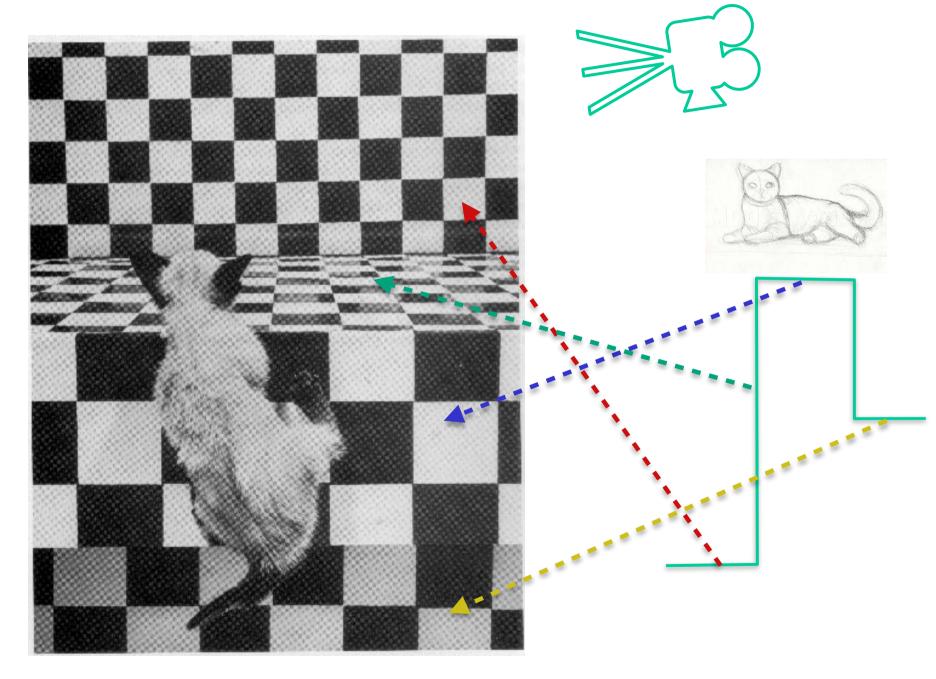
Shape from X

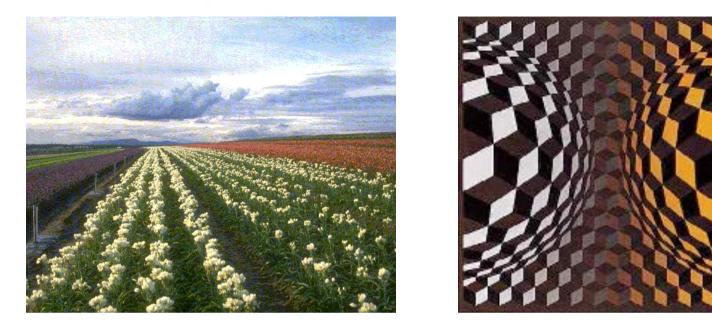
- One image:
 - Shading
 - Texture
- Two images or more:
 - Stereo
 - Contours
 - Motion

Shape From Texture



EPFL

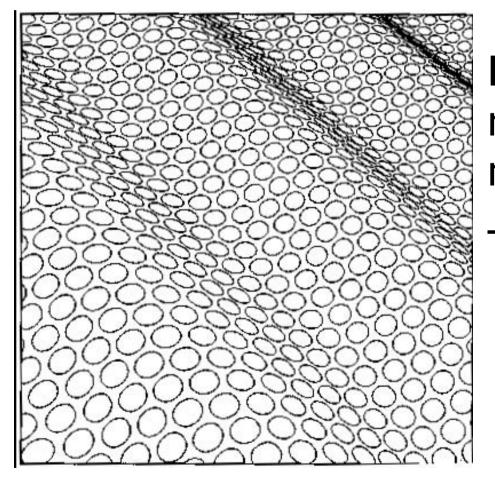
Shape From Texture



Recover surface orientation or surface shape from image texture:

- Assume texture 'looks the same' at different points on the surface.
- This means that the deformation of the texture is due to the surface curvature.

