[=Doo(Bo]|P1), Do (Pr[| Ro)] (13)

and the length of the interval can be written as Dy (P1||Fy) + Do (|| P1). Note the
pleasing fact that this formula is symmetric in P and P;. That is, the variance proxy
is given by 0% = (Duo(P1||Po) + Doo(Po||P1))?/4. And with this, just for kicks, we can
write the full bound as

2nn2

Pp, (|An(X1> L 7Xn) — D(P1||P0)| > 77) < 2e  (Doo(PilFg)+Doo (PollP1))? (14)

An interesting follow-up discussion concerns the case when there exists an = such that
log% is infinite. Evidently, we can exclude all values of x for which P(z) = 0.

Under P, these values do not even show up. So the issue is only that there is an z

for which Py(z) = 0 (but Pi(x) > 0). For such value of x, we have log E)Eg

The simple key observation now is that in this case, the Kullback-Leibler divergence

= Q.

D(P,||Py) (and thus, the mean p) is also infinite. Hence, this case is uninteresting in
the sense that we cannot give any bound of the type that we are looking for (that is
better than the trivial upper bound of 1).

Finally, you may be interested in the case of general real-valued random variables.
Extrapolating from above, we can see that if our distributions Py(z) and P;(z) are
such that min, log 283 and max, log gg;

we again get the variance proxy given by 02 = (D (P1||Py) + Doo(Po|| P1))? /4.

are both finite, then we are done. Namely,

. Chebyshev approach: Another approach is to directly plug into Equation (2.4) from
the lecture notes, which is the Chebyshev inequality. Namely,
Var(A, (X1, ..., X,))

Pp, {’An(le"'vxn)_D(P1HP0)| ZU}S 772 )

(15)

where we now have to find (or at least bound) the variance of A, (X1,...,X,) when
the X; are i.i.d. according to P;. To do this, we note

n

Var(A,(X1,...,X,)) = Var (% Z log Pl(Xi)) (16)

= % i Var <log 28((;) : (17)




where the last step is an argument that we have used several times during the semester:
Pi(X5)
Po(X)
random variables. Therefore, the variance of the sum is equal to the sum of the

The random variables Z; := log are independent (and identically distributed)
variances (easy to prove — do it again if you are unsure!). Finally, because the Z; are
also identically distributed (and hence, all the variance terms in the sum are equal),
we can write our bound as

Po(X)

Var <log Pl(X))
Pp, {[An(X1, ..., X0n) — D(P1||Ry)| > 0} <

T (18)
where the dummy random variable X is distributed according to P;. This is already
a nice result: Since the variance term does not depend on n, the bound goes to zero
as n becomes large and is thus an interesting and non-trivial bound. (Although, as we
emphasized in class, this bound is only inversely proportional to n, by contrast to the
Chernoff/Hoeffding approach, which leads to an exponential decay as a function of n.)
This is true as long as the variance term is finite.

So, the next question is: What can we say about the variance term? This is where
the hint comes in: Let us take Fy and P; to be Bernoulli distributions, as suggested.
Then, (as above) we know that

7 log P (X) _ log tz;, with probability 1 — oy 19)
By(X) log ot with probability oy

It is straightforward (but perhaps a bit tedious) to express the variance of this random
variable. For example,

Var(Z) = E[Z*] - (E[Z])* (20)

— (1 a) (o “1)2 o <1ogj—;)2 — (PR, e

]_—Oéo

which (as long as 0 < ag < 1) is a well-defined finite number.

Alternatively, you can also just bound the variance. A very simple bound for any
random variable W is Var(W) < max, [w|?, where the maximum can be limited to
all values w for which py (w) > 0. (Of course, this bound is only interesting if this
maximum value is finite. Otherwise, more careful work is needed.) For our case, we
can write this as

Var <log Pl(X)) < (max {—minlog Pi@) | axlog D) })2 (22)

Po(X) @ Py(z)' = Py(x)
= (max{Duo(P|| 1), Doc(P1|| Po)})? (23)
< (Dso(Po|| P1) + Doo(P1[| )7, (24)



where we have only added the last, loose bounding step to connect to the Cher-
noff/Hoeffding approach. Namely, via Chebyshev, we can thus establish the bound

