

EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE POLITECNICO FEDERALE – LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

Faculté Informatique et Communication Introduction to Natural Language Processing (Ms; CS-431) Chappelier, J.-C. & Rajman, M.

CS-431 Hands On Part-of-Speech tagging (part 2)

J.-C. Chappelier

M. Rajman

v. 20221026 - 1

QUESTION I [2 pt]

(from Spring 2018 quiz 2)

For this question, one or more assertions can be correct. Tick only the correct assertion(s). There will be a penalty for wrong assertions ticked.

Consider two sequences of discrete random variables (X_1, X_2, \ldots) and (Y_1, Y_2, \ldots) , with possibles values respectively $(x_1, x_2, ...)$ in $V, (y_1, y_2, ...)$ in T.

Indicate which of the following statements are always true (without any further assumption):

$$(\sum_{(x_1, x_2, \dots, x_n) \in V^n} P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n | Y_1 = y_1, Y_s = y_2, \dots, Y_n = y_n) = 1$$

$$[] \sum_{(y_1,y_2,\ldots,y_n)\in T^n} P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n\,|\,Y_1=y_1,Y_s=y_2,\ldots,Y_n=y_n) = 1$$

$$P(Y_1,Y_2,\ldots,Y_n) = P(Y_n)\cdot P(Y_{n-1}|Y_n)\cdot \cdots \cdot P(Y_2|Y_3,\ldots,Y_n)\cdot P(Y_1|Y_2,\ldots,Y_n)$$

$$P(Y_1, Y_2, \dots, Y_n) = P(Y_n) \cdot P(Y_{n-1}|Y_n) \cdot \dots \cdot P(Y_2|Y_3, \dots, Y_n) \cdot P(Y_1|Y_2, \dots, Y_n)$$

$$P(X_i|X_1,...,X_{i-1},Y_1,Y_2,...,Y_n) = P(X_i|Y_i)$$
, for all *i* between 2 and *n*.

 $(X = x \mid Y = y) = 1$

P(y,)P(y,), P(y, y, y)

continues on back 🖙 bat Yes

1

(from Spring 2018 quiz 2)

When using Hidden Markov Models to perform PoS tagging:

- ① What do the observables of the HMM model correspond to?
- ② What do the hidden states of the HMM model correspond to? -

_=> {a 44

QUESTION III

[2 pt]

(from Spring 2018 quiz 2)

For this question, *one or more* assertions can be correct. Tick only the correct assertion(s). There will be a penalty for wrong assertions ticked.

Indicate which of the following statements are true, when using Hidden Markov Models to perform PoS tagging:

wo by

- [] the Viterbi algorithm can be used to efficiently train an HMM model on supervised data;
- the Baum-Welch algorithm can be used to efficiently train an HMM model on unsupervised data:
- () provided that enough unsupervised data are available, the Baum-Welch algorithm is always able to learn the best possible HMM model;
- when an order-1 HMM is used, the assignment of a tag to a word only depends on the tag, the word, and the previous tag.

Argmax

P(En) P(Un)En). 17Enlta) - P(unien) P(k, Him)...

continues on back 138

QUESTION IV [7 pt]

(from Fall 2018 quiz 2)Indicate the sequence of PoS tags assigned by an order-1 HMM to the word sequence "iron shaped cloth", if the following information is available:

Lexicon excerpt: (but no other tag for the provided words)

"iron": Noun, Verb "shaped": Adj, Verb

"cloth": Noun

(some) Parameters:

$$P("iron"|\text{Noun}) = 3 \cdot 10^{-9}$$

$$P("iron"|\text{Verb}) = 2 \cdot 10^{-9}$$

$$P_I(\text{Verb}) = 1$$

$$\left(P_I(\mathrm{Adj}) = 3\sqrt{10^{-9}}\right)$$

$$P("iron" | Noun) = 3 \cdot 10$$

$$P("iron" | Verb) = 2 \cdot 10^{-9}$$

$$P(Adj | Noun) = 1 \cdot 10^{-9}$$

$$P(Verb | Noun) = 2 \cdot 10^{-9}$$

$$\begin{split} &P(\text{``shaped''}|\text{Adj}) = 2 \cdot 10^{-9} \\ &P(\text{``shaped''}|\text{Verb}) = 3 \cdot 10^{-9} \\ &P(\text{Adj}|\text{Verb}) = 2 \cdot 10^{-9} \\ &P(\text{Verb}|\text{Verb}) = 1 \cdot 10^{-9} \\ &P(\text{Noun}|\text{Verb}) = 2 \cdot 10^{-9} \end{split}$$

$$P(\text{Noun}|\text{Adj}) = 5 \cdot 10^{-9}$$

Answer:

 $P(t:|t_{i...})$

Order- 2 Hmm? bigrom of tags states: P(NIDN) (start)