Problem 1:
A source of 60Co is used at a hospital. The activity is 5 Ci. Calculate the effective dose that a nurse working in the same room would receive in one working day (8h) if there was no radiation shielding around the source. The average distance to the source can be assumed to be 3 meters. Now, design a radiation protection around the source. The source does not have to be easy to move. Select material and thickness so that the dose to the nurse is limited to 1 µSv per working day.

Problem 2:
In November 2006, the radioisotope 210Po was used to poison and kill the Russian dissident Alexander Litvinenko in London. It took the British authorities a few weeks to realise that the poison was in fact 210Po. Explain two methods that can be used, to identify 210Po (to make sure that it is really 210Po, and not another radioactive material), by using detectors of ionising radiation. Assume that we have a sample (e.g. urine) from the poisoned person, and that the sample contains 1mCi.

It has been estimated that Litvinenko consumed around 10 micrograms of 210Po. Calculate the effective dose during 24 hours. Assume that all of the material stays in the body for the 24 hours, and that it is distributed evenly over the whole body.

Problem 3:
In 1977, a well-preserved dead mammoth was found frozen in ice in Siberia, Russia. A sample of the mammoth was analysed using the carbon-14 dating method. A one-gram sample of pure carbon (from the mammoth) contained 3.945×10^8 14C atoms. By making the simple assumption that the 14C content in natural carbon was the same when the mammoth died, as it is today (1^{14}C atom for 10^{12} 12C atoms), calculate the time (in years before today) when the mammoth died.

Problem 4:
In a hospital, a radioactive source is prepared for a PET investigation of a patient. The source (11C, activity 1.5 Ci) is injected in the patient, and we can assume that it is distributed evenly over the whole body. Calculate the approximate total effective dose delivered to the patient as a consequence of the PET investigation. Also, calculate the effective dose delivered to a nurse sitting 2 m from the patient during the PET procedure (30 minutes). Make a radiation protection design (material, geometry) to decrease the dose to the nurse by a factor of 100.
Problem 5:
Two scientists (Dr. Amy, and Dr. Bernadette) work in a small laboratory where a Mössbauer experiment is prepared. Suddenly, Dr. Amy drops an open ^{57}Co source (200 mCi) on the table in front of her. It takes Dr. Amy 25 seconds before she is able to put the source back in the thick lead container. During the 25 seconds of exposure, Dr. Bernadette stands behind Dr. Amy (i.e. shielded by Dr. Amy’s body), unaware of the incident. Calculate the effective dose received by Dr. Amy, and the effective dose received by Dr. Bernadette. Make your own (reasonable) estimations of the geometry of the problem.