
Introduction to Quantum Computation

Department of Computer Science - École Polytechnique Fédérale de Lausanne

Author: Arthur Aimone

2024/2025

Contents

1 Classical Circuits 3

2 Fundamentals of Quantum Mechanics and Quantum Circuits 7
2.1 Dirac’s Notation . 7
2.2 Computational Basis of H= CN . 8
2.3 Tensor Product . 8
2.4 Axioms of Quantum Mechanics . 9

2.4.1 Axiom 1 - State of a Quantum System . 9
2.4.2 Axiom 2 - Time Evolution . 10
2.4.3 Axiom 3 - Measurement Postulate . 12
2.4.4 Axiom 4 - Composition of Quantum Systems 13

2.5 Quantum Circuits . 13
2.5.1 1-Qubit Gates . 13
2.5.2 2-Qubits Gates . 14
2.5.3 Multiple Qubits Gates . 15

3 Deutsch’s Model and a Quantum Algorithm 17
3.1 Deutsch’s Model of Quantum Circuits . 17
3.2 Deutsch’s Problem and Classical Method of Resolution 19
3.3 Deutsch-Josza’s Quantum Algorithm . 19

4 Simon’s Algorithm 22
4.1 Classical Algorithm . 22
4.2 Simon’s Quantum Algorithm . 24

5 Shor’s Algorithm 29
5.1 The Quantum Fourier Transform (QFT) . 29
5.2 Shor’s Quantum Algorithm (M = kr) . 32
5.3 Shor’s Quantum Algorithm (M ̸= kr) . 35
5.4 Convergents and an Algorithm to find r . 37
5.5 Circuit for Uf and the Shor’s Factoring Algorithm . 37

6 Grover’s Algorithm 40
6.1 Grover’s Quantum Circuit: |ψ1⟩ and |ψ2⟩ . 40
6.2 Geometric Interpretation and the Reflection Gate R 41
6.3 Choosing the Number k of Iterations . 43

6.3.1 M is Known . 43

1

6.3.2 M is Unknown . 44
6.3.3 Conclusion and Applications . 44

7 Classical Error Correction 46
7.1 Classical Error Correction . 46
7.2 Classical Binary Codes of Length n . 48
7.3 Generator Matrix, Parity Check and Hamming Codes 49

8 Quantum Error Correction 52
8.1 The Bit-Flip Error Model . 52
8.2 The Phase-Flip Error Model . 54
8.3 Shor’s Code . 54
8.4 Steane’s Code . 55
8.5 Building Reliable Quantum Gates using the Steane Code 57

These lecture notes are based on the Introduction to Quantum Computation course given at
EPFL for the academic year 2024/2025 by Prof. Olivier Lévêque and Prof. Rüdiger Urbanke.
The content of the course was originally created by Prof. Nicolas Macris and is based on his
lecture notes.

2

Chapter 1

Classical Circuits

In this chapter, we present the fundamentals of classical circuits along with a description of the uni-
versal gates.
We consider f : {0,1}n−→{0,1}m be a Boolean function taking (x1, ...,xn) 7→ (y1, ...,ym) = f(x1, ...,xn).
One of the fundamental questions is to know if there exists a classical circuit computing in an auto-
mated manner the value of f for every input (x1, ...,xn). To answer this question, we first need to
present some elementary gates. Recall first that x⊕y = 1{x ̸=y}.

• NOT Gate: For this gate, the output is f(x) = x= 1{x=0}
(
1−1{x=1}

)
.

Note that this gate is equivalent to the XOR gate, given by a direct sum as the output:

• AND Gate: For this gate, the output is f(x) = x1∧x2 = 1{x1=1 and x2=1}.

• OR Gate: For this gate, the output is f(x) = x1∨x2 =1{x1=1 or x2=1}. This is the non-exclusive OR.

• COPY Gate: Although it is called a ‘gate’, it is not really one since this operation can be realized
by physically joining two wires together.

3

Example 1.0.1. The following circuit outputs f(x1,x2,x3) = (x1∧x2)∨ (x1∧x3).

Definition 1.0.2. A Boolean circuit is a directed (can only go from left to right), acyclic
graph with n bits input and m bits output, whose vertices are logic gates and edges are wires.

We can then answer the question given in introduction via the following theorem.

Theorem 1.0.3 (Emil Post, 1921). Every Boolean function f can be realized by a Boolean
circuit made only of the elementary gates AND, OR, NOT and COPY (universal gates).

Proof. Let f : {0,1}n −→{0,1}m be a Boolean function. First note that in general f = (f1, ...,fm),
however the theorem needs only to be proven for m= 1 as an inductive argument.
Then, consider those vectors a(1), ...,a(k) ∈ {0,1}n such that f

(
a(j)

)
= 1 for all 1 ≤ j ≤ k and

f(b) = 0 for all b ̸= a(1), ...,a(k). Furthermore, define Ca(x) = 1{x=a}, where x and a are vectors.
Then:

f(x) = Ca(1)(x)∨ ...∨Ca(k)(x), (1.1)

where the ∨ operations correspond to OR operations.
Observe now that for a ∈ {0,1}n, we can write Ca(x) as a series of AND operations:

Ca(x) = ϕa1(x1)∧ ...∧ϕan(xn), (1.2)

where ϕaj (xj) = xj if aj = 1 and ϕaj (xj) = xj if aj = 0. Note that the last condition corresponds
to a NOT operation. And so, the computation of f(x1, ...,xn) can be realized exclusively with
the gates AND, OR, COPY and NOT.

We end this chapter by discussing the irreversibility and reversibility of some gates. The gates AND,
OR and COPY are irreversible, in the sense that we cannot recover the inputs from the outputs. How-
ever, the gate COPY is logically reversible but its inverse deletes a bit, where physically it dissipates
heat. Now, in quantum circuits, irreversible gates are forbidden. Fortunately, the previous gates can
be emulated by reversible gates.

4

• NOT Gate: The NOT gate is clearly reversible, since applying it twice recovers the original state.

• C-NOT Gate: The Controlled-NOT gate has an output given by the XOR operator f(x,y) =
(x,y⊕x), where f(0,y) = (0,y) and f(1,y) = (0,y⊕1) = (1,y). By applying it twice, we note that this
gate is reversible.

Equivalently, this can be represented as:

• Toffoli/CC-NOT Gate: The Controlled-Controlled-NOT gate has an output given by the XOR
operator f(x,y,z) = (x,y,z+(x⊕y)), where as long as x= 0 or y = 0 we have f(x,y,z) = (x,y,z) and
f(1,1,z) = (x,y,z⊕1) = (x,y,z). By applying it twice, we note that this gate is reversible.

Equivalently, this can be represented as:

Proposition 1.0.4. The set of gates {NOT,C-NOT,CC-NOT} is universal.

Proof. All gates {AND, OR, NOT, COPY} can be retrieved from the gates {NOT,C-NOT,CC-
NOT}.
• NOT Gate: For the NOT gate, it is obvious.

• AND Gate: For the AND gate, let z = 0 in a CC-NOT gate to find:

5

• OR Gate: For the OR gate, coupling two NOT gates in one CC-NOT gate and using De
Morgan’s Law in the output state, we find:

• COPY Gate: For the COPY gate, let y = 0 in a C-NOT gate to find:

As a result of Post’s Theorem (1.0.3), the set of gates {NOT,C-NOT,CC-NOT} is universal.
Remark that, actually, the NOT and C-NOT gates can themselves be retrieved from CC-NOT
gates, but the reverse statement is false.

6

Chapter 2

Fundamentals of Quantum Mechanics
and Quantum Circuits

In this chapter we present the fundamental notions of Quantum Mechanics that will be crucial to
describe Quantum Circuits. To this end, we will also present how we can use these fundamentals to
describe some elementary circuits.

2.1 Dirac’s Notation

The state of a quantum system is described by a unit vector in a Hilbert space H (on C). In this
course, we will only consider the finite dimensional Hilbert space H= CN with N = 2n where n is the
number of qubits. In particular, the state of a single qubit is a unit vector in C2.
The whole idea of quantum computation is to work with qubits in these superposed states in order to
perform simultaneous computations.
In Dirac’s notation, we consider the ket formulation for a column vector:

|ϕ⟩=


α0
...

αN−1

 ∈ CN , (2.1)

and the bra formulation for a row vector:

⟨ϕ|=
(
α0 · · · αN−1

)
. (2.2)

We then define the scalar product between |ϕ⟩=
(
α0 · · · αN−1

)T
and |ψ⟩=

(
β0 · · · βN−1

)T
by

the braket:

⟨ϕ|ψ⟩=
N−1∑
i=0

αiβi, (2.3)

with the associated norm ∥|ϕ⟩∥=
√
⟨ϕ|ϕ⟩. We furthermore present some properties.

• Positivity: ⟨ϕ|ϕ⟩=∑N−1
i=0 |αi|2 ≥ 0.

• Strict Positivity: ⟨ϕ|ϕ⟩= 0 if and only if |ϕ⟩=
(
0 · · · 0

)T
.

• Symmetry: ⟨ψ|ϕ⟩=∑N−1
i=0 βiαi =∑N−1

i=0 αiβi = ⟨ϕ|ψ⟩.

7

• Bilinearity: On the one hand we have:

⟨ϕ|(α |ψ1⟩+β |ψ2⟩) =
N−1∑
i=0

αi (αβ1i+ββ2i) = α
N−1∑
i=0

αiβ1i+β
N−1∑
i=0

αiβ2i = α⟨ϕ|ψ1⟩+β ⟨ϕ|ψ2⟩ .

On the other hand we have:

(α⟨ϕ1|+β ⟨ϕ2|) |ψ⟩=
N−1∑
i=0

(αα1i+βα2i)βi = α
N−1∑
i=0

α1iβi+β
N−1∑
i=0

α2iβi = α⟨ϕ1|ψ⟩+β ⟨ϕ2|ψ⟩ .

2.2 Computational Basis of H = CN

In this section, recall that N = 2n. Now, consider the set of vectors ei for the basis of H:

ei =
(
0 · · · 0 1 0 · · · 0

)
= |x1x2...xn⟩ , 0≤ i≤N −1 (2.4)

where x1x2...xn is the binary representation of i and the 1 is in the i-th position of ei. Observe
that ⟨x′

1...x
′
n|x1...xn⟩= δx′

1x1 ...δx′
nxn , and hence we have an orthogonal basis. Furthermore, any vector

|ϕ⟩ ∈ CN can be written as:

|ϕ⟩=
∑

x1,...,xn∈{0,1}
αx1...xn |x1...xn⟩ :=

∑
x∈{0,1}n

αx |x⟩ (2.5)

where ⟨ϕ|ϕ⟩= 1 if and only if ∑x1,...,xn∈{0,1}|αx1...xn |2 = 1.

Example 2.2.1 (n= 1 - N = 2). For n= 1 we consider e0 =
(
1 0

)T
= |0⟩ and e1 =

(
0 1

)T
=

|1⟩. Then any vector |ϕ⟩ can be written as:

|ϕ⟩= α0e0 +α1e1 =
(
α0 α1

)T
= α0 |0⟩+α1 |1⟩ .

We have a unit vector if and only if |α0|2 + |α1|2 = 1. Hence any vector can be represented on
the unit circle with the |0⟩ vector on the x-axis and the |1⟩ vector on the y-axis.

Example 2.2.2 (n = 2 - N = 4). For n = 2 we consider e0 =
(
1 0 0 0

)T
= |00⟩, e1 =(

0 1 0 0
)T

= |01⟩, e2 =
(
0 0 1 0

)T
= |10⟩ and e3 =

(
0 0 0 1

)T
= |11⟩, where each ket

vector has been written with the binary representation of i (e.g. 01 is the binary representation
of i= 1). Then any vector |ϕ⟩ can be written as:

|ϕ⟩= α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩ .

We have a unit vector if and only if |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

2.3 Tensor Product

Let H1 = C2n1 be a Hilbert space for n1 qubits and H2 = C2n2 be a Hilbert space for n2 qubits. Now
consider H =H1⊗H2 = C2n1 ⊗C2n2 ∼= C2n1+n2 (isomorphic). Here, H is a vector space of dimension

8

2n1+n2 spanned by all basis elements |x,y⟩= |x⟩⊗ |y⟩. For all |ϕ⟩ ∈ H it holds that:

|ϕ⟩=
∑

0≤x≤2n1 −1
0≤y≤2n2 −1

αx,y |x,y⟩ , (2.6)

and in particular we have a unit vector if and only if ∑x,y|αx,y|2 = 1.
We now make an important remark: every element |ϕ⟩ in H = H1⊗H2 can be written as a linear
combination of the basis elements |x,y⟩, however not every element |ϕ⟩ in H can be written in the
product form |ϕ1⟩⊗ |ϕ2⟩ (those are called product states).
In H1⊗H2 the conjugation operation yields:

|ϕ1⟩⊗ |ϕ2⟩= ⟨ϕ1|⊗ ⟨ϕ2| . (2.7)

For the scalar product we obtain:

(⟨ϕ1|⊗ ⟨ϕ2|)(|ψ1⟩⊗ |ψ2⟩) = ⟨ϕ1|ψ1⟩⟨ϕ2|ψ2⟩ . (2.8)

Hence, ⟨x′,y′|x,y⟩= ⟨x′|x⟩⟨y′|y⟩= δx′xδy′y.

Example 2.3.1. Consider H1 = C2 and H2 = C2, then H =H1⊗H2 ∼= C4. Furthermore, let
|ϕ1⟩= α0 |0⟩+α1 |1⟩ ∈ H1 and |ϕ2⟩= β0 |0⟩+β1 |1⟩ ∈ H2. Hence in H we have:

|ϕ1⟩⊗ |ϕ2⟩= α0β0 |0,0⟩+α0β1 |0,1⟩+α1β0 |1,0⟩+α1β1 |1,1⟩ .

Explicitly, the binary representations are:

|0,0⟩= |0⟩⊗ |0⟩=
(

1
0

)
⊗
(

1
0

)
=
(
1 0 0 0

)T
= e0,

|0,1⟩= |0⟩⊗ |1⟩=
(

1
0

)
⊗
(

0
1

)
=
(
0 1 0 0

)T
= e1,

|1,0⟩= |1⟩⊗ |0⟩=
(

0
1

)
⊗
(

1
0

)
=
(
0 0 1 0

)T
= e2,

|1,1⟩= |1⟩⊗ |1⟩=
(

0
1

)
⊗
(

0
1

)
=
(
0 0 0 1

)T
= e3.

2.4 Axioms of Quantum Mechanics

2.4.1 Axiom 1 - State of a Quantum System

The state of a quantum system (isolated from the environment) is represented by a unit vector |ϕ⟩ in
a Hilbert space H. In particular, the state of a system of n qubits is represented by a unit vector in
H= C2n ∼=

⊗n timesC2. Note that in general, for n qubits, ∥|ϕ⟩∥2 ̸= n.

