Chapter 3: The Edges Library

Pierre Dillenbourg, Patrick Jermann, Thanasis Hadzilakos & Stian Haklev
Why is a_i a condition for a_j?

$E = \{ e_{ij} \mid e_{ij}: (a_i, a_j, \{\text{operators}\}, \{\text{controls}\}, \text{label}, \text{weight}, \text{elasticity})\}$

How much is a_i a condition for a_j?

Edge Label

Edge Weight
The preparation edges connect two activities when the learner has a higher probability of succeeding at a_j if he carried out a_i before a_i.

The set edges connect two activities when the skills or contents addressed in a_i and a_j are in relationship with each other; for example, subset/superset, whole/part, and siblings. (UP / DOWN)

The translation edges connect two activities in which the same content is addressed under different formats, representations, notations, or viewpoints. Learners therefore have to translate the representation used in a_i into the representation used in a_j.

The generalization edges introduce variations of the content or skills across the space of generalization, namely introducing the student to more general, less general, or analogical contexts from a_i to a_j. (UP / DOWN)
Library of Edge Labels

Why is a_i a condition for a_j?

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Set</th>
<th>Translation</th>
<th>Generalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) Prerequisite</td>
<td>(S+) Aggregation</td>
<td>(T) Proceduralization</td>
<td>(G+) Induction</td>
</tr>
<tr>
<td>(P) ZPD</td>
<td>(S+) Expansion</td>
<td>(T) Elicitation</td>
<td>(G+) Deduction</td>
</tr>
<tr>
<td>(P) Adv. organizer</td>
<td>(S-) Decomposition</td>
<td>(T) Alternate</td>
<td>(G+) Extraction</td>
</tr>
<tr>
<td>(P) Motivation</td>
<td>(S-) Selection</td>
<td>(T) Reframe</td>
<td>(G+) Synthesis</td>
</tr>
<tr>
<td>(P) Anticipation</td>
<td>(S=) Juxtaposition</td>
<td>(T) Reverse</td>
<td>(G=) Analogy</td>
</tr>
<tr>
<td>(P) Logistics</td>
<td>(S=) Contrast</td>
<td>(T) Repair</td>
<td>(G=) Transfer</td>
</tr>
<tr>
<td>(P) Data collection</td>
<td>(S=) Identity</td>
<td>(T) Teach</td>
<td>(G−) Restriction</td>
</tr>
</tbody>
</table>
Pre-requisites are common sense: You need to be able to do $5+7\ (a_1)$, before trying $25+37\ (a_2)$.

Nonetheless, a high portion of failure is explained the accumulation of small gaps in pre-requisites.

Mastery learning focused especially on this sequencing.
Preparation Edges

- Prerequisite
- Zone of Proximal Development
- Adv. Organizer
- Motivation
- Anticipation
- Logistics
- Data collection

What I can do alone (a_j)

What I do (a_i) in interaction with a more knowledgeable peer

CHAPTER 6
In the first activity, students solve equations individually. The teacher analyzes their work and identifies those who concentrate on algebraic manipulations compared to those able to think in terms of problem-solving strategy. In the second activity, a student from the first category is asked to work with a student from the second category. The latter is expected to convey his strategies by arguing about the choice of equation manipulations proposed by the former.
An advance organizer is information presented by an instructor that helps the student organize new incoming information (D. Ausubel):

- Reactivate previous knowledge
- Preactivate knowledge structures
Preparation Edges

- Prerequisite
- ZPD
- Adv. Organizer
- Motivation
- Anticipation
- Logistics
- Data collection

Edge Library

- “What you will learn today”
 - Teach the Cartesian coordinate system
 - Advance organizer
 - Advance organizer and extrinsic motivation
 - Play naval battle

Individual
Students may try to get the reward without learning anythings.

It is sometimes hard to demonstrate why some skills are useful.
The teacher reminds students of the model taught the previous week and asks students to install a new simulation tool (logistics edge). He gives them a phenomenon for which the previous model produces incorrect results, which will justify a revision of the previous model.
Preparation Edges

- Prerequisite
- ZPD
- Adv. Organizer
- Motivation
- Anticipation
- Logistics
- Data collection
Set Edges

(S+) Aggregation
(S+) Expansion
(S−) Decomposition
(S−) Selection
(S=) Juxtaposition
(S=) Contrast
(S=) Identity

Knowledge space or « Class-Structure » of the domain to be taught.

Bringing the learner up/down and left/right in this knowledge space
After an introduction, the teacher splits the class into two subclasses, those who have already studied how to form questions and negative sentences in English, and those who have not. The novices do individual exercises on each skill (first questions and then negative sentences), and finally these two skills are aggregated during pair dialogue exercises that include negative questions. The more experienced subclass starts directly with the pair dialogue exercises, but the students who encounter difficulties are then redirected towards individual exercises on each skill.
How do you lace your shoes?

