Embedded Systems

CycloneV & DE1-SoC

René Beuchat

Laboratoire d'Architecture des Processeurs

rene.beuchat@epfl.ch
FPGA WITH SOC ARCHITECTURE
2 main actors

- **Intel FPGA (Altera (www.altera.com))**
 - Cyclone V SOC, Cyclone 10
 - Arria V SOC, Arria 10
 - Stratix 10

- **Xilinx (www.xilinx.com)**:
 - Zynq® 7000 family
 - Zynq UltraScale+ MPSoC
2 main actors, Common Features

- 2x ARM-Cortex A9 hardcore
 - 2x NEON DSP/FPU
 - Many programmable interface in hardcore
 - Amba interconnect
 - Large FPGA part
 - DDR Controller

Ex: Zynq-7000
CYCLONE V-SOC ARCHITECTURE (INTELFPGA)
Cyclone V SoC Overview

Cyclone V HPS (Hard Processor System)
Clock manager
Abbreviation

- **STM** System Trace Module
- **DMA** Direct Memory Access
- **DAP** Debug Access Port
- **ETR** Embedded Trace Router
- **SD/** Supported: SDSC(SD), SDHC, SDXC, eSD, SDIO, eSDIO
- **MMC** MMC, RSMMC, MMCPlus, MMCMobile, eMMC
- **EMAC** Ethernet Media Access Controller
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>Accelerator Coherency Port</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver-Transmitter</td>
</tr>
<tr>
<td>SPI</td>
<td>Synchronous Peripheral Interface</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit</td>
</tr>
</tbody>
</table>
Boot process

• It is possible to use the Cyclone V SoC in 3 different configurations:
 ➢ FPGA-only
 ➢ HPS-only
 ➢ HPS & FPGA

• The configurations using the HPS are more difficult to set up than the FPGA-only one.
HPS/FPGA Boot (1) Independent FPGA Configuration and HPS Booting
HPS/FPGA Boot (2)

FPGA Configuration before HPS Booting
(HPS boots from FPGA)
HPS/FPGA Boot (3)

HPS Boots and Performs FPGA Configuration

Altera SoC Device

FPGA Portion
FPGA Fabric

HPS Portion
MPU
FPGA Manager
Quad SPI Flash Controller
SD/MMC Flash Controller
NAND Flash Controller
EMAC

Boot Sources
Configuration Source
FPGA only case

• Exclusively using the FPGA part of the Cyclone V is easy, as the design process is identical to any other Altera FPGA.

• We can build a complete design in *Quartus II* & *Qsys*, simulate it in *ModelSim- Altera*, then program the FPGA through the *Quartus II Programmer*.

• We can instantiate a Nios II processor in *Qsys*, we can use the *Nios II SBT IDE* to develop software for the processor.
Type of Application

- OS based (ie: Linux)
- Bare-metal (No OS)
Although the HPS has a **DUAL**-processor, CPU1 is under reset, and the boot flow only executes on CPU0.

*If we want to use both processors, then **USER SOFTWARE** executing on CPU0 is responsible for releasing CPU1 from reset.*
Preloader

• The preloader is one of the most important boot stages. It is actually what one would call the boot “source”, as all stages before it are unmodifiable. The preloader can be stored on external flash-based memory, or in the FPGA fabric.

• The preloader typically performs the following actions:
 ➢ Initialize the SDRAM interface
 ➢ Configure the HPS I/O through the scan manager
 ➢ Configure pin multiplexing through the system manager
 ➢ Configure HPS clocks through the clock manager
 ➢ Initialize the flash controller (NAND, SD/MMC, QSPI) that contains the next stage boot software
 ➢ Load the next boot software into the SDRAM and pass control to it

• The preloader does NOT release CPU1 from reset. The subsequent stages of the boot process are responsible for it if they want to use the extra processor.
Project structure

```
project name

<table>
<thead>
<tr>
<th>sw</th>
<th>hw</th>
</tr>
</thead>
<tbody>
<tr>
<td>nios</td>
<td>modelsim</td>
</tr>
<tr>
<td>application</td>
<td>quartus</td>
</tr>
<tr>
<td>application</td>
<td>hdl</td>
</tr>
<tr>
<td>hps</td>
<td>preloader</td>
</tr>
<tr>
<td>linux</td>
<td></td>
</tr>
</tbody>
</table>
```
DE1-SOC Bloc Diagramm
Green for peripherals directly connected to the FPGA
Orange for peripherals directly connected to the HPS
Blue for board control
DE0-nano-SoC

DE0-nano-SoC

Altera 28-nm Cyclone V FPGA with ARM Cortex-A9

5V DC Power Jack
FPGA Configuration Mode Switch
Arduino Header
USB-Blaster II (USB Mini-B)
EPCS Clock Generator
MicroSD Socket
2x20 GPIO (FPGA)
Slide Switch x4
HPS_RST
HPS User LED
2x5 ADC Header
USB OTG (USB Micro-AB)
USB PHY
UART to USB (USB Mini-B)
HPS Gigabit Ethernet
HPS User Button
WARM_RST
LED x8
Qsys, hps definition (1)
Qsys, hps definition (2)
With the *Peripheral Pin Multiplexing*, some I/O interface can be used by the **HPS part** or the **FPGA part**.

The selection is done here.
1. Use the DE1-SOC/DE0-nano-SoC without the ARM-A9
 - NIOS design to access the Switches and LEDs
 - Adapt the LCD/camera controller for the NIOSII

2. Use the ARM-A9 with ARM DS-5 software
 - Access through the AXI bridge the Avalon part of the FPGA
 - Control the LCD/camera from the ARM
• Try the Linux access of the FPGA…to control LCD and Camera

• In option!