9

Now, in the computational basis, we consider a set of basis vectors in the form:{
|x1, ...,xn⟩ ,xi ∈ {0,1},1≤ i≤ n

}
, (2.9)

where each ket vector satisfies:

〈
x′

1, ...,x
′
n

∣∣x1, ...,xn
〉

= δx′
1x1 ...δx′

nxn . (2.10)

Then, every vector in the Hilbert space can be written as:

|ϕ⟩=
∑

x1,...,xn∈{0,1}
αx1,...,xn |x1, ...,xn⟩ , (2.11)

where we naturally impose a normalizing condition given by:

1 = ⟨ϕ|ϕ⟩=
∑

x1,...,xn∈{0,1}
|αx1,...,xn |

2 . (2.12)

Example 2.4.1 (n= 1). We can represent vectors in C2 on the unit circle:

|ϕ⟩= cos(θ) |0⟩+sin(θ) |1⟩ , (2.13)

where of course cos(θ)2 + sin(θ)2 = 1. We can note two particular cases of states that will be
important for later:

|+⟩= 1√
2

(|0⟩+ |1⟩) and, |−⟩= 1√
2

(|0⟩− |1⟩) . (2.14)

These are vectors at θ = +45◦ angle for |+⟩ and at θ =−45◦ angle for |−⟩ on the unit circle.

2.4.2 Axiom 2 - Time Evolution

An isolated quantum system evolves in time via unitary linear transformations U :

|ϕ⟩ −→ U |ϕ⟩ , (2.15)

where U is a 2n× 2n unitary matrix, hence satisfying UU † = U †U = I (i.e. U−1 = U †) for U † being
the adjoint of U (complex-conjugate transpose). In a quantum circuit, considering two evolutions gives:

We have norm conservation:

⟨ϕ1|ϕ1⟩= ⟨ϕ0|U †
1U1 |ϕ0⟩= ⟨ϕ0|I |ϕ0⟩= ⟨ϕ0|ϕ0⟩= 1, (2.16)

and similarly:
⟨ϕ2|ϕ2⟩= ⟨ϕ1|U †

2U2 |ϕ1⟩= ⟨ϕ1|I |ϕ1⟩= ⟨ϕ1|ϕ1⟩= 1. (2.17)

10

In words, U = U2U1 is also a unitary transformation, where more formally one can check that
UU † = U2U1U

†
1U

†
2 = U2U

†
2 = I. More generally, it is always the case that any quantum circuit can

be represented by a single unitary transformation U .

Example 2.4.2 (NOT Gate). The NOT gate acts on a single qubit in C2.

The action of this gate on basis states is given by NOT |0⟩ = |1⟩ and NOT |1⟩ = |0⟩. Then
it follows that NOT (α0 |0⟩+α1 |1⟩) = α0 |1⟩+α1 |0⟩ (i.e. reflection with respect to the axis
with angle 45◦). Let’s now find the matrix representation of the NOT gate, where its matrix
elements are: ⟨0|NOT |0⟩ = ⟨0|1⟩ = 0, ⟨0|NOT |1⟩ = ⟨0|0⟩ = 1, ⟨1|NOT |0⟩ = ⟨1|1⟩ = 1 and,
⟨1|NOT |1⟩= ⟨1|0⟩= 0. Therefore the matrix is:

NOT =
(

0 1
1 0

)
=NOT † =⇒Hermitian. (2.18)

Furthermore, NOT ·NOT † = NOT † ·NOT = I, hence it is also unitary. We finally note that,
with a simple calculation, NOT |+⟩= |+⟩ and NOT |−⟩=−|−⟩.

Example 2.4.3 (C-NOT Gate). The C-NOT gate acts on two qubits in C2⊗C2 ∼= C4.

The action of this gate on basis states is given by CNOT |00⟩ = |00⟩, CNOT |01⟩ = |01⟩,
CNOT |10⟩= |11⟩ and CNOT |11⟩= |10⟩. Of course, this can be generalized as CNOT |x1,x2⟩=
|x1,x2⊕x1⟩. The matrix representation of the C-NOT gate in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}
is given by:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

= CNOT † =⇒Hermitian. (2.19)

Furthermore, CNOT ·CNOT † =CNOT † ·CNOT = I, hence it is also unitary. We finally note
that, with a simple calculation, for a state |ϕ⟩ = α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩ it holds
that: CNOT |ϕ⟩= α00 |00⟩+α01 |01⟩+α10 |11⟩+α11 |10⟩.

Remark 2.4.4. Classically, a CNOT gate can emulate a COPY gate. But in the quantum
world, copying a quantum state is impossible (No Cloning Theorem). Let us solve this
apparent contradiction. To this end, consider |ϕ⟩⊗ |0⟩ as input state to the CNOT gate, with
|ϕ⟩= α0 |0⟩+α1 |1⟩:

11

CNOT (|ϕ⟩⊗ |0⟩) = CNOT ((α0 |0⟩+α1 |1⟩)⊗|0⟩)

= α0CNOT |00⟩+α1CNOT |10⟩

= α0 |00⟩+α1 |11⟩= Bell State ̸= |ϕ⟩⊗ |ϕ⟩ .

Only states in the computational basis can be copied.

2.4.3 Axiom 3 - Measurement Postulate

If an isolated quantum system is in state |ψ⟩ ∈ H = C2n and one observes the system through a
measurement equipment, described by an orthonormal basis {|ϕ0⟩ , |ϕ1⟩ , ..., |ϕ2n−1⟩} of H (considering
the computational basis), then the outcome of the measurement is given by {|ϕi⟩}2

n−1
i=0 with probability

P(i) = |⟨ϕi|ψ⟩|2. Note that:

2n−1∑
i=0

P(i) =
2n−1∑
i=0
⟨ϕi|ψ⟩⟨ϕi|ψ⟩=

2n−1∑
i=0
⟨ψ|ϕi⟩⟨ϕi|ψ⟩= ⟨ψ|

(2n−1∑
i=0
|ϕi⟩⟨ϕi|

)
|ψ⟩= ⟨ψ|I |ψ⟩= ⟨ψ|ψ⟩= 1.

Observe that:

|ϕi⟩⟨ϕi|=



0
. . .

0 0
1

0 0
. . .

0


(2.20)

where 1 is in the i-th row and i-th column, and this matrix is a rank-one matrix which is also a
projector matrix (on |ϕi⟩). The graphical representation of a measurement is given by:

With the addition of a quantum circuit U , the probability is P(i) = |⟨ϕi|U |ψ⟩|2 and we have:

12

2.4.4 Axiom 4 - Composition of Quantum Systems

Consider two systems, one with n1 qubits defined on a Hilbert space H1 =
(
C2)⊗n1 (with dimension

2n1) and the other one with n2 qubits defined on a Hilbert space H2 =
(
C2)⊗n2 (with dimension 2n2).

Then, we can set a global system consisting of n1 +n2 qubits defined on a Hilbert space H=H1⊗H2 =(
C2)⊗(n1+n2) (with dimension 2n1+n2). Now, not all states can be written as product states: in the

form |ϕ1⟩⊗ |ϕ2⟩.

Example 2.4.5 (Product States). All the following are product states:
• |0,0⟩= |0⟩⊗ |0⟩.
• 1√

2(|0,1⟩+ |0,0⟩) = |0⟩⊗
(

1√
2(|0⟩+ |1⟩)

)
.

• 1
2(|0,0⟩+ |0,1⟩+ |1,0⟩+ |1,1⟩) = 1√

2(|0⟩+ |1⟩)⊗ 1√
2(|0⟩+ |1⟩).

If we don’t have a product state we have an entangled state.

Example 2.4.6 (Entangled State). The Bell State is an entangled state, since:

1√
2

(|0,0⟩+ |1,1⟩) ̸= |ϕ1⟩⊗ |ϕ2⟩ . (2.21)

Proposition 2.4.7. The state |ϕ⟩= α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩ is a product state if
and only if:

det

(
α00 α01

α10 α11

)
= 0. (2.22)

2.5 Quantum Circuits

In this section, we present fundamental quantum gates with 1-qubit, 2-qubits and multiple qubits
entries. Recall that a quantum circuit operating on n qubits can always be represented by a 2n×2n

unitary matrix U .

2.5.1 1-Qubit Gates

Consider the Hilbert space H= C2.

Definition 2.5.1. The NOT gate is defined as:

X =
(

0 1
1 0

)
. (2.23)

Definition 2.5.2. The Hadamard gate is defined as:

H = 1√
2

(
1 1
1 −1

)
. (2.24)

13

Let’s now observe the action of H on basis states |0⟩ and |1⟩. For vector |0⟩:

H |0⟩= 1√
2

(|0⟩+ |1⟩) = |+⟩ , (2.25)

and for vector |1⟩:
H |1⟩= 1√

2
(|0⟩− |1⟩) = |−⟩ . (2.26)

And of course, with a simple calculation, for any state |ϕ⟩= α0 |0⟩+α1 |1⟩ it holds that:

H |ϕ⟩= α0 |+⟩+α1 |−⟩= α0 +α1√
2
|0⟩+ α0−α1√

2
|1⟩ . (2.27)

Finally note that H is Hermitian and unitary, since H =H† and HH† =H†H = I.

Definition 2.5.3. The Phase gates Z, S and T are defined as:

Z =
(

1 0
0 eiπ

)
=
(

1 0
0 −1

)
, S =

(
1 0
0 ei

π
2

)
=
(

1 0
0 i

)
and, T =

(
1 0
0 ei

π
4

)
=

1 0
0 1√

2 + i√
2

 .
Let’s again observe the actions of Z, S and T on basis states |0⟩ and |1⟩. For vector |0⟩:

Z |0⟩= S |0⟩= T |0⟩= |0⟩ , (2.28)

and for vector |1⟩:
Z |1⟩=−|1⟩ , S |1⟩= i |1⟩ and T |1⟩= ei

π
4 |1⟩ . (2.29)

Of course, with a simple calculation, for any state |ϕ⟩= α0 |0⟩+α1 |1⟩ it holds that:

Z |ϕ⟩= α0 |0⟩−α1 |1⟩ , S |ϕ⟩= α0 |0⟩+ iα1 |1⟩ and T |ϕ⟩= α0 |0⟩+ei
π
4 α1 |1⟩ . (2.30)

Finally note that Z, S and T are all unitary. Also remark that Z = S2 = T 4 and S = T 2.

Theorem 2.5.4 (Without proof). Any 2×2 unitary matrix U can be approximated by a product
of gates H, S and T in the following sense: for all δ > 0, there exists V a product of O

(
1
δ

)
matrices H, S and T such that ∥U −V ∥< δ (where ∥·∥ is some matrix norm).

2.5.2 2-Qubits Gates

Consider the Hilbert space H= C4 and the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}.

Definition 2.5.5. The CNOT gate is defined as:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.31)

We have already studied the action of the CNOT gate on basis states in Example (2.4.3).

14

Definition 2.5.6. The Controlled-U gate is defined as:

Here, U is a 2×2 unitary matrix and the output Ux |y⟩ is given by:

Ux |y⟩=

|y⟩ , if x= 0

U |y⟩ , if x= 1
. (2.32)

2.5.3 Multiple Qubits Gates

• We have already encountered the CCNOT gate defined on the Hilbert space H = C8 and in the
basis {|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩}.

Definition 2.5.7. The CCNOT gate is defined as:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (2.33)

Remark 2.5.8. Classically, it is not possible to create a Toffoli gate from CNOT and 1-bit
gates. In the quantum world however, this is possible using the gates CNOT, H, T and S gates.

• We can also consider multicontrol gates, where we now have to use a general Hilbert spaceH=C2n+1 .
In particular, we can build a circuit with a U gate where U acts on |y⟩ only if x1 = x2 = ...= xn = 1.

15

Theorem 2.5.9 (A.Barenco & al. - Without proof). Any 2n× 2n unitary matrix U can be
approximated (with arbitrary precision) by a circuit made only of gates T , S, H and CNOT.
The number of gates needed for this approximation depends on the unitary matrix U (may be
exponential in n).

Remark 2.5.10. Without the T gate, it can be shown that no quantum advantage can be
obtained over classical circuits (Gottesman-Knill Theorem).

16

Chapter 3

Deutsch’s Model and a Quantum
Algorithm

In this chapter, we present the model of Deutsch along with the so-called Deutsch’s problem. We will
then present a classical method of resolution, before moving on to the quantum algorithm called the
Deutsch-Josza’s algorithm.

3.1 Deutsch’s Model of Quantum Circuits

As already mentioned, every circuit can be represented by a single unitary operation U and the
extraction of information happens via a measurement in {|x1...xn⟩ ,x1, ...,xn ∈ {0,1}} with probability
P(|x1...xn⟩) = |⟨x1...xn|ψout⟩|2. We can now mention two reasons for using a quantum circuit rather
than a classical one:
(i) Simulate quantum physical systems.
(ii) Solve efficiently classical problems involving a Boolean function f : {0,1}n −→ {0,1}m.
Our aim will be to solve problems involving a Boolean function, and this will be done in 3 generic
stages:
1) Any input of f : {0,1}n −→ {0,1}m is a sequence of n bits {x1, ...,xn}, which can be encoded into
a quantum state |x1...xn⟩. We will construct superpositions of states given by:

|ψ⟩=
∑

x1,...,xn∈{0,1}
αx1...xn |x1...xn⟩ . (3.1)

2) We consider a unitary operation U (f) performed on |ψ⟩, where by linearity:

U (f) |ψ⟩=
∑

x1...xn∈{0,1}
αx1...xnU

(f) |ψ⟩ . (3.2)

3) For the measurement, the outcome |x1...xn⟩ with probability |⟨x1...xn|U (f) |ψ⟩|2 should be high (or
at least > 0) for states |x1...xn⟩ corresponding to the solution of the problem.

In what follows, we consider two assumptions without loss of generality. Note that the following
assumptions may come with some additional cost on the circuit complexity:
• Initial state is |0,0, ...,0⟩.
• The final measurement is performed in the computational basis {|x1...xn⟩ ,x1, ...,xn ∈ {0,1}}.

17

Remark 3.1.1. The circuit complexity is set to be C = width×depth.

Before we proceed to the study of the quantum algorithm, let us introduce the quantum oracle gate
Uf associated to a Boolean function f : {0,1}n −→ {0,1} (we consider the case m= 1 but this can be
generalized). Observe first that unless n = 1 and f is bijective, the evaluation of a Boolean function
f is in general irreversible. A reversible way of evaluating a function f is obtained by augmenting the
memory with an ancilla bit:

f̃(x1, ...,xn,y) = (x1, ...,xn,y⊕f(x1, ...,xn)). (3.3)

The corresponding quantum circuit, which roughly corresponds to a generalization of a Controlled-U
gate, is given by:

Definition 3.1.2. The quantum oracle, which has to be constructed for every f , acts as:

Uf (|x1...xn⟩⊗ |y⟩) = |x1...xn⟩⊗ |y⊕f(x1, ...,xn)⟩ . (3.4)

Proposition 3.1.3. Uf is unitary.