(Doo(P1||Py) + Doo(Po| P1))*

[FDP1{|A7L(X17"'7XN)_D(P1||P0)| 277} < nng ) (25)
while Chernoff-Hoeffding permitted to have the bound
2n 2
Pp, (|An(X1, ..., X0n) — D(PL||[Py)] > 1) < 26 B PilFo) s b RoTFDP (26)



Problem 3 (Projection Theorem — 10 pts). Consider a Hilbert space H spanned by the
orthonormal basis {z;},cz, . Let G C H be a (Hilbert) subspace of H, spanned by the first
N basis vectors, that is, G = span{z;, 2s,...,zy}.

(i)

(iii)

(3 pts) For a fixed vector d € H, give an expression for ming_, ||d — d||? in terms of d
and z1,Z9,...,ZN :

min ||d —d|?=... (27)
deG

The simpler your expression, the more points you get. Hint: Check your lecture notes.
Recall that we are given an orthonormal basis of G'!

(1 pt) Now let H be the space of all zero-mean finite variance (real-valued) random
variables. Here, we prefer to denote the abstract vectors d and z; more explicitly as
random variables D and Z;. Take as the inner product (d,z) = E[DZ]. This is known
to be a Hilbert space. As above, let G C H be a subspace spanned by N orthonormal
basis vectors, that is, G = span{zy, z, ..., zy}. Explicitly write what this means for
the random variables 71, Zs, ..., Zy.

(3 pts) Take your general result from Part (i) and write it now for the special Hilbert
space from Part (ii), that is, in terms of standard random variable notation:

~ min
Despan{...}

(28)

(3 pts) In class, we have carefully studied estimation problems with respect to the
mean-squared error (MSE) criterion, identifying the MMSE estimator and the LMMSE
estimator as well as their respective performance. See Section 6.2 of the Lecture Notes.
Precisely explain the connection between your result from Part (iii) above to MSE
estimation! Feel free to refer to formulas from the lecture notes simply by their equation
number.

Solution 3. We take up the items in turn:

(i)

As we have seen in class, Theorem 9.3 of the lecture notes, in the special case where
we have an orthonormal basis of G, the minimizer takes a very simple shape, namely,
it is given by d = Zi]\;(d, z;)z;. One way to proceed is

|d—d|*=(d—d,d—d) (29)
=(d,d —d) — (d,d —d) (30)
—(d,d-d), (31)

10



where we have used the orthogonality principle, Theorem 9.1, to drop a term. This
nicely simplifies our manipulations. Namely,

ld —d|* = (d.d) —(d.d) (32)

= ||d|)* - <d,Z<d,z@->zi> (33)

N

= [Id[* = ) (d,z:)"(d, %) (34)

i=1
N
= [[d]* = [(d, z) . (35)
i=1
Hence, we have found the result
A N
min [|d — d|* = [|d]* = ) [(d, z)*. (36)
ded P

Alternatively, the following slightly longer approach also works:

|d—d|*=(d—d,d—d) (37)
— <d - Z(d, z;)z;,d — Z<d’ Zj>Zj> (38)

and then work through several steps of breaking the inner product, just like the steps
we did together in class. This ultimately leads exactly to the same formula.

(ii) The first observation is that the abstract vectors of our general Hilbert space are
random variables in the special Hilbert space under consideration here. So, we write
G = span{Zy, Zs, ..., Zn}, where Z; are zero-mean finite variance random variables.
Moreover, we know that this is an orthonormal basis. This means that (z;,z;) = 1,
or in our more explicit notation for the special Hilbert space at hand, E[Z?] = 1. Tt
also means that for i # j, we have (z;,z;) = 0, or in our more explicit notation for the
special Hilbert space at hand, E[Z;Z;] = 0.

