Lecture reviews — Week 06

J.-C. Chappelier & M. Rajman

Laboratoire d'Intelligence Artificielle Faculté I&C

Week(s 5 &) 6 keypoints

- HMM (technical)

Sproblems

$$P(w_n|\theta) = \sum_{t,n} P(w_n t_n | \theta)$$

When $P(\theta|w_n) = \sum_{t,n} P(w_n t_n | \theta)$

P($\theta|w_n$) County (unsupervised)

 $P(\theta|w_n, t_n)$

P (1st word = the, 2 word = rat, ..., 1 tag = D, ...)

Week(s 5 &) 6 keypoints

Week 5:

- what "lemmatization" is
- what "part-of-speech tagging" is
- two hypothesis to transform PoS tagging into "the second problem" of HMMs
- order of magnitude of performances

Week 6:

- what an HMM is
- the 3 problems and how it relates to PoS tagging
- Viterbi algorithm
- properties of Baum-Welch algorithm

Week 6

Week 6 practice example

4 What is the most probable tagging (using data provided below)?

yqu

cat: N
$$(1e-4)$$
, V $(2e-6)$

run: N
$$(3e-6)$$
, V $(4e-4)$

running: N (5e-6), V (6e-4)

the: D

you: P

$$(7e-4)$$
, V $(8e-5)$

running

$$Pi(D) = 0.35$$
 $Pi(N) = 0.25$ $Pi(V) = 0.15$ $Pi(P) = 0.1$

$$P(D|D) = 0$$
 $P(N|D) = 0.8$

the

$$P(N|D) = 0.$$

$$P(V|D) = 0 \qquad P(P|D) = 0$$

$$P(P|D) =$$

$$P(D|N) = 0.1$$
 $P(N|N) = 0.2$

$$P(N|N) = 0.2$$

$$P(V|N) = 0.$$

$$P(V|N) = 0.4 P(P|N) = 0.3$$

$$P(D|V) = 0.15$$

$$P(N|V) = 0.35$$

$$P(V|V) = 0.2$$

$$P(N|V) = 0.35$$
 $P(V|V) = 0.2$ $P(P|V) = 0.25$

$$P(D|P) = 0.1$$

$$P(D|P) = 0.1$$
 $P(N|P) = 0.3$ $P(V|P) = 0.5$ $P(P|P) = 0$

$$P(V|P) = 0.5$$

$$P(P|P) = 0$$

1) formulas (8!1) some cancels out P(D).P(HeD) P(ND).... init emit transition

2) Viterbi

1) max incoming accs
2) max at the end
3) reconstruct back