18

Proof. For all basis elements and for every f , we have:

〈
x′

1...x
′
n

∣∣⊗ 〈y′∣∣U †
fUf |x1...xn⟩⊗ |y⟩=

(〈
x′

1...x
′
n

∣∣⊗ 〈y′⊕f(x′
1, ...,x

′
n)
∣∣)(|x1...xn⟩⊗ |y⊕f(x1, ...,xn)⟩

)
=
〈
x′

1
∣∣x1
〉
...
〈
x′
n

∣∣xn〉〈y′⊕f(x′
1, ...,x

′
n)
∣∣y⊕f(x1, ...,xn)

〉
= δx′

1x1 ...δx′
nxn

〈
y′⊕f(x′

1, ...,x
′
n)
∣∣y⊕f(x1, ...,xn)

〉
= δx′

1x1 ...δx′
nxn

〈
y′⊕f(x1, ...,xn)

∣∣y⊕f(x1, ...,xn)
〉

= δx′
1x1 ...δx′

nxnδy′y = 1{x′
1=x1,...,x′

n=xn,y′=y}.

3.2 Deutsch’s Problem and Classical Method of Resolution

We are given a Boolean function f : {0,1}n −→ {0,1} and an oracle capable of evaluating f(x) for a
given x at no cost. On top of that, we are informed that either f is constant (i.e. f(x) = f(y) for all
x,y ∈ {0,1}n) or f is balanced (i.e. f(x) = 1 for half of the x’s and f(x) = 0 for the other half). The
aim of the problem is to decide between these two alternatives with the least possible number of calls
to the oracle. Note that we do not know anything a priori about the structure of f .

Classical Method of Resolution
Call the oracle in k different points x(1), ...,x(k) ∈ {0,1}n:
• If f

(
x(1)

)
= ...= f

(
x(k)

)
declare f is constant.

• Otherwise, declare f is balanced.
In the worst case, k = 2n−1 +1 calls to the oracle are needed in order to obtain a correct answer with
probability p= 1 (since k is greater than half the total number of points).

Probabilistic Algorithm (still classical)
Fix k ≥ 1 and draw k iid points x(1), ...,x(k) ∈ {0,1}n (with possible replacement). Again:
• If f

(
x(1)

)
= ...= f

(
x(k)

)
declare f is constant.

• Otherwise, declare f is balanced.
The probability of making an error, which can only happen in the first case, is 1

2k−1 . This can be made
as small as required in O(1) calls.

3.3 Deutsch-Josza’s Quantum Algorithm

We now present the quantum alternative to Deutsch’s algorithm, where we will make use of the
Hadamard gate H, the quantum oracle Uf and finally making a measurement. We start with an
initial state:

|ψ0⟩=
(
n times⊗

|0⟩
)
⊗|1⟩ := |0,0, ...,0⟩⊗ |1⟩ . (3.5)

An extra ancilla qubit |1⟩ is being added to the input to allow for computations later on.

19

Stage 1: State |ψ1⟩ corresponds to a superposition of states:

|ψ1⟩=
(n+1) times⊗

H |ψ0⟩=H |0⟩⊗ ...⊗H |0⟩⊗H |1⟩ . (3.6)

Now, recall that H |0⟩= |0⟩+|1⟩√
2 = 1√

2
∑
x1∈{0,1} |x1⟩ and H |1⟩= |0⟩−|1⟩√

2 . Then we find:

|ψ1⟩= 1√
2

∑
x1∈{0,1}

|x1⟩⊗ ...⊗
1√
2

∑
xn∈{0,1}

|xn⟩⊗
|0⟩− |1⟩√

2
= 1

2 n
2

∑
x1,...,xn∈{0,1}

|x1, ...,xn⟩⊗
|0⟩− |1⟩√

2
.

Stage 2: To find |ψ2⟩, state |ψ1⟩ has to go through the quantum oracle. Recall that:

Uf (|x1...xn⟩⊗ |y⟩) = |x1...xn⟩⊗ |y⊕f(x1, ...,xn)⟩ . (3.7)

Then:

|ψ2⟩= Uf |ψ1⟩= 1
2 n

2

∑
x1,...,xn∈{0,1}

Uf

(
|x1, ...,xn⟩⊗

|0⟩− |1⟩√
2

)

= 1
2 n

2

∑
x1,...,xn∈{0,1}

|x1, ...,xn⟩⊗
|f(x1, ...,xn)⟩−

∣∣∣f(x1, ...,xn)
〉

√
2

= 1
2 n

2

∑
x1,...,xn∈{0,1}

|x1, ...,xn⟩⊗ |0⟩−|1⟩√
2 if f(x1, ...,xn) = 0

|x1, ...,xn⟩⊗ |1⟩−|0⟩√
2 if f(x1, ...,xn) = 1

= 1
2 n

2

∑
x1,...,xn∈{0,1}

|x1, ...,xn⟩⊗ (−1)f(x1,...,xn) · |0⟩− |1⟩√
2

= 1
2 n

2

∑
x1,...,xn∈{0,1}

(−1)f(x1,...,xn) |x1, ...,xn⟩⊗
|0⟩− |1⟩√

2
.

The action of Uf on the ancilla qubit, which is in a superposition state, has now been transferred to
the first n qubits. Note that, from now on, we could forget the ancilla qubit.

Stage 3: We are at the stage of the analysis of the output qubits. Set ⊗n timesH :=H⊗n. Then:

|ψ3⟩=
(
H⊗n⊗ I

)
|ψ2⟩= 1

2 n
2

∑
x1,...,xn∈{0,1}

(−1)f(x1,...,xn)H⊗n |x1, ...,xn⟩︸ ︷︷ ︸
(∗)

⊗|0⟩− |1⟩√
2

. (3.8)

20

Now, it holds that H |x1⟩= |0⟩+(−1)x1 |1⟩√
2 = 1√

2
∑
z1∈{0,1}(−1)z1x1 |z1⟩. Therefore:

(∗) =H⊗n |x1, ...,xn⟩=H |x1⟩⊗ ...⊗H |xn⟩= 1
2 n

2

∑
z1,...,zn∈{0,1}

(−1)z1x1+...+znxn |z1, ...,zn⟩ . (3.9)

Hence, gathering everything together yields:

|ψ3⟩= 1
2 n

2

∑
x1,...,xn∈{0,1}

(−1)f(x1,...,xn)

 1
2 n

2

∑
z1,...,zn∈{0,1}

(−1)z1x1+...+znxn |z1, ...,zn⟩

⊗ |0⟩− |1⟩√
2

=
∑

z1,...,zn∈{0,1}

 1
2n

∑
x1,...,xn∈{0,1}

(−1)f(x1,...,xn)+z1x1+...+znxn


︸ ︷︷ ︸

:=αz1,...,zn

|z1, ...,zn⟩⊗
|0⟩− |1⟩√

2
.

Stage 4: This last stage is dedicated to the measurement of the first n qubits. The state |z1, ...,zn⟩
is observed with probability |αz1,...,zn |2. Let us consider the particular state |00...0⟩, then:

|α00...0|2 =

∣∣∣∣∣∣ 1
2n

∑
x1,...,xn∈{0,1}

(−1)f(x1,...,xn)

∣∣∣∣∣∣
2

=

1 if f is constant

0 if f is balanced
. (3.10)

Hence if the output is |00...0⟩, f is constant, otherwise f is balanced. Note that this operation has
been made with a single call to the quantum oracle.

Remark 3.3.1. In an actual quantum computer, there is noise, so the probability of a correct
answer is never p= 1. Furthermore, this problem is a toy problem since the full knowledge of f
is required to build the gate Uf .

21

Chapter 4

Simon’s Algorithm

Let f : {0,1}n −→X be a function such that f(x) = f(y) if and only if either x = y or x⊕a = y for
some a ∈ {0,1}n\{0}. Note that X will be defined later and a is unknown.
The aim is to discover the value of a ̸= 0 by asking as few questions as possible to the oracle f .
Classically, we will see that this requires O(2n) calls, whereas Simon’s quantum algorithm finds the
vector a with probability p≥ 1− ϵ in a runtime of poly(n) · |log(ϵ)| and with a similar number of calls
to the oracle.

Example 4.0.1 (n= 3). Consider f(x⊕a) = f(x) for all x ∈ {0,1}3. The image space X must
be of cardinality 4, where we consider the vector a to be a= (0,1,0).

In fact, in general we require |X|= 2n

2 = 2n−1.

4.1 Classical Algorithm

The classical algorithm is constructed as follows: draw randomly pairs of points in {0,1}n (with
replacement):

(
x(1),y(1)

)
,...,
(
x(q),y(q)

)
. If one such pair (say j), f

(
x(j)

)
= f

(
y(j)

)
, compute a =

x(j)⊖y(j) (= x(j)⊕y(j)) and declare success. On the contrary, if f
(
x(j)

)
̸= f

(
y(j)

)
for all 1≤ j ≤ q,

then declare failure.

22

Proposition 4.1.1. It holds that P(success)≤ q
2n−1 .

Note that in order to ensure P(success)≥ 1− ϵ we require q ≥ (2n−1)(1− ϵ) draws.

Proof. We remark that:

P(success) = P
(
∃ 1≤ j ≤ q : f

(
x(j)

)
= f

(
y(j)

))
≤

q∑
j=1

P
(
f
(
x(j)

)
= f

(
y(j)

))
≤ q

2n−1 . (4.1)

We have used the fact that for a given x there is a unique corresponding y, hence:

P
(
f
(
x(j)

)
= f

(
y(j)

))
= 1

2n−1 . (4.2)

A slightly better classical algorithm can be related to the Birthday Problem. This simply corresponds
to the random sampling in a set on N elements. The result is that in general the order of trials until
we observe two identical elements is

√
N . As a result O

(
2 N

2
)

draws only are needed, however this is
still exponential in N .

Towards a better construction, let us generalise this problem using notions of Group Theory. Con-
sider G = {0,1}n be a group associated to a vector space, and let H be an unknown subgroup of G
associated to a sub-vector space. In particular consider H = span

{
h(1), ...,h(k)

}
to be a k-dimensional

subspace of linearly independent vectors. Then, Simon’s Problem can be reformulated as follows: find
the hidden subgroup H ⊂ G with as few as possible calls to the oracle f : {0,1}n −→ X satisfying
f(x) = f(y) whenever x⊖y ∈H.

Concerning the cardinalities, |G| = 2n, H is k-dimensional hence |H| = 2k. So f possibly takes 2n−k

values, which corresponds to the order |X|. Using Lagrange’s Theorem, a possible option for X is
therefore X =G\H (i.e. a quotient group) with |X|= |G\H|= |G|\|H|= 2n−k.
We have an equivalence relation x ∼ y if and only if x⊖ y ∈ H. The group G can then be divided
into 2n−k equivalence classes, namely there exists

{
V (1), ...,V (2n−k)

}
representatives of each class such

that:

G=
2n−k⊔
j=1

{
V (j)⊕H

}
. (4.3)

Remark 4.1.2. Note that, in this section, we have used the notation ⊖. In the context of the
field {0,1}, the notation ⊖ is actually the same as ⊕. However, in a more general context and
considering a field F = {a1, ...,ak}, the notation ⊖ is simply a subtraction modulo k. In other
words, x⊖y is defined as x⊕y−1, where y−1 is the inverse element of y with respect to the set
operation (i.e. y ·y−1 = id, with the group operation ·).

23

Example 4.1.3 (n = 3 and k = 2). In the following example, H =
{(0,0,0),(1,0,0),(0,0,1),(1,0,1)} and |X|= 2. The equivalence classes are Hand H⊕ (0,1,0).

4.2 Simon’s Quantum Algorithm

We now present the quantum alternative to Simon’s algorithm, where we will make use of the
Hadamard gate H, the quantum oracle Uf and finally making a measurement. We start with an
initial state:

(
Note that H⊗n⊗ In−k is the same as H⊗n⊗ I⊗(n−k).

)

|ψ0⟩=
(
n times⊗

|0⟩
)
⊗

(n−k) times⊗
|0⟩

 := |0⟩⊗ ...⊗|0⟩︸ ︷︷ ︸
n times

⊗|0⟩⊗ ...⊗|0⟩︸ ︷︷ ︸
(n−k) times

. (4.4)

24

Stage 1: Note that contrary to the Deutsch-Josza’s algorithm, the (n− k) ancilla qubits are left
untouched before the passage through the oracle Uf .

|ψ1⟩=
(
H⊗n⊗ In−k

)
|ψ0⟩=H⊗n |0...0⟩⊗ |0...0⟩= 1

2 n
2

∑
x1,...,xn∈{0,1}

|x1...xn⟩⊗ |0...0⟩= 1
2 n

2

∑
x∈{0,1}n

|x⟩⊗ |0...0⟩ .

Stage 2: To find |ψ2⟩, state |ψ1⟩ has to go through the quantum oracle. The oracle Uf is defined as:

Uf
(
|x⟩⊗ |y⟩

)
= |x⟩⊗ |y⊕f(x)⟩ , (4.5)

where we note that f(x) is modulo 2. Hence:

UfUf |x⟩⊗ |y⟩= Uf |x⟩⊗ |y⊕f(x)⟩= |x⟩⊗ |y⊕f(x)⊕f(x)⟩= |x⟩⊗ |y⟩ . (4.6)

However remark that both y and f(x) are (n−k)-dimensional. So:

|ψ2⟩= Uf |ψ1⟩= 1
2 n

2

∑
x∈{0,1}n

|x⟩⊗ |f(x)⟩ . (4.7)

Stage 3: Following what was done for the Deutsch-Josza’s algorithm we have:

H⊗n |x⟩= 1
2 n

2

∑
y∈{0,1}n

(−1)x·y |y⟩ . (4.8)

So, for |ψ3⟩ we obtain:

|ψ3⟩=
(
H⊗n⊗ I

)
|ψ2⟩= 1

2n
∑

x,y∈{0,1}n

(−1)x·y |y⟩⊗ |f(x)⟩ . (4.9)

Let us rewrite this using the set of the representatives of the equivalence classes ofG:
{
V (1), ...,V (2n−k)

}
:

|ψ3⟩=
∑

y∈{0,1}n

1
2n

2n−k∑
j=1

∑
h∈H

(−1)(V (j)⊕h)·y |y⟩⊗
∣∣∣f (V (j) +h

)〉
︸ ︷︷ ︸

=f(V (j))=:fj

=
∑

y∈{0,1}n

1
2n

2n−k∑
j=1

(−1)V (j)·y

∑
h∈H

(−1)h·y

 |y⟩⊗ |fj⟩ .
Now, the (k×n) matrix representation of H is given by H =

(
h(1) · · · h(k)

)T
whose kernel is defined

by:
Ker =H⊥ =

{
x ∈ {0,1}n :H ·x= 0

}
=
{
x ∈ {0,1}n : h(i) ·x= 0 for all i

}
, (4.10)

and is an (n−k)-dimensional subspace of {0,1}n, remarking also that (H⊥)⊥ =H. Here, h(i) ·x is the
usual dot product operation with ⊕ in between each term (addition modulo 2).
Observe now that ∑h∈H(−1)y·h ∈ {0,2k}. Indeed we may consider the following two cases:
• If y ∈H⊥ then y ·h= 0 for all h ∈H, so:

∑
h∈H

(−1)y·h = 2k. (4.11)

25

• If y /∈H⊥ then there exists h(0) ∈H such that h(0) ·y = 1 and so:

∑
h∈H

(−1)y·h =
∑
h′∈H

(−1)y·(h(0)+h′) =−
∑
h′∈H

(−1)y·h′ =⇒
∑
h∈H

(−1)y·h = 0. (4.12)

Finally we obtain:

|ψ3⟩=
∑
y∈H⊥

 1
2n−k

2n−k∑
j=1

(−1)V (j)·y

 |y⟩⊗ |fj⟩ . (4.13)

Stage 4: This last stage is dedicated to the measurement of the first n qubits. Here, the first n qubits
are entangled with the last (n−k) qubits in state |ψ3⟩. Hence the partial measurement of the first n
qubits is more difficult to describe than in the case of Deutsch-Josza’s algorithm.
In general, a measurement is described in quantum mechanics by a complete collection of orthogonal
projectors {Pj : 1≤ j ≤ d}. In our context, the projectors admit the following properties:
• Applying the projection twice is the same as applying it once: P 2

j := Pj ·Pj = Pj

• We consider orthogonal projections, i.e. for all x,y: ⟨Pjx,y−Pjy⟩= 0
• The projections are unitary. Recall that for all operators p, ⟨x,p†y⟩= ⟨px,y⟩. Then:

⟨Pjx,y−Pjy⟩= ⟨x,P †
j y−P

†
j Pjy⟩= ⟨x,Pjy−PjPjy⟩= ⟨x,(Pj−PjPj)y⟩= 0. (4.14)

As a result and by definition it holds that ⟨Pjx,y−Pjy⟩= 0 = ⟨x−Pjx,Pjy⟩. Hence:

⟨x,P †
j y⟩= ⟨Pjx,y⟩= ⟨Pjx,Pjy⟩= ⟨x,Pjy⟩=⇒ Pj = P †

j , ∀1≤ j ≤ d. (4.15)

•The set of projectors is complete: ∑d
j=1Pj = I.