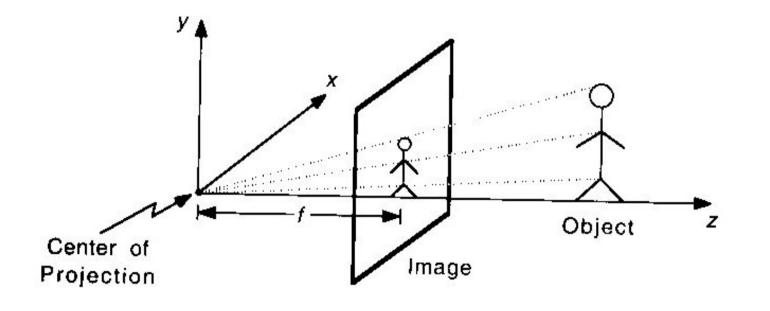
Structural Shape Recovery



Basic hypothesis: Texture resides on the surface and has no thickness.

- —> Computation under:
 - Perspective projection
 - Paraperspective projection
 - Orthographic projection

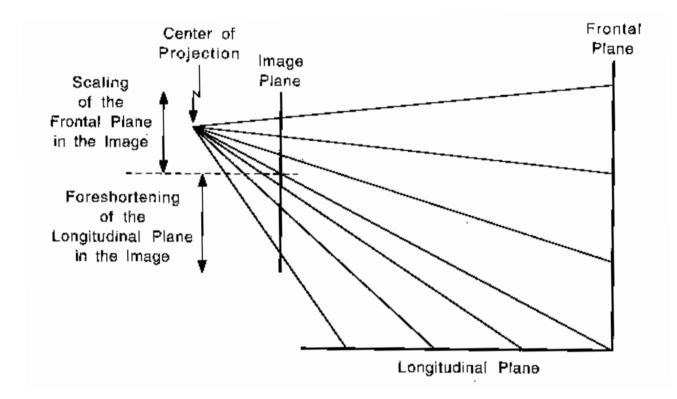
Reminder: Perspective Projection



 $u = f \frac{x}{-}$ Z $v = f \frac{y}{-}$ Z

5

Perspective Distortion



The perspective projection distortion of the texture

- depends on both depth and surface orientation,
- is anisotropic.

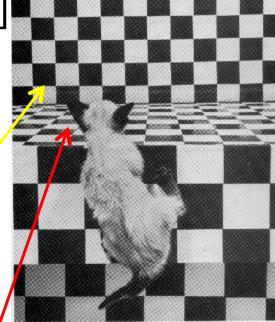
EPFL

Foreshortening

Depth vs Orientation:

Infinitesimal vector [∆x,∆y,∆z] at location [x,y,z] image of this vector is

$$\frac{f}{z} \left[\Delta x - \frac{x}{z} \Delta z, \Delta y - \frac{y}{z} \Delta z \right]$$

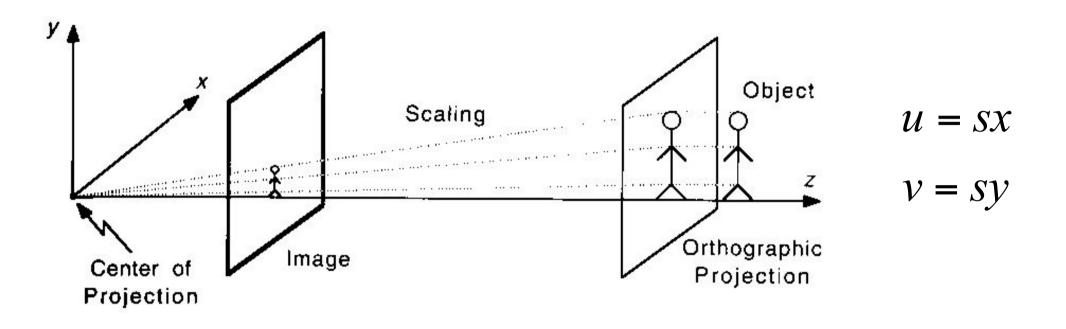


- Two special cases:
 - $\Delta z = 0$:
 - $\Delta x = \Delta y = 0$:

