6: Positron Emission Tomography

1. What is the principle of PET imaging?
 - Positron annihilation
 - Electronic collimation – coincidence detection

2. What is really measured by the PET camera?
 - True, scatter and random coincidences

3. How are the effects attenuation corrected for?

4. What factors can affect resolution?

5. Examples: PET tracers in oncology and neuroscience

After this course you are capable of
1. Describing the essential elements of a PET scan
2. Distinguish the principle of PET detection from that of SPECT
3. Understand the bases of scatter elimination.
4. Understand the factors affecting spatial resolution in PET.

6-1. What is Positron Emission Tomography?

PET

Positron Emission tomography: measured are x-rays emitted by annihilation of positrons emitted by exogenous substance (tracer) in body
The principle is as emission tomography, but there is one major difference ... (see later)

Two issues:
1. How to determine directionality of x-rays?
2. Absorption is undesirable

Most widely used tracer for PET

\(^{18}\text{F}luoro-deoxy-glucose

\[\text{F-18 FDG}\]
What does one want to measure with PET?

Annihilation photons

Question: Why are two photons produced?

Conservation of linear momentum is not possible with one photon \(p = E/c \) but two photons.

Energie of photons?

\[h\nu = mc^2 = 511 \text{keV} \]

\(\text{1eV} = 1.6 \times 10^{-19} \text{J} \)

NB. Light travels 1m in 3ns: \(1 \text{m}/3 \times 10^8 \text{[m/s]} = 3 \text{ns} \)

Annihilation coincidence detection:

two events detected at the same time

- annihilation event along a line (defined by detector)
- \(\Rightarrow \) NO need for a collimator

What is coincidence detection?

Electronic collimation (i.e., w/o physical collimators)

- **Electronic signal**
- **What defines simultaneity (coincidence)?**

Leading edge defines time of detection (sharper, i.e., higher 1st derivative)

Bi\(_4\)Ge\(_3\)O\(_12\) (BGO): \(\tau \approx 10 \text{ns} \)

Position logic electronics

- **Photomultipliers**
- **Light guide**
- **Scintillating crystal**

Elimination of collimator material is a major source of sensitivity increase (why?)
6-2. What is really measured with PET?

\[Y_{ab} = N_{ab} (T_{ab} + S_{ab} + R_{ab}) \]

What is measured

- True coincidences
- Random coincidences
- Scattered coincidence

Normalization (Instrument imperfection)

Scatter

Attenuation

Randoms

Why are Random and Scattered Events bad?

Random

- Emissions from unrelated nuclear transformations interact simultaneously with the detectors
- Rate of random coincidences:
 \[R_{\text{rand}} = 2\tau S_1 S_2 \]
- \(S_1 \) and \(S_2 \): count rates on the individual detectors (singles rates)
- \(\tau \): separation of singles (=coincidence time)

Scatter

- At least one annihilation photon is (Compton) scattered
- Erroneous Line of incidence (LOI) \(\Rightarrow \) assignment to wrong Radon transform

Reduce randoms by reducing \(\tau \) (coincidence interval)

Does not work for scattered events (why?)
How can scattered events be distinguished from true coincidence?

Energy discrimination & background subtraction

Most scattering is by Compton

\[E_f = \frac{m_e c^2}{2 - \cos \theta} \]

<table>
<thead>
<tr>
<th>theta/Ei</th>
<th>511 (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>482</td>
</tr>
<tr>
<td>45</td>
<td>396</td>
</tr>
<tr>
<td>90</td>
<td>256</td>
</tr>
<tr>
<td>110</td>
<td>218</td>
</tr>
<tr>
<td>180</td>
<td>170</td>
</tr>
</tbody>
</table>

Subtract background \(= \) scatter + randoms measured in signal void regions \(\rightarrow \) polynomial interpolation

6-10

6-3. How is attenuation correction performed?

simpler for PET than SPECT

Attenuation:
Probability of detecting the photon pair

\[P_1 P_2 = e^{-\mu d} e^{-\mu (d-x)} \]

\[S = C_T^*(x) e^{-\mu d} \]

\[S = P_1 \cdot P_2 \cdot C_T^* \]

Compare to geometric average of SPECT (Lesson 5)
What are the steps in Attenuation Correction for PET?