Example 4.2.1. Pj = |ϕj⟩⟨ϕj |, where {|ϕj⟩ ,1≤ j ≤ d}, is an orthonormal basis of the Hilbert
space H.

Anyways, back to our measurement! Now, if the system is in state |ψ⟩ before the measurement, the
outcome state is:

∣∣ψ′〉= Pj |ψ⟩
∥Pj |ψ⟩∥

with probability ∥Pj |ψ⟩∥2 = ⟨ψ|P †
j Pj |ψ⟩= ⟨ψ|Pj |ψ⟩ .

In our case, the measurement of the first n qubits is described by the following complete collection of
projectors:

{Py = |y⟩⟨y|⊗ In−k,y ∈ {0,1}n} . (4.16)

For a given y0 ∈ {0,1}n, let us compute the outcome probability ⟨ψ3|Py0 |ψ3⟩ of the state Py0 |ψ3⟩
∥Py0 |ψ3⟩∥ =

|y0⟩⊗ (some state we do not care about). We then obtain:

26

⟨ψ3|Py0 |ψ3⟩=

 ∑
y∈H⊥

1
2n−k

2n−k∑
j=1

(−1)V (j)·y ⟨y|⊗ ⟨fj |

(|y0⟩⟨y0|⊗ In−k
) ∑

y′∈H⊥

1
2n−k

2n−k∑
j′=1

(−1)V (j′)·y′ ∣∣y′〉⊗ ∣∣fj′
〉

=
∑

y,y′∈H⊥

1
22(n−k)

2n−k∑
j,j′=1

(−1)V (j)·y+V (j′)·y′ ⟨y|y0⟩
〈
y0
∣∣y′〉〈fj∣∣fj′

〉

=
∑

y,y′∈H⊥

1
22(n−k)

2n−k∑
j,j′=1

(−1)V (j)·y+V (j′)·y′
δyy0δy0y′δjj′ .

So, the above quadruple sum simplifies to two different results depending on the status of y0:
• If y0 /∈H⊥ then it is equal to 0 .

• If y0 ∈H⊥ then we obtain:

1
22(n−k)

2n−k∑
j=1

(−1)V (j)·y0+V (j)·y0 = 1
22(n−k)

2n−k∑
j=1

(−1)2V (j)·y0 = 1
22(n−k)

2n−k∑
j=1

1 = 2n−k

22(n−k) = 1
2n−k . (4.17)

Hence, in the case of y0 ∈H⊥, the outcome probabilities are uniform over H⊥.

In conclusion, Simon’s algorithm is then the following:
• Run (n−k) times the above circuit. This will output y(1), ...,y(n−k) uniformly and independently
distributed on H⊥.
• If y(1), ...,y(n−k) are linearly independent, then these form a basis of H⊥ which is of dimension
(n−k). From this basis, we compute the basis of the dual space H via a classical algorithm (Gauss
elimination - runtime O(n3)). In this case, we declare success.
• If y(1), ...,y(n−k) are not linearly independent the declare failure and restart the algorithm (note
that in practice, one can do better than that).

Proposition 4.2.2. It holds that P(success)≥ 1
4 .

We can represent the situation with a directed graph:

Proof. We have to consider the following probabilities:

P
(
y(1) ̸= 0

)
= 1− 1

2n−k . (4.18)

P
(
y(2) /∈ span

(
y(1)

)∣∣∣y(1) ̸= 0
)

= P
(
y(2) /∈

{
0,y(1)

}∣∣∣y(1) ̸= 0
)

= 1− 2
2n−k = 1− 1

2n−k−1 . (4.19)

27

P
(
y(3) /∈ span

(
y(1),y(2)

)∣∣∣y(1),y(2) lin. indep.
)

= 1− 4
2n−k = 1− 1

2n−k−2 . (4.20)

This process continues until the step (n−k) which is given by:

P
(
y(n−k) /∈ span

(
y(1), ...,y(n−k−1)

)∣∣∣y(1), ...,y(n−k−1) lin. indep.
)

= 1− 2n−k−1

2n−k = 1− 1
2 = 1

2 .

Now, P(success) = P
(
y(1), ...,y(n−k) are lin. indep.

)
and this can be represented by:

P(success) =
n−k∏
i=1

(
1− 2i−1

2n−k

)
=
n−k−1∏
i=0

(
1− 1

2n−k−i

)
=
n−k∏
i=1

(
1− 1

2i
)

= exp
(
n−k∑
i=1

log
(

1− 1
2i
))

.

One can plot the function log(1−x) and find a linear function g(x) such that log(1−x) ≥ g(x)
on the interval 0≤ x≤ 1

2 . Given that the function log(1−x) is concave, with a simple analysis it
is not difficult to show that the required function is g(x) =−(2 log(2))x. Therefore:

P(success)≥ exp
(
−2log(2)

n−k∑
i=1

1
2i

)
≥ exp(−2log(2)) = 2−2 = 1

4 , (4.21)

where we have used the fact that ∑n−k
i=1

1
2i ≤ 1.

Of course, a success probability of only 1
4 is not satisfactory; we would like a success probability

P≥ 1− ϵ. Let us therefore repeat independently the whole algorithm T times:

P(failure after T attempts) = P(failure)T ≤
(3

4

)T
≤ ϵ if T ≥ |ln(ϵ)|

|ln(3/4)| . (4.22)

In the end, we obtain a success probability P ≥ 1− ϵ after O
(
(n− k) · |ln(ϵ)|

)
calls to the quantum

oracle Uf (and a polynomial runtime dominated by the O(n3) computation of the dual basis). This
is to be compared to the Ω

(
2n
)

calls to the oracle f of any classical algorithm.

28

Chapter 5

Shor’s Algorithm

Recall that for Simon’s algorithm we were given a function f : {0,1}n −→ {0,1}n−1 such that there
exists a∈ {0,1}n with f(x⊕a) = f(x) for all x. The aim was to identify the vector a (i.e. the period of
f). The output was a vector y ∈ {0,1}n uniformly distributed in the set H⊥ = {z ∈ {0,1}n : z ·a= 0}
where z ·a is the dot product ∑n

i=1 ziai. Hence after sufficiently many runs of the algorithm we were
able to identify the vector a.
In this chapter, we consider a slight variation of the problem. Given a periodic function f : Z−→ Z,
we wish to identify the period r ≥ 1 of the function f (i.e. the smallest value of r ≥ 1 such that
f(x+r) = f(x) for all x∈Z). However here Z is infinite, which makes the problem even more difficult!
In particular, we will be interested in a function f defined by taking a (large) positive integer N and
another number a ∈ {2, ...,N} such that gcd(a,N) = 1, and then for all x ∈ Z:

f(x) = ax
(
mod N

)
. (5.1)

Finding the period of f amounts here to finding its order, i.e. the smallest value of r ≥ 1 such that
ar
(
mod N

)
= 1. Now, in order to deal with the fact that |Z| =∞ we consider the following three

assumptions:
• Let n= ⌈log2(N)⌉ be the number of bits needed in the binary decomposition of numbers.
• Let M = 2m with m≥ 1 be such that M ≈N2 (so that M >> r also as r≤N) and view the original
f as f : {0, ...,M −1} −→ {0, ...,N −1}.
• Let us finally consider for now the strange assumption that M = kr for some k ≥ 1.

5.1 The Quantum Fourier Transform (QFT)

In this first section we present a powerful tool that will be useful for the description of Shor’s algorithm
and in general for multiple other applications, the Quantum Fourier Transform (QFT).

Definition 5.1.1. The Quantum Fourier Transform (QFT) is the unitary transformation
on m qubits, defined as:

QFT |x⟩= 1
2 m

2

2m−1∑
z=0

exp
(2πixz

2m
)
|z⟩ , (5.2)

where |x⟩ is an element of the computational basis (with 0≤ x≤ 2m−1). In this definition, xz
is the classical multiplication of two numbers x and z.

29

Remark that the QFT is a "true" complex-valued transformation (except in the case m= 1). Its usage
may therefore lead to quantum algorithms outperforming classical ones.

Proposition 5.1.2. The action of the QFT on a basis vector |x⟩, with x ∈ {0,1}m, may also
be written as:

QFT |x⟩=
m⊗
j=1

1√
2

(
|0⟩+exp

(2πix
2j

)
|1⟩
)
. (5.3)

Proof. We start from the definition of the QFT:

QFT |x⟩= 1
2 m

2

2m−1∑
z=0

exp
(2πixz

2m
)
|z⟩ . (5.4)

Observe that z = ∑m
j=1 zj2m−j , where z1...zm is the binary decomposition of z ∈ {0, ...,2m− 1}.

So we successively find that:

exp
(2πixz

2m
)

= exp

2πix
m∑
j=1

zj2−j

=
m∏
j=1

exp
(
2πixzj2−j)

=⇒ exp
(2πixz

2m
)
|z⟩=

m⊗
j=1

exp
(
2πixzj2−j) |zj⟩

=⇒QFT |x⟩=
m⊗
j=1

 1√
2

∑
zj∈{0,1}

exp
(
2πixzj2−j) |zj⟩

=
m⊗
j=1

1√
2

(
|0⟩+exp

(2πix
2j

)
|1⟩
)
.

We now move on to the construction of the circuit for the QFT. Let x=∑m
k=1xk2m−k where x1...xm

is the binary decomposition of x ∈ {0, ...,2m−1}. Then:

exp
(
2πix2−j)= exp

(
2πi

m∑
k=1

xk2m−k−j
)
. (5.5)

Observe that xk2m−k−j is an integer for k≤m−j. Thus in this case we have that exp
(
2πixk2m−k−j)=

1, and hence:

QFT |x⟩=
m⊗
j=1

1√
2

|0⟩+exp

2πi
m∑

k=m−j+1
xk2m−k−j

 |1⟩


= 1√
2

|0⟩+exp
(
2πixm2−1

)
︸ ︷︷ ︸

rotation by iπxm

|1⟩

⊗ 1√
2

|0⟩+exp
(
2πixm−12−1

)
︸ ︷︷ ︸

rotation by iπxm−1

exp
(
2πixm2−2

)
︸ ︷︷ ︸

controlled rotation by iπ xm
2

|1⟩

⊗ ...

Let us now draw the circuit of the QFT:

30

The final task it to find the inverse circuit QFT †. We have that QFT
(
|x1⟩⊗ ...⊗|xm⟩

)
= |ψ1⟩⊗ ...⊗

|ψm⟩, or in short-hand notation QFT |x⟩ = |ψ⟩. Now as QFT is unitary (we prove this fact below),
it is possible to invert the QFT map and to have that QFT † |ψ⟩ = |x⟩. The map QFT † acting on a
basis element |z⟩ is given by:

QFT † |z⟩= 1
2 m

2

2m−1∑
x=0

exp
(
−2πixz

2m
)
|x⟩ . (5.6)

Proposition 5.1.3. The QFT is a unitary operation.

Proof. Directly from the definitions of QFT and QFT † we have that:

QFT † ·QFT |x⟩= 1
2 m

2

2m−1∑
y=0

exp
(2πixy

2m
)
QFT † |y⟩= 1

2m
2m−1∑
y=0

exp
(2πixy

2m
)2m−1∑

z=0
exp

(
−2πiyz

2m
)
|z⟩

=
2m−1∑
z=0

 1
2m

2m−1∑
y=0

exp
(2πi(x−z)y

2m
)

︸ ︷︷ ︸
=δxz

|z⟩

=
2m−1∑
z=0

δxz |z⟩= |x⟩ .

31

5.2 Shor’s Quantum Algorithm (M = kr)

In this section, we delve into the details of Shor’s quantum algorithm and in particular with the
assumption that M = kr, where we first present the related quantum circuit.

Let us first remark that the input state is just |ψ0⟩ = |0⟩⊗m⊗|0⟩⊗n. As usual, let us now study the
different layers of the algorithm.

Stage 1: State |ψ1⟩ is given (as usual) by:

|ψ1⟩=
(
H |0⟩

)⊗m⊗|0⟩⊗n = 1
2 m

2

∑
x1,...,xm∈{0,1}

|x1...xm⟩⊗ |0⟩⊗n =: 1
2 m

2

2m−1∑
x=0
|x⟩⊗ |0⟩⊗n . (5.7)

We recall that x1...xm is the binary representation of x, and
{
|x⟩ ,0≤ x≤ 2m−1

}
is the computational

basis of C2m .

Stage 2: To find |ψ2⟩, state |ψ1⟩ has to go through the quantum oracle. Recall that:

Uf (|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕f(x)⟩ . (5.8)

Then:

|ψ2⟩= Uf |ψ1⟩= 1
2 m

2

2m−1∑
x=0
|x⟩⊗ |f(x)⟩= 1

2 m
2

r−1∑
x0=0

2m

r
−1∑

j=0
|x0 + jr⟩⊗ |f(x0 + jr)⟩︸ ︷︷ ︸

= f(x0)

. (5.9)

Here, we have used the fact that |f(x0 + jr)⟩= |f(x0)⟩ by assumption, and also the following decom-
position of the sum:

32

Stage 3: We are at the stage of the analysis of the output qubits. Then:

|ψ3⟩= (QFT ⊗ In) |ψ2⟩= 1
2 m

2

r−1∑
x0=0

2m

r
−1∑

j=0
QFT |x0 + jr⟩⊗ |f(x0)⟩ . (5.10)

Here, the QFT acts in the following way:

QFT |x0 + jr⟩= 1
2 m

2

2m−1∑
y=0

exp
(2πi(x0 + jr)y

2m
)
|y⟩ . (5.11)

Thus, gathering everything together yields:

|ψ3⟩= 1
2m

r−1∑
x0=0

2m

r
−1∑

j=0

2m−1∑
y=0

exp
(2πi(x0 + jr)y

2m
)
|y⟩⊗ |f(x0)⟩

= 1
r

r−1∑
x0=0

2m−1∑
y=0

exp
(2πix0y

2m
) 1

(2m/r)

2m

r
−1∑

j=0
exp

(2πijy
2m/r

)
︸ ︷︷ ︸

(∗)

|y⟩⊗ |f(x0)⟩ .