The object is scaled

The object is foreshortened

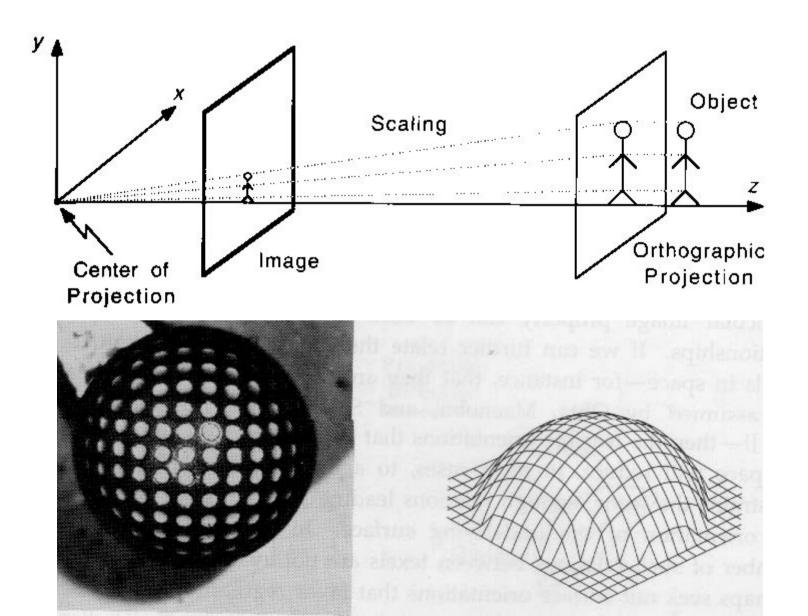
Reminder: Orthographic Projection



Special case of perspective projection:

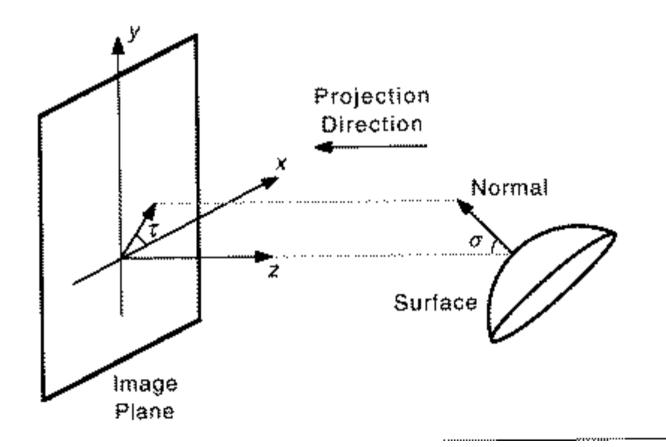
- Large f
- Objects close to the optical axis
 →Parallel lines mapped into parallel lines.

Orthographic Projection

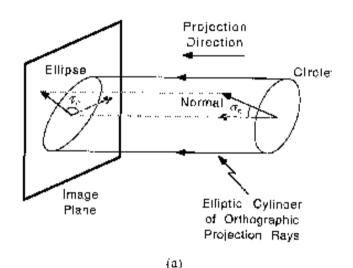


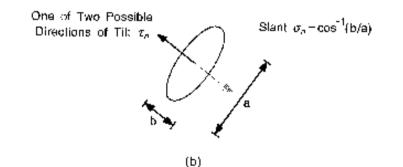
EPFL

Tilt And Slant



Orthographic Projection

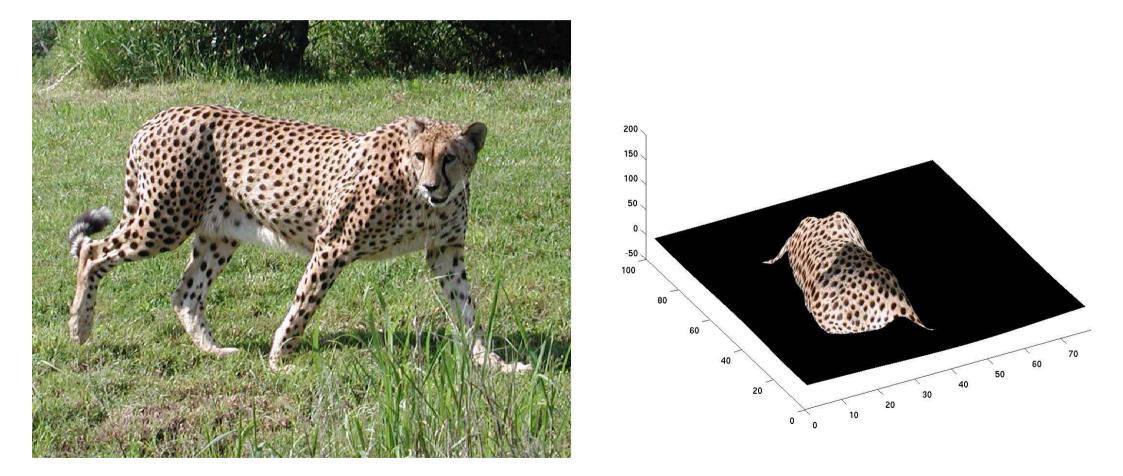




• Tilt: Derived from the image direction in which the surface element undergoes maximum compression.