(iii) Now, in Part (i), we found

N
min [|d - d|* = [[d|* =} [(d.z)[* (39)
deG pry

Specializing to the Hilbert space at hand, we thus write

A A A

ld—d|* = (d—d,d~d) =E[(D ~ D)(D — D)] = E[(D — D)’ (40)

11



(iv)

and

=" I,z = (d.d) = fid.z) (41)

=1

N
=E[D’] - ) (E[DZ])’ (42)
i=1
Combining, this gives us
N
) min E[(D — D)’] = E[D’] - > (E[DZ])*. (43)
Despan{Zzi,Za,....Zn} i—1

Part (iii) is precisely the Linear MMSE estimation problem of Section 6.2.2. In there,
the estimate D is formed based on the observed random vector X. Here, we denote this
random vector by Z. As observed above, the components of this vector are orthonormal,
meaning that E[Z;Z;] = 0 and E[Z?] = 1. In this special case, the matrix Rz in
Equation (6.13) of the lecture notes is simply the identity matrix. Therefore, the
optimal coefficients in Equation (6.15) are given by w = E[DZ]. Therefore, the incurred
error in Equation (6.20) is given by E[D?] — E[DZ]"E[DZ] = E[D? — S (E[DZ])?.
This is precisely the formula we found in Part (iii).

12



Problem 4 (The Maximum Likelihood Estimator and I-projections — 10 pts). Let X™ be
i.i.d. random variables taking values in a finite set X of size k. Recall that when restricted
to distributions from a set P, the maximum likelihood estimator pyi g : X™ — P is given as

Pig = pvie(2") = argmax P (X" = 2").
PeP

Note that the two parts of this problem are independent of each other.

(i) (4 pts) Show that the maximum likelihood estimate Py is equal to the I-projection

P* := argmin D <I5HP)
PeP

where P denotes the empirical distribution of x™.

(ii) (6 pts) Let P be a distribution over X and let P be defined as the minimal exponential
family

P .= {p . P(x) = Py(z)e(99@=A40) g ¢ @}

for some open parameter space © C R?, sufficient statistic ¢, and normalization func-
tion A. Then show that the maximum likelihood estimate Fyj;p is the I-projection P*
of Py onto the linear family

In other words, show that

argmin D (F||P) = argmax Q(X" = z").
PeL(z™) QeP

13



Solution 4. 1. Since the logarithm is an increasing function, we can equivalently maxi-
mize the log likelihood of the sequence x" as follows:

argmax P (X" = z") =argmaxlog P (X" = z") = argmaxlogHP (x;)
PeP PeP PeP

= arg max Z log P(z;)

pPeP T
@ arg max Z nP(x)log P(x)
Pep

—argmmz ( )log P(x) — p(m)logP(:lf))

Pep

=arg minnD (PHP) = arg min D (]3HP> ,

peP pPeP

where (a) is true because the term log P(z) is added exactly nP(x) times in the sum-
mation for each z € X, and (b) follows from the fact that adding the constant term
nY ey P(x)log P(x) to the objective does not change the minimizing argument.

2. From section 8.5 of the notes, we know that when P is the exponential family with
base density h and sufficient statistic ¢, the MLE also lies in the linear family £. Also,
from Theorem 8.3 in the notes, we know that the I-projection of P onto the linear
family L lies precisely the intersection of the exponential family with the linear family.
Invoking Theorem 8.4 for the uniqueness of 6, since the sample mean lies in the set
of feasible means M := [min, ¢(z), max, ¢(z)] with probability 1 (why?), the proof is
complete.

Alternate method for showing that P* € PN L:
Consider the problem of finding the I-projection of F, onto L:

P* = argmin D (P|| Fp)
peL

Using Lagrange multipliers once again, write the Lagrangian function L(uy, j12) as

) (P(z) log P(z) — P(x) log Po(x) + u P(x) (cb(:v) --y as(xi))) i (Z P(z) - 1)

reX TEX

Taking partial derivatives w.r.t. P(x)and equating to zero, we get

9,
OP(x)

— P(z) =Ry(z) exp <—u1¢(37) - <N2 +1- ‘“/TLZ(b(l‘z))) ~

Writing —pq as 6 and po +1 —#1/ny " | ;) as A(f), we find that P* € P.

L(p) =1+ P(z) — log Py(x) + pa¢(x m—Zcb i)+ 2 =0

14