Now, we may note that:

(∗) =

1 if y is a multiple of 2m/r

0 otherwise
. (5.12)

So in this case, we should only retain the terms y = k 2m

r for 0≤ k ≤ r−1. And hence, |ψ3⟩ becomes:

|ψ3⟩= 1
r

r−1∑
x0=0

r−1∑
k=0

exp
(2πix0k

r

)∣∣∣∣k2m
r

〉
⊗|f(x0)⟩ . (5.13)

Stage 4: This last stage is dedicated to the measurement of the first m qubits.

Proposition 5.2.1. After the measurement of the first m qubits, the state |ψ3⟩ is projected
uniformly at random onto one of the states

∣∣∣k 2m

r

〉
with 0≤ k ≤ r−1.

Proof. Measuring the first m qubits in the computational basis leads to the output state:

|ψ4⟩= Py0 |ψ3⟩
∥Py0 |ψ3⟩∥

where Py0 = |y0⟩⟨y0|⊗ In and for 0≤ y0 ≤ 2m−1. (5.14)

This happens with probability P(y0) = ⟨ψ3|Py0 |ψ3⟩. Note that (5.14) looks more complex than
necessary since the output state of the first m qubits is simply |y0⟩. Now let us compute the
probability, where we use the fact that f differs accross 0≤ x≤ r−1:

33

P(y0) = ⟨ψ3|Py0 |ψ3⟩

=

1
r

r−1∑
x0,k=0

exp
(
−2πix0k

r

)〈
k2m
r

∣∣∣∣⊗⟨f(x0)|

(|y0⟩⟨y0|⊗ In
)

×

1
r

r−1∑
x′

0,k
′=0

exp
(2πix′

0k
′

r

)∣∣∣∣k′2m
r

〉
⊗
∣∣f(x′

0)
〉

= 1
r2

r−1∑
x0,k,x′

0,k
′=0

exp
(2πi(x′

0k
′−x0k)
r

)〈
k2m
r

∣∣∣∣y0

〉〈
y0

∣∣∣∣k′2m
r

〉〈
f(x0)

∣∣f(x′
0)
〉

= 1
r2

r−1∑
x0,k,x′

0,k
′=0

exp
(2πi(x′

0k
′−x0k)
r

)
δ k2m

r
,y0
δ k′2m

r
,y0
δx0,x′

0
.

Therefore, among the above four sums over x0,k,x
′
0,k

′, only the one over x0 remains. Hence:

P(y0) =


1
r2
∑r−1
x0=0 1 = 1

r if there exists 0≤ k ≤ r−1 with y0 = k2m

r

0 otherwise
. (5.15)

Proposition 5.2.2. From this measurement, it is possible to extract the value of r with proba-
bility P≥ 1

4ln
(

ln(2m)
) .

Proof. With 0≤ k ≤ r−1, the output of the circuit is a number y0 = k2m

r . Hence y0
2m = k

r , where
y0
M is known however k and r are not known a priori.
• If gcd(k,r) = 1, then simplifying the fraction y0

2m leads to k
r and looking at the denominator we

find r.
• If gcd(k,r) ̸= 1, then this procedure fails.
Note that in practice, we do not know a priori whether gcd(k,r) = 1 or not (since we do not know
k and r), but we can still simplify the fraction y0

2m and test whether the resulting denominator is
indeed a period of f(x) = ax(mod N) or not (if gcd(k,r) ̸= 1 it won’t be). Now, as 0≤ k ≤ r−1
is uniform, the success probability of this procedure is:

P
(
gcd(k,r) = 1

)
= ϕ(r)

r
, (5.16)

where ϕ(r) = |{0≤ k ≤ r−1 : gcd(k,r) = 1}| is Euler’s function (e.g. ϕ(10) = |{1,3,7,9}|= 4). It
can finally be shown that ϕ(r)≥ r

4lnln(r) and hence:

P
(
success

)
≥ 1

4ln ln(r) ≥
1

4ln ln(2m) . (5.17)

With these two propositions, we can declare success as O
(
ln(ln(2m))

)
measurements will lead to the

result with probability 1 (compare with Simon’s algorithm).

34

5.3 Shor’s Quantum Algorithm (M ̸= kr)

Until now, we have considered the weird assumption M = kr. Let us get rid of this condition and
see where this goes. So remember that we are looking for the smallest value of r ≥ 1 such that
f(r) = ar(mod N) = 1 with 2≤ a≤N−1 such that gcd(a,N) = 1 and M = 2m with m≥ 1 is such that
M ≥N2. Here, f is viewed as f : {0, ...,M−1}−→{0, ...,N−1}. Recall Shor’s circuit in the beginning
of the last section, where n= ⌈log2(N)⌉. Considering M ̸= kr, some things remain the same:

|ψ0⟩= |0...0⟩⊗ |0...0⟩ . (5.18)

|ψ1⟩= 1√
M

M−1∑
x=0
|x⟩⊗ |0...0⟩ . (5.19)

|ψ2⟩= 1√
M

M−1∑
x=0
|x⟩⊗ |f(x)⟩ . (5.20)

Define now, for 0≤ x0 ≤ r−1:

A(x0) = inf
{
j ≥ 1 : x0 + jr >M −1

}
. (5.21)

Remark that when M = kr we have that A(x0) = M
r for all x0. Now we can split the sum as before:

|ψ2⟩= 1√
M

r−1∑
x0=0

A(x0)−1∑
j=0

|x0 + jr⟩⊗ |f(x0 + jr)⟩= 1√
M

r−1∑
x0=0

A(x0)−1∑
j=0

|x0 + jr⟩⊗ |f(x0)⟩ . (5.22)

Example 5.3.1. Let r = 6 and M = 16. Considering the situation below we have that A(x0 =
1) = 3 while A(x0 = 5) = 2.

Let us proceed now and compute |ψ3⟩:

|ψ3⟩= 1
r

r−1∑
x0=0

M−1∑
y=0

exp
(2πix0y

M

) r

M

A(x0)−1∑
j=0

exp
(2πijy
M/r

)
︸ ︷︷ ︸

(∗∗)

|y⟩⊗ |f(x0)⟩ . (5.23)

However note that (∗∗) is not 0 or 1 anymore! After the measurement of the first m qubits, the state
of the first m qubits is |y0⟩ (with 0≤ y0 ≤M −1) with probability:

P(y0) = ⟨ψ3|
(
|y0⟩⟨y0|⊗ In

)
|ψ3⟩ . (5.24)

Let us now compute this probability:

35

P(y0) =

1
r

r−1∑
x0=0

M−1∑
y=0

exp
(
−2πix0y

M

) r

M

A(x0)−1∑
j=0

exp
(
−2πijy
M/r

)⟨y|⊗ ⟨f(x0)|

(|y0⟩⟨y0|⊗ In
)

×

1
r

r−1∑
x′

0=0

M−1∑
y′=0

exp
(2πix′

0y
′

M

) r

M

A(x′
0)−1∑

j′=0
exp

(2πij′y′

M/r

)∣∣y′〉⊗ ∣∣f(x′
0)
〉

= 1
r2

r−1∑
x0,x′

0=0

M−1∑
y,y′=0

exp
(2πi(x′

0y
′−x0y)
M

) r

M

A(x0)−1∑
j=0

exp
(
−2πijy
M/r

) r

M

A(x′
0)−1∑

j′=0
exp

(2πij′y′

M/r

)
× δy0,yδy0,y′δx0,x′

0

= 1
r2

r−1∑
x0=0

 r

M

A(x0)−1∑
j=0

exp
(
−2πijy0

M/r

) r

M

A(x0)−1∑
j′=0

exp
(2πij′y0

M/r

)
= 1
r2

r−1∑
x0=0

∣∣∣∣∣∣ rM
A(x0)−1∑
j=0

exp
(2πijy0
M/r

)∣∣∣∣∣∣
2

︸ ︷︷ ︸
(∗∗∗)

.

In the case M = kr, (∗∗∗) is equal to 1 for y0 multiple of M
r and 0 otherwise:

However in the general case, the situation is as follows:

So the output y0 of the circuit is not necessarily a multiple of Mr anymore. Nevertheless, one can show
the following: Let I =⋃r−1

k=0 Ik with Ik =
[
kMr −

1
2 ,k

M
r + 1

2

]
(note |Ik|= 1 for all k). Then P(y0 ∈ I)≥ 2

5 .

Now, let us observe the possible deductions concerning the case where y0 ∈ I. First note that
∣∣∣ y0
M −

k
r

∣∣∣≤
1

2M for some k ≥ 1. However remember that we have chosen M ≥N2 > r2 and thus
∣∣∣ y0
M −

k
r

∣∣∣< 1
2r2 . In

order to understand what to do with this, we need the notion of convergents.

36

5.4 Convergents and an Algorithm to find r

In this section, we first start by defining the notion of convergents and continued fractions, which will
be best understood with an example. Suppose we want to approximate the real number x= 73

31 , whose
true value is approximately x≈ 2.355. We may decompose x as follows:
• The first approximation gives:

73
31 = 2+ 11

31
approximate value−−−−−−−−−−−→ 2. (5.25)

• The second approximation gives:

73
31 = 2+ 1(

31
11

) = 2+ 1(
2+ 9

11

) approximate value−−−−−−−−−−−→ 2+ 1
2 = 2.5. (5.26)

• The third approximation gives:

73
31 = 2+ 1

2+ 1
(11

9)
= 2+ 1

2+ 1
(1+ 2

9)

approximate value−−−−−−−−−−−→ 2+ 1
2+ 1

1
= 2+ 1

3 = 2.3. (5.27)

• The fourth and last approximation gives:

73
31 = 2+ 1

2+ 1
1+ 1

(9
2)

= 2+ 1
2+ 1

1+ 1
(4+ 1

2)

approximate value−−−−−−−−−−−→ 2+ 1
2+ 1

1+ 1
4

= 2+ 5
14 ≈ 2.357. (5.28)

We have stopped the approximation since this last step yields a relatively simple calculation. Now,
computing the convergents (which are the approximations at each step) of a real number x is therefore
a way to obtain successive approximations of x. Moreover, the convergence is fast since one digit is
essentially gained at each step. Finally note that if the initial x is irrational, then this procedure never
stops.

Lemma 5.4.1 (Legendre’s Lemma). Let x ∈ R. If
∣∣∣x− k

r

∣∣∣< 1
2r2 , then k

r is a convergent of x.

We can now present a small algorithm to find the value of r:
• If y0 ∈ I then

∣∣∣ y0
M −

k
r

∣∣∣< 1
2r2 for some k.

• By Legendre’s Lemma, k
r is a convergent of y0

M .
• Compute all the convergents of x= y0

M along with their denominators (say di): if one di is such that
adi(mod N) = 1 then r = di.

Finally remark that the above algorithm will almost surely fail to find the value of r if it turns out
that y0 /∈ I. In this instance simply relaunch the whole problem, since P(y0 ∈ I)≥ 2

5 then eventually
success will occur.

5.5 Circuit for Uf and the Shor’s Factoring Algorithm

We now end this chapter by finding an explicit circuit for the oracle Uf and finally presenting the
Shor’s factoring algorithm.

37

Recall that x is represented on m bits, with m = log2(M) and M ≥ N2. Also recall that x =∑m
k=1xk2m−k so that:

f(x) = ax(mod N) =
(

m∏
k=1

axk2m−k

)
(mod N) =

m∏
k=1

(
axk2m−k(mod N)

)
︸ ︷︷ ︸

(∗)

(mod N). (5.29)

This last step comes from the fact that (∗) may be represented on n bits. This suggests the following
circuit for Uf :

Let us make a comment about the gates {Ua,Ua2 ,Ua4 , ...}, where Ua corresponds to a multiplication
by a(mod N). The input (say |y⟩) is represented on n qubits. If N ̸= 2n, which is generally the case,
then since a permutation gives a unitary operation we find:

Ua |y⟩=

|ay (mod N)⟩ for 0≤ y ≤N −1

|y⟩ for N ≤ y ≤ 2n−1
. (5.30)

Now, there is no need to know in advance the order r to be able to build the circuit Uf (i.e. no cheating
to construct the gate). Furthermore, the above circuit performs efficiently the modular exponential
with O

(
n3)=O

(
log(N)3) gates (equivalent to the runtime of the algorithm).

Proposition 5.5.1 (Factoring Problem). Given a (large) integer N , find a number 2≤ a≤N−
1 such that a|N . By repeatedly solving this problem, one finds the prime factor decomposition
of N .

38

A hardest instance of this problem is when N = pq with p and q large prime numbers (since we have
very few a’s). We may now present the Shor’s factoring algorithm.

Proposition 5.5.2 (Shor’s Factoring Algorithm). This is given in five steps:
(1) Choose 2≤ a≤N −1 uniformly at random and compute d= gcd(a,N).
(2) If d > 1 then a= d solves the factoring problem. Assume therefore d= 1 in the following.
(3) Compute the smallest value of r ≥ 1 such that ar(mod N) = 1.
(4) If r is odd, declare failure and restart the algorithm at (1).
(5) If r is even, then observe that:

ar−1 =
(
ar/2−1

)︸ ︷︷ ︸
:=d−

(
ar/2 +1

)︸ ︷︷ ︸
:=d+

. (5.31)

Also by (3) we have ar−1 = kN for some k ∈ Z, thus N |ar−1 =⇒N |d−d+.
Then, three different options can happen:
• Either N |d−, but this is actually impossible as r is by assumption the smallest value such
that N |ar−1.
• Or N |d+ and in this case declare failure and restart the algorithm at (1).
• Or, by computing gcd(N,d−) and gcd(N,d+), we have that N shares non-trivial prime factors
with both d− and d+. Declare success in this case.

Remark that (1) requires O
(
log(N)3) runtime with Euclid’s algorithm. In (2), the fact that d > 1

happens with low probability. Step (3) is done by using the algorithm described at the end of the
previous section, which is at the heart of Shor’s algorithm

(
O
(
log(N)3) runtime

)
.

Note also that Robin & Miller showed in 1974 that the success probability of this algorithm is greater
than or equal to 3

4 . Hence by repeating this algorithm T times, one can obtain an arbitrarily small
error probability.