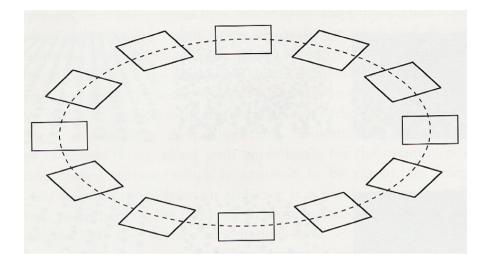
• **Slant:** Derived from the extent of this compression.

Cheetah



A.M. Low, Phd Thesis, 2006

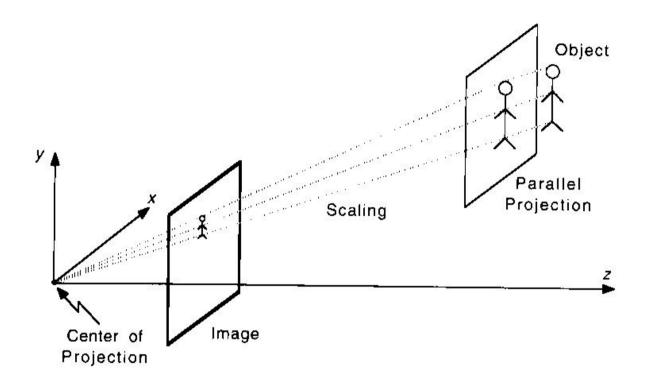
Perpendicular Lines



Orthographic projections of squares that are rotated with respect to each other in a plane inclined at ω =60° to the image plane.

$$\frac{\|\mathbf{p}_{1}/l_{1} \times \mathbf{p}_{2}/l_{2}\|}{\|\mathbf{p}_{1}/l_{1}\|^{2} + \|\mathbf{p}_{2}/l_{2}\|^{2}} = \frac{\cos(\omega)}{1 + \cos^{2}(\omega)}$$
Ikeuchi. AI'84

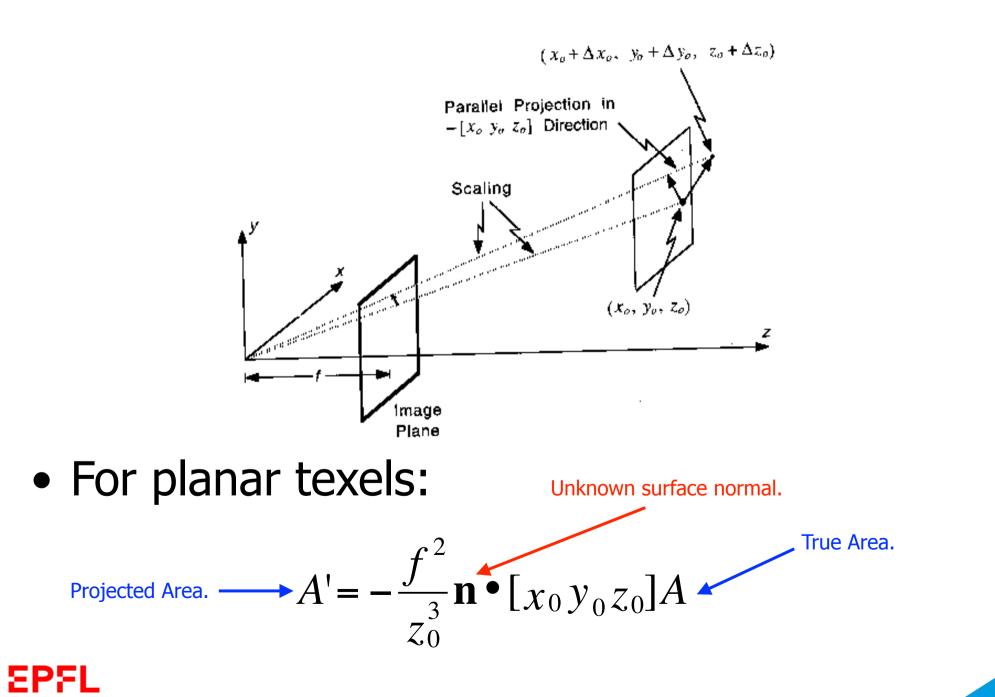
Parapespective Projection



Generalization of the orthographic projection:

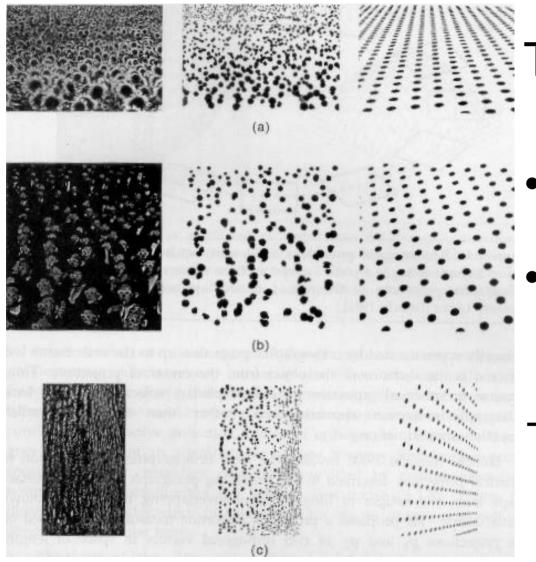
- Object dimensions small wrt distance to the center of projection.
- \rightarrow Parallel projection followed by scaling

Parapespective Projection



15

Parapespective Projection



EPEI

Texels:

- Image regions being brighter or darker than their surroundings.
- Assumed to have the same area in space.
- → Given enough texels, it becomes possible to estimate the normal.

Texture Gradient

Statistical Shape Recovery

EPFI

Mesure texture density as opposed to texel area, that is, the number of textural primitives per unit surface.

Assuming the texture to be homogeneous, we have:

 $\psi \mathbf{n} \propto \mathbf{b}$

Unknown surface normal.

Strengths and Limitations (2015)

Strengths:

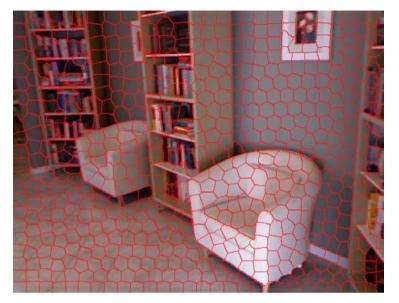
• Emulates an important human ability.

Limitations:

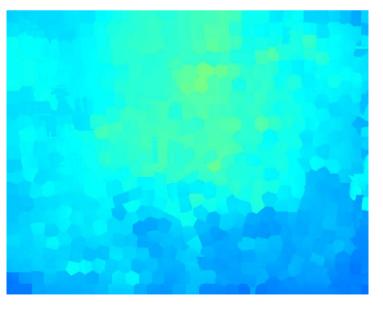
- Involves very Strong assumptions.
- Only useful in very specific settings.

Machine Learning

Input Image



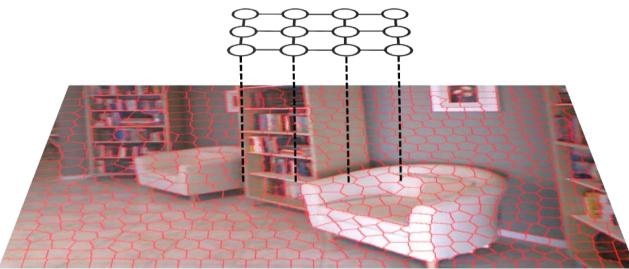
Superpixels



EPFL Train a regressor to predict depth —> Noisy predictions

Markov Random Field (MRF)