Programme a shoe lacing robot!
« I know how to lace my shoes »

« I am able to lace shoes »

« I can explain how to lace shoes »

http://yourmotivationguru.com/6-simple-team-building-activities-ideas-in-office/
« I know how to lace my shoes »

« I am able to lace shoes »
« I can explain how to lace shoes »

Procedural knowledge

Declarative knowledge
« If speed of light cannot be compressed, then time is elastics »
Mets ton centre de gravité sur le ski aval !

Procedural knowledge

Declarative knowledge
After an introductory video, the participants in this MOOC, “Introduction to statistics,” are split into 2 subclasses for individual activities. In the first subclass, students acquire procedural knowledge—how to manually calculate the standard deviation for a set of 20 data points. In the second subclass, students acquire declarative knowledge—the concepts of dispersion, heterogeneity and variance, and illustrated graphical representations. Then, each student from a subclass is paired with a student from the other subclass, and collaboratively they first have to do a quiz that measures declarative knowledge and then a task that requires procedural knowledge. To be able to collaborate with their peer, those who acquired declarative knowledge individually have to proceduralize it with the help of their peer, and those who acquired procedural knowledge individually have to elicit it (next edge label).
There is a large body of empirical studies that show that is beneficial for learners to switch between multiple representations.
Diagrammatic representation

Context representation

Numerical representation

Graph

Graph

Assignment

Try to make the velocity of the scooter 8 m/s in 4 seconds.

You’ve to do this by giving the right value to the acceleration.

You may try two times.
Translation Edges

- Proceduralization
- Elicitation
- Alternate
- Reframe
- Reverse
- Repair
- Teach

Edge Library

http://www.nctm.org/classroom-resources/lessons/Graphical-Representations-for-the-Number-of-Hits
Translation Edges

- Proceduralization
- Elicitation
- Alternate
- Reframe
- Reverse
- Repair
- Teach

- Multiple types (procedural, declarative)
- Multiple levels of abstraction (concrete, abstract)
- Multiple representations
- Multiple viewpoints
- Multiple scales
- Multiple methods
-
A **splountz** is a triangle with 3 smaller shapes placed on different sides, one in the same color as the triangle and the two others in a different color.
A **splountz** is a triangle with 3 smaller shapes placed on different sides, one in the same color as the triangle and the two others in a different color.

Is this a Splountz?
- Yes
- No
Label \((A_1, A_2)\) = deduction

From the general to the particular
Positive instances

Negative instances

Near-Miss instances

A_1

SPUCs
What is a SPUC?
Label \((A_1, A_2)\)= induction

From the particular to the general
Generalisation Edges

(G+) Induction
(G+) Deduction
(G+) Extraction
(G+) Synthesis
(G=) Analogy
(G=) Transfer
(G−) Restriction

Edge Library

Concept

Example

Example

induction

deduction

analogy
The problem of transfer

“If 1 bottle of milk costs 5 francs, how many can I buy for 35 francs”

“If a car travels a distance of one kilometer in 5 minutes, how many kilometers will the car travel if it continues at the same speed for 35 minutes.”

Humans are not very good at transfer because knowledge structures are very much anchored into a specific context.
The problem of transfer

- PCA for online learning analytics
 - Near transfer
 - PCA in online shopping analytics
 - Far transfer
 - PCA for computer vision
The learners become better in transfer if, during the learning scenario, the teacher paid attention to vary systematically the context of the examples/exercises presented.
<table>
<thead>
<tr>
<th>Preparation</th>
<th>Set</th>
<th>Translation</th>
<th>Generalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) Pre-requisite</td>
<td>(S+) Aggregation</td>
<td>(T) Proceduralisation</td>
<td>(G+) Induction</td>
</tr>
<tr>
<td>(P) ZPD</td>
<td>(S+) Expansion</td>
<td>(T) Elicitation</td>
<td>(G+) Deduction</td>
</tr>
<tr>
<td>(P) Adv. organizer</td>
<td>(S-) Decomposition</td>
<td>(T) Alternate</td>
<td>(G+) Extraction</td>
</tr>
<tr>
<td>(P) Motivation</td>
<td>(S-) Selection</td>
<td>(T) Re-Frame</td>
<td>(G+) Synthesis</td>
</tr>
<tr>
<td>(P) Anticipation</td>
<td>(S=) Juxtaposition</td>
<td>(T) Reverse</td>
<td>(G=) Analogy</td>
</tr>
<tr>
<td>(P) Logistics</td>
<td>(S=) Contrast</td>
<td>(T) Repair</td>
<td>(G=) Transfer</td>
</tr>
<tr>
<td>(P) Data Collection</td>
<td>(S=) Identity</td>
<td>(T) Teach</td>
<td>(G-) Restriction</td>
</tr>
</tbody>
</table>

Library of Edge Labels

- S+: Symbolic
- S-: Declarative
- S=: Concrete
A learning scenario must explore the knowledge mesh in multiple ways, creating multiple pathways between various formats of knowledge.

You don’t know a forest if you walk around it or across it but only if you have crossed it in many ways, many directions, etc.
The orchestration graph translates this multidimensional exploration into a linear path, because time is linear.