Example 5.5.3. Let N = 91 and a= 3. Then by the above algorithm we have that r = 6. Now
since r is even and by observing that a6− 1 = (a3− 1)(a3 + 1) = 26× 28, we obtain the prime
factorization with gcd(91,26) = 13 and gcd(91,28) = 7. We declare success since 91 = 13×7.

Classically, for a and N with order m digits, finding the smallest value of r≥ 1 such that ar(mod N) = 1

requires a runtime of order exp
((

64m
19

) 1
3 log(m)

2
3

)
with the best known algorithm (i.e. runtime

superpolynomial in m). In comparison, the quantum order finding algorithm described in the previous
section finds the minimum value of r ≥ 1 such that ar(mod N) = 1 with a runtime of order O

(
m3) =

O
(
log(N)3), opening the door to a polynomial time resolution of the factoring problem (in theory!).

39

Chapter 6

Grover’s Algorithm

Let f : {0,1}n −→ {0,1} be a Boolean function and A =
{
x ∈ {0,1}n : f(x) = 1

}
. We are considering

the search problem, namely to identify one element x of A with as few calls as possible to the oracle
f . Consider first the case where A= {x∗} is a singleton. Classically, identifying x∗ may require up to
N = 2n calls to the oracle f , in the worst case scenario. As we will see, Grover’s quantum algorithm
only requires

√
N = 2 n

2 calls to the oracle f to identify x∗.
Note that Grover’s algorithm is usually presented solving the following problem: given a directory
of N names in alphabetical order and corresponding phone numbers, it allows to recover the name
corresponding to a given phone number in only

√
N steps (instead of N steps classically). However, in

order to work, Grover’s algorithm requires us to build the gate Uf , which is not doable in the directory
search problem, as we know nothing about the function f . Nevertheless, we will still look at some
interesting applications of this algorithm later on.
Note also that we will consider, in general, functions f with |A|=M ∈ {1, ...,N}. Perhaps surprisingly,
considering this generalization (without focusing solely on the case M = 1) will help us visualize better
how the algorithm works!

6.1 Grover’s Quantum Circuit: |ψ1⟩ and |ψ2⟩

We consider the following circuit, where R is a reflection gate.

Let us first remark that the input state is just |ψ0⟩ = |0⟩⊗n⊗ |1⟩. As usual, let us now study the
different layers of the circuit.

40

Stage 1: State |ψ1⟩ is given (as usual) by:

|ψ1⟩=
(
H |0⟩

)⊗n⊗H |1⟩= 1√
N

∑
x∈{0,1}n

|x⟩⊗ |−⟩ , (6.1)

where |−⟩ := 1√
2(|0⟩− |1⟩).

Stage 2: To find |ψ2⟩, state |ψ1⟩ has to go through the quantum oracle. Then:

|ψ2⟩= Uf |ψ1⟩= 1√
N

∑
x∈{0,1}

(−1)f(x) |x⟩⊗ |−⟩ . (6.2)

So far, nothing is new. Now, remember that in our case, M = |A|= {x : f(x) = 1} and thus N −M =
|Ac|= {x : f(X) = 0}. Therefore:

|ψ2⟩= 1√
N

∑
x∈{0,1}

(−1)f(x) |x⟩⊗ |−⟩= 1√
N

(∑
x∈Ac

|x⟩−
∑
x∈A
|x⟩
)
⊗|−⟩

=

√N −M
N

(
1√

N −M
∑
x∈Ac

|x⟩
)
−

√
M

N

(
1√
M

∑
x∈A
|x⟩
)⊗|−⟩ .

Let us now write |P ⟩ = 1√
N−M

∑
x∈Ac |x⟩ and |S⟩ = 1√

M

∑
x∈A |x⟩. Both |P ⟩ and |S⟩ are quantum

states (normalized to 1) and |ψ2⟩ may be written as:

|ψ2⟩=

√N −M
N

|P ⟩−

√
M

N
|S⟩

⊗|−⟩ . (6.3)

From now on, we forget about the extra |−⟩ state. Note also that
(√

N−M
N

)2
+
(√

M
N

)2
= 1,

hence there exists θ0 ∈ [0, π2] such that cos(θ0) =
√

N−M
N and sin(θ0) =

√
M
N . Thus, we may write |ψ2⟩

as |ψ2⟩= cos(θ0) |P ⟩− sin(θ0) |S⟩.

6.2 Geometric Interpretation and the Reflection Gate R

Since |P ⟩ and |S⟩ share no common basis element, they are orthogonal. We then obtain the following
picture:

41

The action of the gate Uf on state |ψ1⟩ can therefore be interpreted as a reflection with respect
to the axis |P ⟩. However note that we do not know the axes |P ⟩ and |S⟩ which is exactly what we
are after. More precisely, the aim now is to push as much as possible the state of the system towards
|S⟩, which contains only elements x ∈A.
A first step in this direction is done by applying the gate R which corresponds to another reflection
with respect to the state |ψ1⟩.

Building such a gate R does not require using the function f again as we simply have that |ψ1⟩ =
1√
N

∑
x∈{0,1}n . The following figure shows the geometric procedure to build R:

Thus we see that R |ϕ⟩= 2⟨ψ1|ϕ⟩ |ψ1⟩− |ϕ⟩. Explicitly, R |ϕ⟩ may be expanded as follows,

R |ϕ⟩= 2⟨ψ1|ϕ⟩ |ψ1⟩− |ϕ⟩= 2 |ψ1⟩⟨ψ1|ϕ⟩− |ϕ⟩=
(
2 |ψ1⟩⟨ψ1|− In

)
|ϕ⟩

=
(
2H⊗n |ψ0⟩⟨ψ0|H⊗n− In

)
|ϕ⟩

=H⊗n(2 |ψ0⟩⟨ψ0|− In
)
H⊗n |ϕ⟩ ,

with |ψ0⟩ = |0⟩⊗n and where we forget again the state |−⟩. Now, to proceed there on, with the
successive application of Uf and R the states evolve from |ψ1⟩ = cos(θ0) |P ⟩+ sin(θ0) |S⟩ (with angle
+θ0) to |ψ2⟩= cos(θ0) |P ⟩−sin(θ0) |S⟩ (with angle −θ0) and finally to |ψ3⟩= cos(3θ0) |P ⟩+sin(3θ0) |S⟩
(with angle 3θ0). Therefore, the successive application of Uf and R corresponds to a rotation of
angle +2θ0 (from |ψ1⟩ to |ψ3⟩) which brings the state closer to the state |S⟩ (corresponding to our
aim). By iterating this operation an appropriate number of times, we can get arbitrarily close to |S⟩!
For instance, after k iterations of the G=RUf gate, the state becomes:∣∣∣ψ(k)

〉
= cos

(
(2k+1)θ0

)
|P ⟩+sin

(
(2k+1)θ0

)
|S⟩ . (6.4)

42

6.3 Choosing the Number k of Iterations

In this section we investigate how to choose k in equation (6.4) so as to end up as close as possible to
the state |S⟩. We will investigate the two possibilities where M is known or unknown.

6.3.1 M is Known

Let us first assume that M is known. We again divide this case into three subcases.

• M = 1 (i.e. A= {x∗}) and N relatively large.
In this first case, sin(θ0) = 1√

N
and thus θ0 ≈ 1√

N
. We target sin

(
(2k+1)θ0

)
= 1 to require (2k+1)θ0 =

π
2 . Therefore, we should choose k =

⌊
π
4
√
N − 1

2

⌋
. Now, let x be the output state where we consider

the previous choice of k. We obtain:

P(x= x∗) =
∣∣∣〈S∣∣∣ψ(k)

〉∣∣∣2 = sin
(
(2k+1)θ0

)2 = 1−O
(1
N

)
. (6.5)

Thus, Grover’s algorithm finds x= x∗ with high probability in k=O
(√
N
)

calls to the oracle Uf . This
is much less than the classical case of O(N) calls.

• Special case of M = N
4 .

In this case, sin(θ0) =
√

M
N = 1

2 so that θ0 = π
6 . Therefore, sin

(
(2k+1)θ0

)
= π

2 for k = 1! Thus a single
iteration suffices to reach exactly the state |S⟩, i.e. P(x ∈A) = 1.

• General M .
First, if M ≥ 3

4N then P(success) ≥ 3
4 with a classical algorithm and a single call to the oracle f .

Assume therefore that M < 3
4N , where this means that sin(θ0)<

√
3

2 and hence θ0 <
π
3 . Then choose

k =
⌊
π

4θ0

⌋
.

Proposition 6.3.1. In this case, P(success)≥ 1
4 .

Note that we can make this probability arbitrarily close to 1 by repeating the experiment multiple
times.

43

Proof. By design, k= π
4θ0
− 1

2 +δ with |δ|< 1
2 . Hence, (2k+1)θ0 = π

2 +2δθ0 with 2|δ|θ0 < 2|δ|π3 <
π
3 .

In other words,

P(success) = sin
(
(2k+1)θ0

)2
> sin

(
π

2 −
π

3

)2
= sin

(
π

6

)2
= 1

4 . (6.6)

6.3.2 M is Unknown

Suppose now that M is unknown, then it seems that choosing k in this case is impossible. Let us
apply the following algorithm:
• Choose x ∈ {0,1}n uniformly at random, where if it turns out that x ∈A then we are done.
• Choose k ∈ {0, ...,

√
N−1} uniformly at random and apply k iterations of G=RUf . Finally, output

the state measured.

Proposition 6.3.2. In this case again, P(success)≥ 1
4 .

Proof. If M ≥ 3
4N then the first step is successful with probability P≥ 3

4 ≥
1
4 . Assume therefore

that M < 3
4N . Then in this case we find:

P(success) =

√
N−1∑
k=0

P(success|K = k)P(K = k) = 1√
N

√
N−1∑
k=0

P(success|K = k). (6.7)

Remark now that P(success|K = k) = sin
(
(2k+1)θ0

)2. Thus, it can be shown (by induction) that
the following summation result holds (or by using trigonometric identities):

P(success) = 1√
N

√
N−1∑
k=0

sin
(
(2k+1)θ0

)2 = 1
2 −

sin
(
4θ0
√
N
)

4
√
N sin(2θ0)

. (6.8)

But, |sin
(
4θ0
√
N
)
| < 1 and sin(2θ0) = 2sin(θ0)cos(θ0) = 2

√
M
N

√
N−M
N > 2

√
M
N ·

1
4 >

√
M
N ≥

1√
N

.
Therefore,

P(success)≥ 1
2 −

1
4 = 1

4 . (6.9)

6.3.3 Conclusion and Applications

Even if M is not known, using Grover’s circuit a random number of times (<
√
N) outputs a state

x ∈A with probability P≥ 1
4 . By repeating the experiment, this success probability can be amplified

arbitrarily close to 1.
We can now mention two applications of this algorithm, where we have seen that we should be able
to build the circuit Uf .
(1) SAT formulas: Let us consider a Boolean function f with n= 4 of the form:

f(x1,x2,x3,x4) = (x1∨x2)∧ (x1∨x3∨x4), (6.10)

44

where as usual ∨ denotes an OR and ∧ denotes an AND. Such Boolean functions are called SAT
formulas (SAT as in "satisfiability"). When n is large and the number m of clauses (= expressions in
parentheses) of the formula is also large, it is unclear how to find value(s) of x such that f(x) = 1.
Nevertheless, it is straightforward to implement the circuit Uf associated to f .

(2) Factoring: There is a (non-trivial) way to apply Grover’s algorithm in order to reduce the search
space for factoring large values of N into product of primes. The improvement is not exponential, but
still quadratic, which is noticeable.

45

Chapter 7

Classical Error Correction

This chapter presents the fundamental ideas in classical error correction. We will first introduce the
general problems that can arise in classical codes and some methods to solve these errors. We will then
restrict ourselves to classical binary codes of length n by arguing that error correction is equivalent
to solving a Sphere Packing Problem in n-dimensions. We will finally present some concrete ways to
characterize a more restrictive class of codes, which are linear codes, and see how to construct them
using the generator matrix point of view, the parity-check point of view and finally the construction of
Hamming codes. We end this chapter by mentioning the syndrome decoding procedure for decoding
linear codes.

7.1 Classical Error Correction

Consider a circuit with AND, OR, NOT gates where each component has probability p of failing (as-
sume independence and that this probability is the same for all components). The first idea is to use
a repetition procedure. For instance, consider the circuit below where we want to test an AND gate
by repeating multiple times its outputs, after which we take the majority of outputs (i.e. majority of
1s or 0s) to then produce the most likely output.

In this circuit we test with three AND gates to produce a larger gate, called AND’, and take the
majority of outputs with the MAJORITY gate. Now, this new gate fails when two or three outputs
from the AND gates yield the wrong true value. Thus, the probability of failure of this gate is p′ := cp2

for some constant c. We want p′ < p, thus p must satisfy p < 1
c . More precisely,

P(Failure of AND’) = P(All three AND gates fail or two of them fail) = p3 +3p2(1−p) := p′
AND.

46

Theorem 7.1.1 (Threshold Theorem for an AND gate). If it is possible to build an AND gate
with p < 1

c , then it is possible to build an AND’ with p′ < p. We may also repeat this procedure
an arbitrary number of times, to create the gates AND”,...,AND(k) with respective probabilities
p′′, ...,p(k) k−→∞−−−−→ 0.

We understand that the idea of this procedure is to repeat the process of gate testing in order to obtain
smaller probabilities of failure. Note that, in the context of the above theorem, p′′ = c(p′)2 = c(cp2)2 =
1
c (cp)4 and in general p(k) = 1

c (cp)2k . For our example, p′
AND := p3 +3p2(1−p) = 3p2−2p3 < p if p < 1

2
(Threshold Theorem). Of course, one caveat in this story, we still need to find a way to construct/build
the MAJORITY gate.
Now, instead of circuits, let us think about transmission of information. Suppose that an input
x ∈ {0,1} goes through a noisy channel C, where the output that you observe is a y ∈ {0,1} with
P(x= y) = 1−p for 0< p< 1

2 small. To study this noisy system, we can think in terms of repetition
codes to introduce redundancy into the message. As an example, consider a repetition code of length
3 where we transform bit 0 7→ 000 and 1 7→ 111. These new inputs now go through the same channel
C and we observe an output y1y2y3 (independent for each bit). The question is, how to retrieve x
from y1y2y3? Here, we can apply the majority rule.

Example 7.1.2. As an example of the majority rule, we can consider two cases.
(a) y1y2y3 = 110 thus the output is 1.
(b) y1y2y3 = 010 thus the output is 0.

For the probability that we make a mistake, it will take into account the case of having three bit flips
and the case of having two bit flips. Thus it is given by,

P(output = 1|x= 0 is sent) = P(output = 0|x= 1 is sent) = p3 +3p2(1−p)< p, if p < 1
2 . (7.1)

We may now introduce some parameters for more general models. Set n= length of codewords
(in the example above n= 3), r = rate (in the example above r = 1

3 where 3 bits were sent for 1 bit
of information) and d= distance corresponding to the number of different bits in the codewords (in
the example above d= 3). We want both a large r to obtain lots of information/sec and a large d for
a good error correction. For this last parameter the image to have in mind is,

where the distance corresponds to the minimum number of edges to go from one codeword to an other
(in the example, from 000 to 111 we need d= 3 edges).