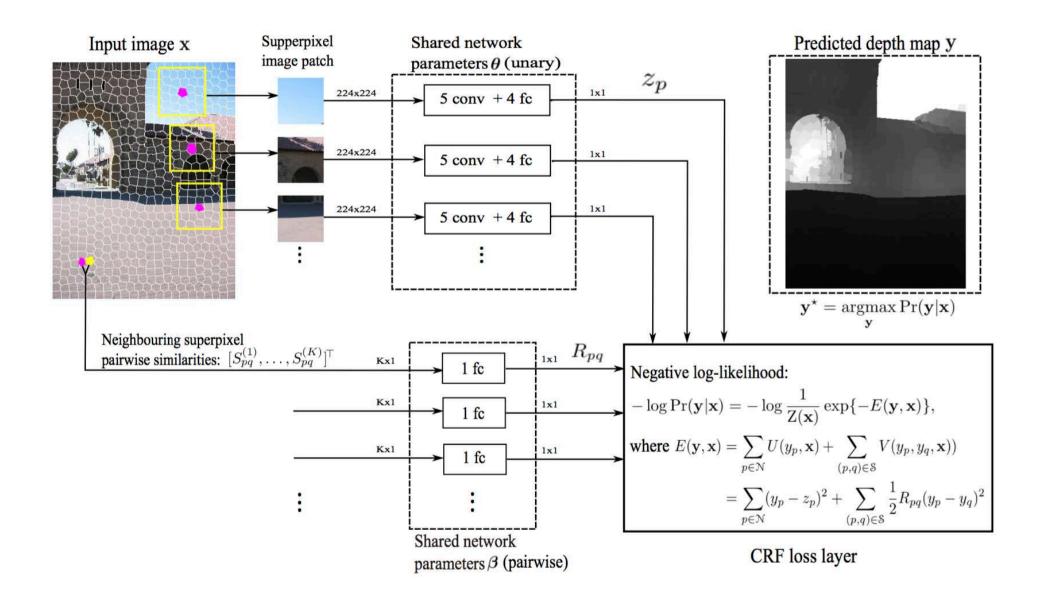
Graph with vertices and edges



Assign values to the nodes to minimize $E(Y) = \sum_{i} \varphi(y_{i}) + \sum_{(i,j)} \psi(y_{i}, y_{j})$ unary pairwise