- Mass attenuation coefficient \(\mu/\rho \) in soft tissue = 0.095 cm\(^2\)/g (511 keV)
- HVL = 0.693/\(\mu \) \(\Rightarrow \) HVL \(\approx \) 7 cm

Average path length for the photon pair longer than for a single photon different lines of response attenuate to varying degrees

Attenuation correction in practice:
- Spatially uniform attenuation coefficient assumed
- Transmission technique using e.g. Cs source (662 keV, why is this good enough?)

\[e^{-\int \mu(x) dx} \]

Comparison with blank scan i.e. subject removed

Correction factor for each Radon transform (\(\mu \) homogeneous)

Why is PET/CT the industry standard?

PET-Attenuation correction using CT-Data

\[\mu/\rho (\text{cm/g}) \]

0.3

0.2

0.1

0.1

0

0 100 200 300 400 500

Energy (keV)

CT + PET = PET/CT

CT

PET 511 keV

Bone

Soft tissue

CT ~70 keV

scatter & attenuation correction

Fund BioImag 2018
6-4. Why is Resolution never perfect?
Annihilation Range and photon non-collinearity

Range: limits spatial resolution
(In air, β^+ range ~ several m)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life (min)</th>
<th>Max. Energy (MeV)</th>
<th>Range in H2O (FWHM, mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F</td>
<td>110</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>11C</td>
<td>21</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>18O</td>
<td>2</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>13N</td>
<td>10</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>68Ga</td>
<td>68</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>82Rb</td>
<td>1</td>
<td>3.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Collinearity: Assumed for Reconstruction
Background: At time of annihilation, e-p pair has non-zero kinetic energy

- Conservation of momentum

\[
\text{Photon momentum with zero momentum e-p}
\]

\[
\text{D (detector distance)}
\]

\[
\begin{align*}
\times &= 0.5 \times D \times \tan(0.25^\circ) \\
60 &\quad 1.3 \\
80 &\quad 1.7 \\
100 &\quad 2.2
\end{align*}
\]

How does the detector affect PET spatial resolution?

Example: BGO Block Detector
Coincidence window: 12 ns
Energy resolution: ~ 25%

True coincidence count rate R_T

\[
R_T = 2C^*T\epsilon^2
\]

1. C^*: tissue activity of a voxel
2. ϵ: the intrinsic detector efficiency $(1-e^{-\mu x})$
3. G: the geometric efficiency (solid angle defined by the detector surface/4π).

NB. $\epsilon = 0.9 \rightarrow 81\%$ of photon pairs emitted towards detectors produce coincidence

This is a reason for the 3cm thick crystals used for PET detection.
6-5. What are typical PET tracers?

Oncology

- 18Fluoroethyl-Tyrosine (FET)
 - Amino acid transport
- Deoxy-18fluoro-thymidine (FLT)
 - Proliferation
- 18Fluoromisonidazole (FMISO)
 - Hypoxia
- 11C-Methionine
 - Amino acid transport and metabolism
- H_2^{15}O
 - Blood flow
- 18Fluoro-Deoxyglucose (FDG)
 - Glucose metabolism
- 15O-Butanol
 - Blood Flow
- 18FDOPA
 - Presynaptic dopaminergic function
- 11C-Flumazenil
 - Benzodiazepine-receptor mapping

Neuroscience

- FDG or 18F fluorodeoxyglucose
- 15O Water

X-ray imaging modalities. Overview

CT, SPECT, PET

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>SPECT</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection Encoding</td>
<td>Defined by incident x-ray (collimation to reduce scatter)</td>
<td>Collimator essential</td>
<td>Coincidence detection (electronic collimation)</td>
</tr>
<tr>
<td>Spatial Resolution (rodent)</td>
<td>100μm-mm (μm)</td>
<td>Typical 10mm (Variable and complex) (1.5-3 mm)</td>
<td>4.5-5mm at center (1mm)</td>
</tr>
<tr>
<td>Attenuation</td>
<td>= measurement variable (Varies with energy)</td>
<td>Complex correction (Varies with photon energy)</td>
<td>Accurate correction (transmission method)</td>
</tr>
<tr>
<td>Radionuclides</td>
<td>None (contrast agents)</td>
<td>Any with $hν$ = 60-200keV</td>
<td>Positron emitters only</td>
</tr>
</tbody>
</table>