47

7.2 Classical Binary Codes of Length n

Binary codes of length n are codes C corresponding to a subset of Fn2 = {0,1}n. In order to transmit
k information bits we require |C|= 2k where k < n. In this framework, codewords should be separated
by distance d ≥ 2pn where pn is the average number of errors on one codeword. For the decoding
procedure, we look for the nearest neighbor of the received sequence of bits. To gain some intuition
on why we are looking for the nearest neighbor, let us forget binary for a second and concentrate on
a space L of letters. The following figure shows that the procedure of error correction, seen here in
the context of a typo in a sequence of letters, assigns the error "Helo World!" to the actual codeword
"Hello World!".

Going back now to binary, a code can be seen as a collection of codewords C = {c1, ..., c2k}. Of course,
to view the space Fn2 one would need to find a way to represent an n-dimensional cube, however we can
simplify the visualization by viewing this space in 2-dimensions. In the following figure, {ci}i are the
codewords with their error balls around them and α is the received sequence of bits. Since it landed
in the error ball of ci, error correction has associated α with the codeword ci.

48

In this configuration, we set the distance d to be the smallest distance between any two codewords ci
and cj ,

d= min
{
distance(ci, cj) : ci, cj ∈ C, ci ̸= cj

}
. (7.2)

Now, C can correct up to
⌊
d−1

2

⌋
errors. The name of the game is to place the 2k codewords in

Fn2 so that the minimum distance d is the largest possible. The largest d becomes the more we can
maximize the error ball around the codewords {ci}i with no overlap between two error balls, so that
we cover a larger portion of the space. From this point on, the game of arranging those error balls
in Fn2 is a Sphere Packing Problem! Indeed, in the following figure, the packing on the right is more
dense than the one one the left. Thus, it will cover a larger portion of errors in the space Fn2 .

Remark 7.2.1. Remark that this Sphere Packing formalism is a rather crude simplification of
real life situations (it works well for small dimensions). In principle, especially in higher dimen-
sions, one could think of more general partitionings of the space without explicitly considering
n-dimensional spheres.

We can then see that there are three important parameters for the code, which are (n,k,d)
[
we have

also seen the rate of transmission r = k
n ≤ 1

]
. It is crucial to note that we cannot choose (n,k,d) as

we like as they are in a tradeoff situation.

Proposition 7.2.2 (Singleton bound). The tradeoff of (n,k,d) is given by k+d≤ n+1.

Since there are a lot of codewords in C we will need some structure for the rest of the theory. From
now on, we will focus on linear codes which are codes that satisfy,

ci, cj ∈ C =⇒ ci⊕ cj ∈ C, (7.3)

which corresponds to a subspace of C. Note that the XOR ⊕ of two codes will be the bit-wise XOR
of the codes (e.g. 001⊕101 = 100).

7.3 Generator Matrix, Parity Check and Hamming Codes

As mentioned at the end of the previous section, we now focus on linear codes which are codes
satisfying,

ci, cj ∈ C =⇒ ci⊕ cj ∈ C. (7.4)

In this section we will briefly present some characterization of linear codes (some ways of constructing
them) with the generator matrix and a parity check before presenting the general ideas of Hamming
codes.

• From the point of view of the generator, we define G to be a k×n generator matrix and consider

49

a code C to be the set C =
{
c ∈ Fn2 : c= u ·G,u ∈ Fk2

}
. Thus, a code C corresponds to the row space of

G (i.e. the rows of G and linear combinations of them correspond to the codewords).

Example 7.3.1. For the repetition (linear) code C = {000,111} we have that n= 3 and k = 1.
Consider then the matrix G=

(
1 1 1

)
and take u=

(
0
)
∈ F2 or u=

(
1
)
∈ F2.

• From the point of view of a parity check, we define H to be the (n−k)×n parity check matrix
and consider a code C to be the set C =

{
c ∈ Fn2 :H · cT = 0

}
.

Example 7.3.2. For the repetition (linear) code C = {000,111} we have that n= 3, k = 1 and
n−k = 2. Consider then the matrix

H =
(

1 1 0
0 1 1

)
, (7.5)

and note that for both c=
(
0 0 0

)
and c=

(
1 1 1

)
we have that H · cT = 0.

• We finally present the notion of Hamming codes, where we first define the Hamming distance in
Fn2 to be,

dH(c,c′) =
∣∣{1≤ i≤ n : ci ̸= c′

i}
∣∣, ∀c,c′ ∈ Fn2 . (7.6)

Thus, in other words, the Hamming distance between x and y is just the number of places where x
and y differ (e.g. dH((1,1,0,0),(0,1,0,1)) = 2). Also, we define the distance of a code d̃ to be the
minimum distance d between any two codewords,

d̃= mind(C) = min
cj ,ck∈C
j ̸=k

dH(cj , ck). (7.7)

For linear codes, it turns out that the minimum distance corresponds to the minimum weight (i.e.
number of 1s) of a non-zero codeword, as dH(ci, cj) = d(0, ci⊕ cj) for i, j where ci⊕ cj ∈ C and ci ̸= cj

if and only if ci⊕ cj ̸= 0. Mathematically, this is formally given by,

d̃= min
ci,cj∈C
i ̸=j

dH(ci, cj) = min
ci∈C
ci ̸=0

|ci|, (7.8)

where |x| is the Hamming weight of x ∈ Fn2 and corresponds to |x|= {#1s in vector x}= d(0,x).
The idea of a Hamming code is to set a Hamming matrix where column j corresponds to the binary
expansion of j.

Example 7.3.3. Let k = 4, n−k = 3 and thus n= 2n−k−1 = 7. The Hamming matrix in this
case is given by,

H =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 . (7.9)

50

Proposition 7.3.4. For Hamming codes, the minimum distance of a code is d= 3.

Proof. Recall that for linear codes, the minimum distance corresponds to the minimum weight
(i.e. number of 1s) of a non-zero codeword, as dH(ci, cj) = d(0, ci⊕ cj) for i, j where ci⊕ cj ∈ C
and ci ̸= cj if and only if ci⊕ cj ̸= 0.
Now, HcT = 0 implies that at least weight(c)≥ 1 as H does not have a column of 0s. But is is also
the case that weight(c)≥ 2 as H does not have identical columns. Finally, if weight(c) = 3 then
it is indeed possible that HcT = 0

[
e.g. take c=

(
1 1 1 0 0 0 0

)]
. Thus, mind(C) = 3.

Now, to perform error correction with this code we can use syndrome decoding. The idea is to
assume that the received message is in the form y = c+e where c ∈ C is a codeword and e is an error
vector with a single 1 in it (to denote the bit flip). Note here that c+ e may be understood as c⊕ e
since we are working in Fn2 . Then, recall that HcT = 0 and thus,

HyT =H
(
cT +eT

)
=HcT︸ ︷︷ ︸

=0
+HeT =HeT , (7.10)

where HeT is the binary decomposition of the position of the errors. In other words, knowing the
error e will tell us the binary decomposition of the position of the error. HeT is called the syndrome.

Example 7.3.5. If e=
(
0 0 1 0 0 0 0

)
then HeT =

(
0 1 1

)T
is corresponding to the

binary decomposition of the number 3. Thus in this case, we know that the error occurred in
position 3.

In conclusion, we have seen that for a k×n generator matrix G and an (n−k)×n parity-check matrix
H such that GHT = 0 we have that,

C =
{
x ∈ Fn2 : x= u ·G,u ∈ Fk2

}
=
{
x ∈ Fn2 :HxT = 0

}
. (7.11)

We have also seen that we could use Hamming codes for encoding and make use of syndrome decoding
for the decoding procedure.

51

Chapter 8

Quantum Error Correction

This chapter explains how to do quantum information processing reliably in the presence of noise.
We begin by developing the basic theory of quantum error-correcting codes with the bit-flip and the
phase-flip error models. We will then introduce the Shor code to deal with both bit-flips and phase-
flips. Finally, we will briefly study the Steane code which is more efficient than Shor’s code.

One could think that an equivalent argument of performing repetition on classical code is to con-
sider the entangled system |ϕ⟩⊗|ϕ⟩⊗|ϕ⟩ where |ϕ⟩= α |0⟩+β |1⟩. However this cannot happen by the
No-cloning Theorem (cf. Remark 2.4.4)! Instead, our repetition code will consist of taking |0⟩ 7→ |000⟩
and |1⟩ 7→ |111⟩. This isn’t cloning since only the computational basis may be copied. Thus, for a
general state |ϕ⟩, we will consider its repetition equivalent to be our "codewords" given by,

|ϕ⟩= α |0⟩+β |1⟩ 7→ |ψ⟩= α |000⟩+β |111⟩ . (8.1)

In the first part of this chapter we consider two error models, one involving bit-flips (via an X gate)
and the other involving phase flips (via a Z gate). Recall from Definition (2.5.3) that a Z gate is
defined as,

Z =
(

1 0
0 eiπ

)
=
(

1 0
0 −1

)
. (8.2)

8.1 The Bit-Flip Error Model

This error model is very similar in its construction as its classical counterpart. We first start with
error detection.

Example 8.1.1 (Bit-flip in position 1). Consider a bit flip in position 1, then for an input
state |ψ⟩= α |000⟩+β |111⟩ the error will yield,

|ψ⟩ 7→
∣∣ψ′〉=X1 |ψ⟩= (X⊗ I⊗ I) |ψ⟩= α |100⟩+β |011⟩ . (8.3)

Now, the quantum equivalent of syndromes are given by measurements using the observables Z1Z2 :=
Z ⊗Z ⊗ I and Z2Z3 := I⊗Z ⊗Z with possible eigenvalues λ± = ±1. As an aside, remember the
parity-check matrix of the classical repetition code,

52

H =
(

1 1 0
0 1 1

)
, (8.4)

where now the first row
(
1 1 0

)
corresponds to the observable Z1Z2 and the second row

(
0 1 1

)
corresponds to the observable Z2Z3.

• Assume no error has happened such that |ψ′⟩ = α |000⟩+ β |111⟩. Then, the actions of the ob-
servables Z1Z2 and Z2Z3 on |ψ′⟩ are,

Z1Z2
∣∣ψ′〉= α |000⟩+(−1)(−1)β |111⟩= α |000⟩+β |111⟩= (+1)

∣∣ψ′〉 . (8.5)

Z2Z3
∣∣ψ′〉= α |000⟩+(−1)(−1)β |111⟩= α |000⟩+β |111⟩= (+1)

∣∣ψ′〉 . (8.6)

• Assume now that one bit was flipped (without loss of generality assume the first one) such that
|ψ′⟩= α |100⟩+β |011⟩. Then, the actions of the observables Z1Z2 and Z2Z3 on |ψ′⟩ are,

Z1Z2
∣∣ψ′〉=−α |100⟩−β |011⟩= (−1)

∣∣ψ′〉 . (8.7)

Z2Z3
∣∣ψ′〉= α |100⟩+β |011⟩= (+1)

∣∣ψ′〉 . (8.8)

In summary, with the measurements of the stabilizers Z1Z2 and Z2Z3 we obtain:

(Z1Z2,Z2Z3)≡ (+1,+1)←→ no bit flip

(Z1Z2,Z2Z3)≡ (−1,+1)←→ bit flip in position 1

(Z1Z2,Z2Z3)≡ (−1,−1)←→ bit flip in position 2

(Z1Z2,Z2Z3)≡ (+1,−1)←→ bit flip in position 3

The brackets (Z1Z2,Z2Z3) are considered as our new syndromes. Finally observe that |ψ′⟩ is an
eigenvector of Z1,Z2 and Z3, as a result we have no state perturbation!
We now move on with error correction. In this case it is relatively straightforward.

(Z1Z2,Z2Z3)≡ (+1,+1)−→ do nothing

(Z1Z2,Z2Z3)≡ (−1,+1)−→ apply X1

(Z1Z2,Z2Z3)≡ (−1,−1)−→ apply X2

(Z1Z2,Z2Z3)≡ (+1,−1)−→ apply X3

After applying X1, X2 or X3 we will get back the state |ψ⟩= α |000⟩+β |111⟩. Note that X1,X2,X3

need to be applied after the Zs to |ψ′⟩, which is not an eigenvector of X1,X2,X3.

In summary, for a bit-flip, |ψ⟩ = α |000⟩+ β |111⟩ 7→ |ψ′⟩ = X1 |ψ⟩ = α |100⟩+ β |011⟩. For error de-
tection we find Z1Z2 |ψ′⟩ = (−1) |ψ′⟩ and Z2Z3 |ψ′⟩ = (+1) |ψ′⟩. Finally, for error correction set
X1 |ψ′⟩=X1X1 |ψ⟩=X2

1 |ψ⟩= |ψ⟩.

53

8.2 The Phase-Flip Error Model

Recall that the action of Z on the computational basis states is Z |0⟩ = |0⟩ and Z |1⟩ = −|1⟩. For a
phase-flip, set a new code in the form |0⟩ 7→ |+++⟩ and |1⟩ 7→ |−−−⟩ such that |ψ⟩ = α |+++⟩+
β |−−−⟩. Now, the action of Z on |+⟩ and |−⟩ is Z |+⟩ = |−⟩ and Z |−⟩ = |+⟩ (we are in the same
scenario as before).
Now, suppose that we have a phase-flip in the first qubit. Then,

Z1 |ψ⟩= α |−++⟩+β |+−−⟩ . (8.9)

For error detection, we will use the observables X1X2 and X2X3. For error correction, if we have
(−1,+1) we apply Z1 to recover the original state.

8.3 Shor’s Code

In the two previous sections we have seen how to deal with bit-flip errors and phase-flip errors on their
own. But how do we handle the situation if we have bit-flip and phase-flip errors together? For this,
we will use Shor’s code which corresponds to a concatenation of the two previous codes. The idea can
be seen in two steps.

• The following transformations are useful to deal with phase-flips:

|0⟩ 7→ |+++⟩= |0⟩+ |1⟩√
2
⊗ |0⟩+ |1⟩√

2
⊗ |0⟩+ |1⟩√

2
(8.10)

|1⟩ 7→ |−−−⟩= |0⟩− |1⟩√
2
⊗ |0⟩− |1⟩√

2
⊗ |0⟩− |1⟩√

2
(8.11)

• The following transformations are useful to deal with bit-flips:

|0⟩ 7→ |000⟩+ |111⟩√
2

⊗ |000⟩+ |111⟩√
2

⊗ |000⟩+ |111⟩√
2

=: |0⟩Shor (8.12)

|1⟩ 7→ |000⟩− |111⟩√
2

⊗ |000⟩− |111⟩√
2

⊗ |000⟩− |111⟩√
2

=: |1⟩Shor (8.13)

Here, we note that k = 1 and n= 9 and codewords are of the form |ψ⟩= α |0⟩Shor +β |1⟩Shor.

Proposition 8.3.1. Shor’s code protects against a bit-flip and/or a phase-flip.