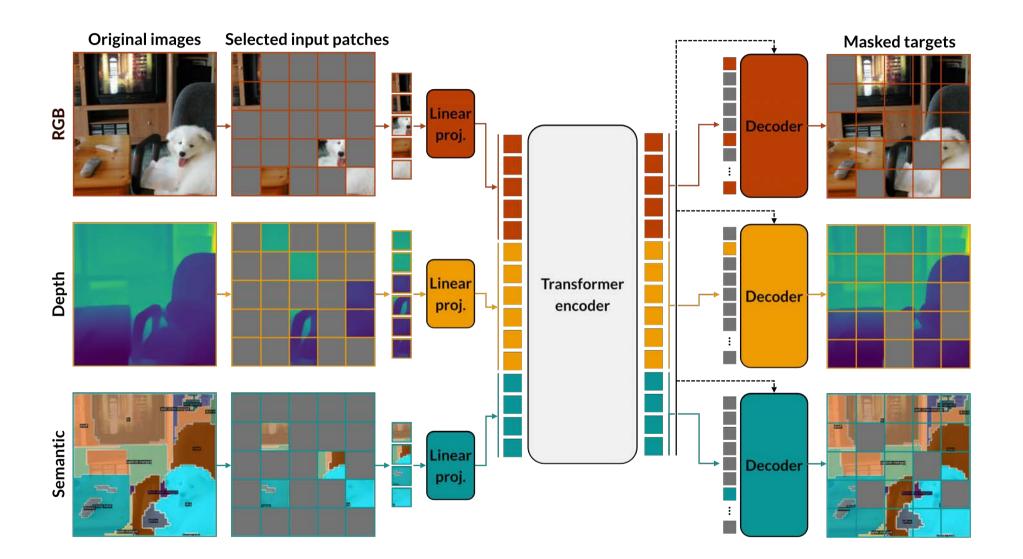
—> Enforces consistency

Deep Learning with MRF



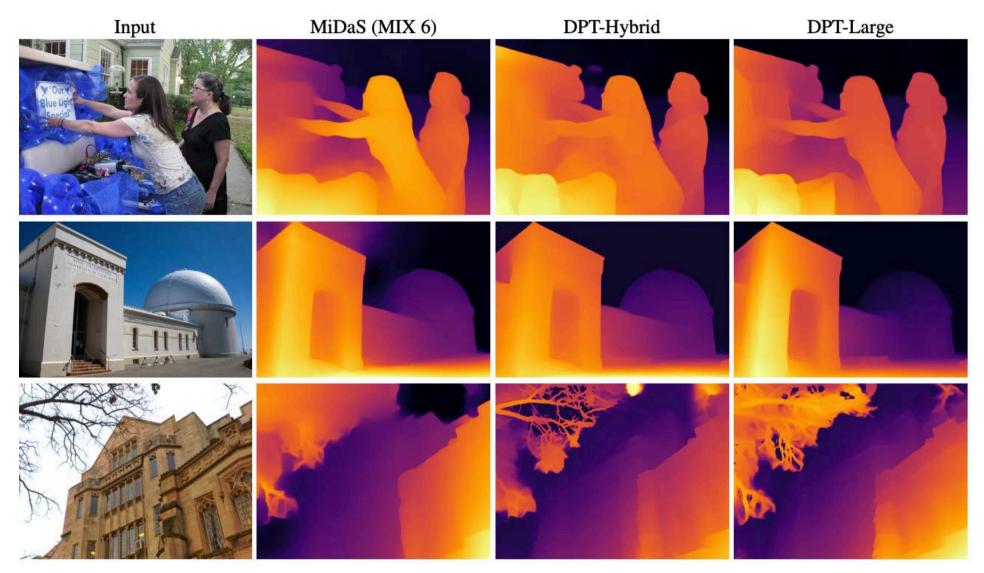
Liu et al., PAMI 2016

Using Transformers



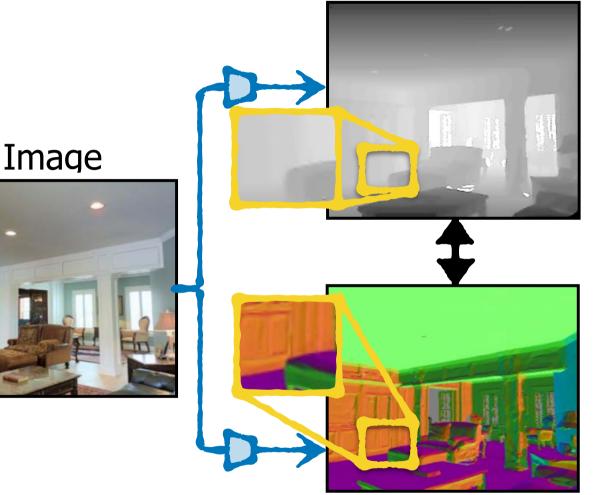
EPFL

Using Transformers



- Pros: Good at modeling long range relationships.
- Cons: Flattening the patches looses some amount of information. EPFL Ranftl et al., CVPR'21 24

Enforcing Task Consistency Depth



- Normals can be computed from depth.
- Depth can be inferred from normals.

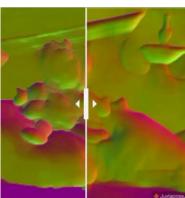
Normals

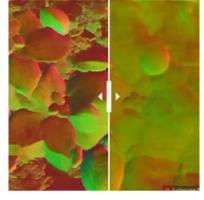
- A network can be trained to predict multiple things.
- Forcing consistency across tasks increases robustness.

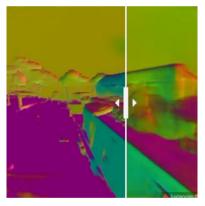
EPFL

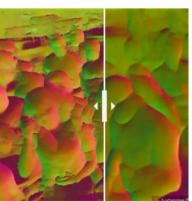
Zamir et al., CVPR'20

A Very Diverse Training Database Helps



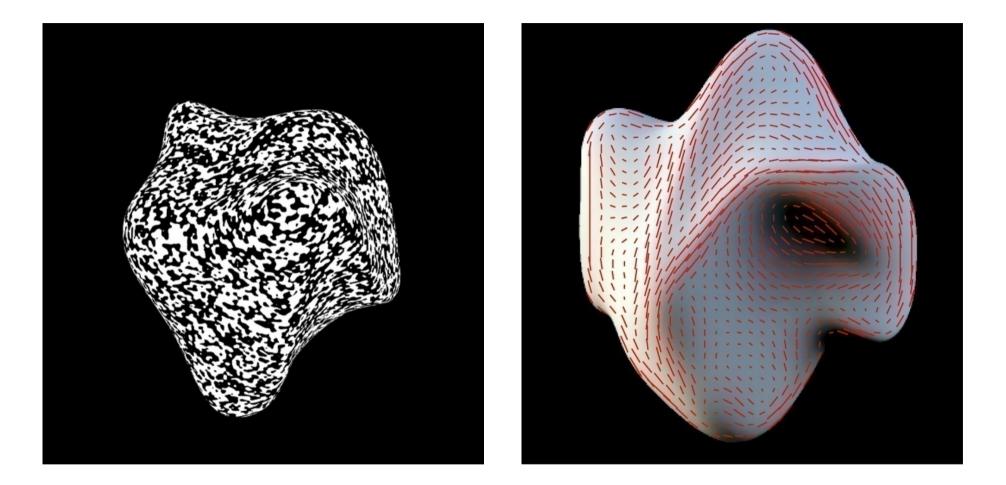






Eftekhar et al., ICCV'21 vs Chen et al., CVPR'20

Optional: Illusory Shape Distorsion



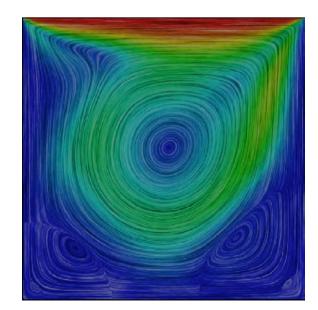
People seem to be sensitive to orientation fields in the cases of both texture and shading.

