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Shape from X

• One image: 
• Shading  
• Texture 

• Two images or more: 
• Stereo 
• Contours 
• Motion
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Shape From Texture



3

Shape From Texture

Recover surface orientation or surface shape from 
image texture: 
• Assume texture ‘looks the same’ at different points 
on the surface. 

•This means that the deformation of the texture is 
due to the surface curvature.



4

Structural Shape Recovery

Basic hypothesis: Texture 
resides on the surface and has 
no thickness. 
—> Computation under: 

• Perspective projection 
• Paraperspective projection 
• Orthographic projection
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Reminder: Perspective Projection

Pinhole geometry without image
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Perspective Distortion

The perspective projection distortion of the texture 
• depends on both depth and surface orientation, 
• is anisotropic.



Depth vs Orientation:  
• Infinitesimal vector [Δx,Δy,Δz] at location [x,y,z]. The 

image of this vector is 

• Two special cases: 
• Δz=0 :          The object is scaled 
• Δx=Δy=0  :           The object is foreshortened
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Foreshortening
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Reminder: Orthographic Projection

Special case of perspective projection: 
• Large f 
• Objects close to the optical axis 
Parallel lines mapped into parallel lines.
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Orthographic Projection
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Tilt And Slant
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Orthographic Projection 

• Tilt: Derived from the 
image direction in which 
t he s u r f a c e e l emen t 
unde rgoe s max imum 
compression. 

• Slant: Derived from the 
extent of this compression. 
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Cheetah

A.M. Low, Phd Thesis, 2006
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Perpendicular Lines

• Orthographic projections of squares that 
are rotated with respect to each other in a 
plane inclined at ω=60° to the image plane.

∥p1/l1 × p2/l2∥
∥p1/l1∥2 + ∥p2/l2∥2

=
cos(ω)

1 + cos2(ω)
Ikeuchi. AI’84
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Parapespective Projection 

Generalization of the orthographic projection: 
• Object dimensions small wrt distance to the 

center of projection. 
 Parallel projection followed by scaling
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• For planar texels:

€ 

A'= −
2f
0
3z
n•[ 0x 0y 0z ]A

Unknown surface normal. 

True Area. 

Projected Area. 

Parapespective Projection 
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Texels:  

• Image regions being brighter or 
darker than their surroundings. 

• Assumed to have the same area 
in space. 

 Given enough texels, it 
becomes possible to estimate 
the normal.

Parapespective Projection 
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Texture Gradient
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Statistical Shape Recovery
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Mesure texture density as opposed to 
texel area, that is, the number of textural 
primitives per unit surface. 

Assuming the texture to be homogeneous, 
we have: 

Image coordinates. 

Function of density. 

Unknown surface normal. 
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Strengths and Limitations (2015)

Strengths: 
• Emulates an important human ability. 

Limitations: 
• Involves very strong assumptions. 
• Only useful in very specific settings.
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Machine Learning

Input Image Superpixels

Train a regressor to predict depth —> Noisy predictions
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Markov Random Field (MRF)

Graph with vertices and edges 

Assign values to the nodes to minimize 
E(Y) = ϕ(yi )+ ψ(yi, yj )

(i, j )
∑

i
∑

unary pairwise

—> Enforces consistency
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Deep Learning with MRF

Liu et al., PAMI 2016
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Using Transformers

Ranftl et al, ICCV’21
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Using Transformers

Ranftl  et al. , CVPR’21

• Pros: Good at modeling long range relationships.  
• Cons: Flattening the patches looses some amount of information. 
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Enforcing Task Consistency

Image

Depth

Normals

Zamir et al. , CVPR’20

• A network can be trained to predict multiple things.  
• Forcing consistency across tasks increases robustness. 

• Normals can 
be computed 
from depth. 

• Depth can be 
inferred from 
normals.
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A Very Diverse Training Database Helps

Eftekhar et al. , ICCV’21 vs Chen et al. , CVPR’20 
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Optional: Illusory Shape Distorsion

Flemming et al. PNAS’10

People seem to be sensitive to orientation fields 
in the cases of both texture and shading.
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Optional: Shape from Smear
Hypothesis: If orientation and scale fields are the key 
source of information for 3D shape perception, it  should be 
possible to induce a vivid sense of 3D shape by creating 2D 
patterns with appropriate scale and orientation fields.

Flemming et al. PNAS’10

Test: Use a technique known as Line Integral Convolution to 
smear the texture along specific orientations and scale 
appropriately. 
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Optional: Scaling and Smearing

Scaling:

 Smearing:
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Optional: Inconsistent Stimulus

The orientation field cannot be integrated 
➢ No depth perception.  
➢ Do we integrate in our heads?  
➢ Is this what the deep nets learn to do? 
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Strengths and Limitations

Strengths: 
• Emulates an important human ability. 

Limitations: 
• Older techniques require assumptions that 

are much too strong. 
• Deep learning can be used to weaken them 

and make the approach practical.  