Proof. Consider an initial state |ψ⟩= α |0⟩Shor +β |1⟩Shor and suppose that the output state |ψ′⟩
suffered from a bit-flip and/or a phase-flip. For the bit-flip, we may consider the stabilizers
Z1Z2,Z2Z3,Z4Z5,Z5Z6,Z7Z8 and Z8Z9. These measurements will not perturb the state and
they will indeed provide some information on the bit-flip. Next we can consider the stabilizers
X1X2X3X4X5X6 and X4X5X6X7X8X9 such that they will provide information on the phase-flip.
Again, these stabilizers will not perturb the state.

Remark that these operators commute and |ψ′⟩ is an eigenvector of all of them.

54

For error correction, the game is just to apply the correct Z gate or X gate. To see how this goes, let
us consider some examples.

Example 8.3.2 (Bit-flip error on bit 3). In this case, only Z2Z3 has eigenvalue −1. Thus one
applies X3 to correct the error.

Example 8.3.3 (Phase-flip error on bit 5). In this case, both X1X2X3X4X5X6 and
X4X5X6X7X8X9 have eigenvalue −1. Thus one doesn’t know where the phase-flip occurred
among bits 4,5 or 6, however one can still correct the error by applying Z4Z5Z6.

Example 8.3.4 (Bit-flip and phase-flip error on bit 4). In this case, Z4Z5, X1X2X3X4X5X6

and X4X5X6X7X8X9 have eigenvalue −1. This bit-phase flip can be corrected by applying both
X4 and Z4 [note that depending on the order of application, this might generate a global (−1)
phase since X4Z4 =−Z4X4. However, the error will be corrected anyway.]

8.4 Steane’s Code

Recall the Hamming code Hamming(7,4,3) with its parity-check matrix,

H =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 , (8.14)

along with the generator matrix,

G=


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1

 . (8.15)

We recall the sets CH = {c= u ·G,u ∈ F4
2}= {c ∈ F7

2 :HcT = 0} and C⊥
H = {c= u ·H,u ∈ F3

2}. Steane’s
code is more efficient than Shor’s code. The insight is to take the classical Hamming code (which
corrects single-bit flips) and turn it into a quantum code via the CSS (Calderbank–Shor–Steane)
construction. The Hamming code (length 7, dimension 4) has a (3× 7) parity-check matrix H. Its
row-space (dimension 3) is a classical code of distance 4. In CSS language, one chooses two nested
classical codes C2 ⊂ C1 here with C1 = Hamming(7,4,3) and C2 = C⊥

1 . This nesting gives rise to
a Steane(7,1,3) quantum code. The transformations |0⟩S and |1⟩S are thus superpositions of the 8
classical length-7 codewords in C2. We may set the following transformations for |0⟩S and |1⟩S , where
we are looking for the row-space of H:

|0⟩ 7→ |0⟩S = 1√
8
∑
c∈C⊥

H

|c⟩

= 1√
8
(
|0000000⟩+ |1010101⟩+ |0110011⟩+ |0001111⟩+ |0111100⟩+ |1011010⟩+ |1101001⟩+ |1100110⟩

)

55

|1⟩ 7→ |1⟩S =X |0⟩S = 1√
8
∑
c∈C⊥

H

|c⊕1111111⟩

= 1√
8
(
|1111111⟩+ |0101010⟩+ |1001100⟩+ |1110000⟩+ |1000011⟩+ |0100101⟩+ |0010110⟩+ |0011001⟩

)
The corresponding stabilizers (operators that leave the code invariant) are given by g1 =X4X5X6X7,
g2 = X2X3X6X7, g3 = X1X3X5X7 and g4 = Z4Z5Z6Z7, g5 = Z2Z3Z6Z7, g6 = Z1Z3Z5Z7 (these cor-
respond to the 1’s in the matrix H). Note that these stabilizers form a group S, which is a group
generated by these stabilizers.

Proposition 8.4.1. The stabilizers commute, i.e. gigj = gjgi for all i, j.

Proof. We will show this for a specific example, where the rest may be shown in a similar way.
Recall that XiZi =−ZiXi,

g2g6 =X2X3X6X7Z1Z3Z5Z7 = Z1X2X3Z3Z5X6X7Z7 = Z1X2Z3X3Z5X6Z7X7 = g6g2. (8.16)

In the second equality we have just rearranged the gates in order of their action. For the general
case, remark that there is always an even number of common X’s and Z’s between two stabilizers.

Proposition 8.4.2. Codewords are invariant to stabilizers, i.e. gi |0⟩S = |0⟩S and gi |1⟩S = |1⟩S.

Proof. We again prove this for a specific example, where the rest may be shown in a very similar
way.

g1 |0⟩S = g1
1√
8
∑
c∈C⊥

H

|c⟩= 1√
8
∑
c∈C⊥

H

|c⊕0001111⟩= 1√
8
∑
c∈C⊥

H

|c⟩ ,

where we have used the fact that |c⊕0001111⟩ is an element of the group C⊥
H . For |1⟩S one finds,

g1 |1⟩S =X4X5X6X7
1√
8
∑
c∈C⊥

H

|c⊕1111111⟩= 1√
8
∑
c∈C⊥

H

|c⊕1111111⊕0001111⟩

= 1√
8
∑
c∈C⊥

H

|c⊕0001111⊕1111111⟩

= 1√
8
∑
c∈C⊥

H

|c⊕1111111⟩= |1⟩S ,

where we have used the fact that c⊕ 0001111 is an element of the group C⊥
H . Thus we have

invariance for g1, and the rest follows. We also have an identical reasoning for Z-stabilizers.

Remark 8.4.3. Note that the invariance property demonstrates that |ψ⟩ is a codeword of the
Steane code if and only if for all g ∈ S, g(α |0⟩S +β |1⟩S) = g |ψ⟩= |ψ⟩.

56

Proposition 8.4.4. The Steane code can correct any single error, i.e. either {Xi,Yi,Zi}7i=1.

Proof. We again prove this for a specific example, where the rest may be shown in a very similar
way. Recall that the X and Z gates commute between each other. For g1 =X4X5X6X7, consider
a bit-flip in position 7, |ψ′⟩=X7 |ψ⟩. Then,

g1
∣∣ψ′〉= g1X7 |ψ⟩=X7g1 |ψ⟩=X7 |ψ⟩=

∣∣ψ′〉 , (8.17)

where we have used the invariance of codewords to stabilizers [Proposition (8.4.2)].

Example 8.4.5 (Syndrome for a bit-flip in position 7). Let |ψ′⟩ = X7(α |0⟩S +β |1⟩S). Then:
g1 |ψ′⟩ = (+1) |ψ′⟩, g2 |ψ′⟩ = (+1) |ψ′⟩, g3 |ψ′⟩ = (+1) |ψ′⟩, g4 |ψ′⟩ = (−1) |ψ′⟩, g5 |ψ′⟩ = (−1) |ψ′⟩
and g6 |ψ′⟩= (−1) |ψ′⟩. Thus the syndrome is (1,1,1,−1,−1,−1). From the three last positions
in the syndrome (−1,−1,−1), we get the error 111 corresponding to the binary decomposition
of 7, i.e. X error in position 7.

Example 8.4.6 (Other examples of syndromes). Consider the following:

• X3 error −→ syndrome = (1,1,1,1,−1,−1︸ ︷︷ ︸) −→ 011 −→ X error in position 3.

• Z4 error −→ syndrome = (−1,1,1︸ ︷︷ ︸,1,1,1) −→ 100 −→ Z error in position 4.

• Y6 = iX6Z6 error −→ syndrome = (−1,−1,1︸ ︷︷ ︸
110

,−1,−1,1︸ ︷︷ ︸
110

) −→ error in position 6.

8.5 Building Reliable Quantum Gates using the Steane Code

First recall the seven gates we will consider in this section,

X =
(

0 1
1 0

)
, Y = iXZ =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
,

S =
(

1 0
0 i

)
, T =

(
1 0
0 ei

π
4

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

With the Steane code we have the following encoding, yielding a 7 qubit state:

α |0⟩+β |1⟩ encoding−−−−−→ α |0⟩S +β |1⟩S . (8.18)

57

• The idea in this section is the following: On the one hand, for some gate G,

G(α |0⟩+β |1⟩) encoding−−−−−→ |ψ⟩S , (8.19)

and on the other hand, for some gate G,

α |0⟩+β |1⟩ encoding−−−−−→ α |0⟩S +β |1⟩S
G−−→G(α |0⟩S +β |1⟩S). (8.20)

• The aim is to find seven gates G=
{
X,Y ,Z,H,S,T ,CNOT

}
that act on all the bits of the Steane

code. We want the two outputs in (8.19) and (8.20) to match, such that |ψ⟩S =G(α |0⟩S +β |1⟩S).
We now understand that we want an alternative to first applying a gate G on a state |ψ⟩= α |0⟩+β |1⟩
and then encoding it, by first encoding the state |ψ⟩= α |0⟩+β |1⟩ and then applying some gate G.
From the point of view of a circuit, we are looking (for example) to go from a circuit of the form,

to one where we consider a gate H as a 7-qubit gate, and CNOT as a 14-qubit gate, [error correction
gate = decoder gate]

Proposition 8.5.1. For U = {X,Y,Z}, U is given by U = U1U2...U7 = U⊗7.

Proof. We check this gate by gate.
• For gate X on the one hand, with |ψ⟩= α |0⟩+β |1⟩,

X(α |0⟩+β |1⟩) = α |1⟩+β |0⟩ Steane−−−−→ α |1⟩S +β |0⟩S . (8.21)

On the other hand,

X(α |0⟩S +β |1⟩S) = αX⊗7 |0⟩S +βX⊗7 |1⟩S = α |1⟩S +β |0⟩S . (8.22)

• For gate Z on the one hand, with |ψ⟩= α |0⟩+β |1⟩,

Z(α |0⟩+β |1⟩) = α |0⟩−β |1⟩ Steane−−−−→ α |0⟩S−β |1⟩S . (8.23)

On the other hand,

Z(α |0⟩S +β |1⟩S) = αZ⊗7 |0⟩S +βZ⊗7 |1⟩S = α |0⟩S−β |1⟩S , (8.24)

58

where we have used the facts that |0⟩S has an even number of 1’s and |1⟩S has an odd number of 1’s.

• Y = iXZ is also fine since X and Z work independently.

Proposition 8.5.2. For the gate S, S is given by S = Z1S1...Z7S7 = (ZS)⊗7.

Proof. Since S =
(

1 0
0 i

)
, we have for a state |ψ⟩= α |0⟩+β |1⟩,

S(α |0⟩+β |1⟩) = α |0⟩+ iβ |1⟩ encoding−−−−−→ α |0⟩S + iβ |1⟩S . (8.25)

On the other hand, for α |0⟩+β |1⟩ encoding−−−−−→ α |0⟩S +β |1⟩S , we need to find a gate S such that,

S(α |0⟩S +β |1⟩S) = α |0⟩S + iβ |1⟩S . (8.26)

However, remark that S = S1...S7 = S⊗7 would be fine for the term α |0⟩S (since we get either a
factor of i0 = 1 or i4 = 1) but not for iβ |1⟩S (since we would get −i instead of i). Thus, by setting
S = Z1S1...Z7S7 = (ZS)⊗7 will yield an extra minus sign.

59

Proposition 8.5.3. For the gate H, H is given by H =H1...H7 = (H)⊗7.

Proof. For gate H on the one hand, with |ψ⟩= α |0⟩+β |1⟩,

H(α |0⟩+β |1⟩) = α

(|0⟩+ |1⟩√
2

)
+β

(|0⟩− |1⟩√
2

)
Steane−−−−→ α

(|0⟩S + |1⟩S√
2

)
+β

(|0⟩S−|1⟩S√
2

)
. (8.27)

On the other hand, for an encoding α |0⟩+β |1⟩ Steane−−−−→ α |0⟩S +β |1⟩S we would like,

H(α |0⟩S +β |1⟩S) = α

(|0⟩S + |1⟩S√
2

)
+β

(|0⟩S−|1⟩S√
2

)
. (8.28)

The tricky part here is to make sure that we would get constant flips in the signs (e.g. when it
hits a qubit |1⟩). For this, we have to verify two key points. In the following, we will use the
conjugation relations HX = ZH ⇐⇒HXH = Z and HZ =XH ⇐⇒HZH =X (recall H2 = I).

(i) We need to make sure that H keeps codewords in the code (i.e. maps codewords into code-
words). For |ψ⟩S = α |0⟩S +β |1⟩S we require, for all gi ∈ S,

giH |ψ⟩S =H |ψ⟩S . (8.29)

In other words, this is equivalent to verifying that HgiH ∈ S. This is true, since for example
Hg1H = (H1...H7)X4X5X6X7(H1...H7) = (H4X4H4)...(H7X7H7) = Z4Z5Z6Z7 ∈ S. It is not dif-
ficult to check that the remaining cases also hold.

(ii) The conjugation relations also hold for H. Indeed,

H X H = (H1...H7)(X1...X7)(H1...H7) = (H1X1H1)...(H7X7H7) = Z1...Z7 = Z. (8.30)

H Z H = (H1...H7)(Z1...Z7)(H1...H7) = (H1Z1H1)...(H7Z7H7) =X1...X7 =X. (8.31)

Therefore, from points (i) and (ii) we conclude that relation (8.28) holds.

We will not explicitly study CNOT 7→ CNOT , however we note that an error in CNOT might
propagate but it will do so into two separate 7-qubit blocks (which is fine). The circuit for CNOT is
given by,

Finally, we will not study either the gate T 7→ T as it needs more attention than the other gates.

60

	Classical Circuits
	Fundamentals of Quantum Mechanics and Quantum Circuits
	Dirac's Notation
	Computational Basis of H=CN
	Tensor Product
	Axioms of Quantum Mechanics
	Axiom 1 - State of a Quantum System
	Axiom 2 - Time Evolution
	Axiom 3 - Measurement Postulate
	Axiom 4 - Composition of Quantum Systems

	Quantum Circuits
	1-Qubit Gates
	2-Qubits Gates
	Multiple Qubits Gates

	Deutsch's Model and a Quantum Algorithm
	Deutsch's Model of Quantum Circuits
	Deutsch's Problem and Classical Method of Resolution
	Deutsch-Josza's Quantum Algorithm

	Simon's Algorithm
	Classical Algorithm
	Simon's Quantum Algorithm

	Shor's Algorithm
	The Quantum Fourier Transform (QFT)
	Shor's Quantum Algorithm (M=kr)
	Shor's Quantum Algorithm (M=kr)
	Convergents and an Algorithm to find r
	Circuit for Uf and the Shor's Factoring Algorithm

	Grover's Algorithm
	Grover's Quantum Circuit: 1 and 2
	Geometric Interpretation and the Reflection Gate R
	Choosing the Number k of Iterations
	M is Known
	M is Unknown
	Conclusion and Applications

	Classical Error Correction
	Classical Error Correction
	Classical Binary Codes of Length n
	Generator Matrix, Parity Check and Hamming Codes

	Quantum Error Correction
	The Bit-Flip Error Model
	The Phase-Flip Error Model
	Shor's Code
	Steane's Code
	Building Reliable Quantum Gates using the Steane Code