Flemming et al. PNAS'10

Optional: Shape from Smear

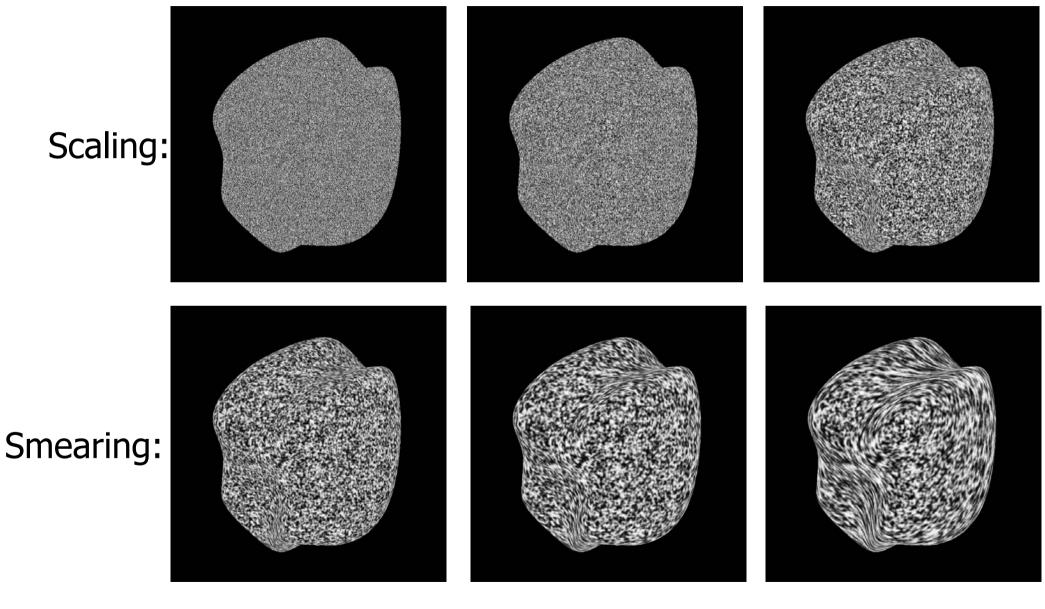
Hypothesis: If orientation and scale fields are the key source of information for 3D shape perception, it should be possible to induce a vivid sense of 3D shape by creating 2D patterns with appropriate scale and orientation fields.

Test: Use a technique known as Line Integral Convolution to smear the texture along specific orientations and scale appropriately.



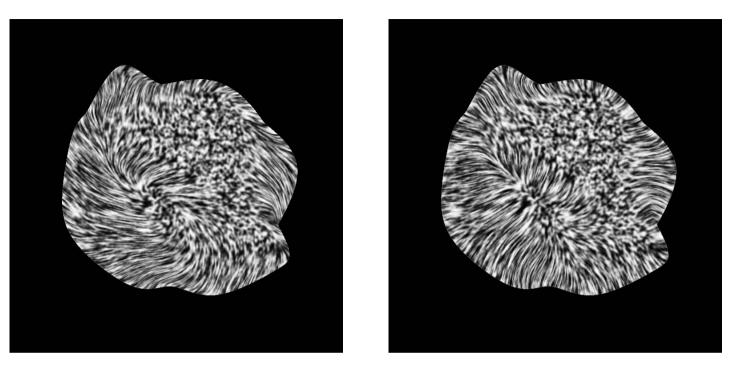
Flemming et al. PNAS'10

Optional: Scaling and Smearing



EPFL

Optional: Inconsistent Stimulus



The orientation field cannot be integrated

> No depth perception.

EPFL

- > Do we integrate in our heads?
- \succ Is this what the deep nets learn to do?

Strengths and Limitations

Strengths:

• Emulates an important human ability.

Limitations:

- Older techniques require assumptions that are much too strong.
- Deep learning can be used to weaken them and make the approach practical.

