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1 Orientations of Vector Spaces

We begin with orientations of vector spaces. We are all familiar with certain informal
rules for singling out preferred ordered bases of R1, R2, and R3. We usually choose a
basis for R1 that points to the right (i.e., in the positive direction). A natural family of
preferred ordered bases for R2 consists of those for which the rotation from the first vector
to the second is in the counterclockwise direction. And every student of vector calculus
encounters “right-handed” bases in R3: these are the ordered bases (E1, E2, E3) with the
property that when the fingers of your right hand curl from E1 to E2, your thumb points
in the direction of E3.

Although “to the right”, “counterclockwise”, and “right-handed” are not mathematical
terms, it is easy to translate the rules for selecting preferred bases of R1, R2, and R3 into
rigorous mathematical language: you can check that in all three cases, the preferred bases
are the ones whose transition matrices from the standard basis have positive determinants.

In an abstract vector space for which there is no canonical basis, we no longer have any
way to determine which bases are “correctly oriented”. For example, if V is the vector
space of polynomials in one real variable of degree at most 2, who is to say which of the
ordered bases (1, x, x2) and (x2, x, 1) is “right-handed”? All we can say in general is what
it means for two bases to have the “same orientation”. Thus we are led to introduce the
following definition.

Definition 1. Let V be a real vector space of dimension n ≥ 1. We say that two ordered
bases (E1, . . . , En) and (Ẽ1, . . . , Ẽn) for V are consistently oriented if the transition matrix
(Bj

i )1≤i,j≤n, defined by

Ei =
∑
j

Bj
i Ẽj,

has positive determinant.

Exercise 2. Show that being consistently oriented is an equivalence relation on the set
of all ordered bases of V , and show that there are exactly two equivalence classes.

Definition 3. Let V be a real vector space. If dimR V = n ≥ 1, we define an orientation
for V as an equivalence class of ordered bases. If (E1, . . . , En) is any ordered basis for V ,
we denote the orientation that it determines by [E1, . . . , En], and the opposite orientation
by −[E1, . . . , En]. On the other hand, for the special case of a zero-dimensional vector
space V , we define an orientation of V to be simply a choice of one of the numbers ±1.

Definition 4. A vector space together with a choice of orientation is called an oriented
vector space. If V is oriented, then any ordered basis (E1, . . . , En) that is in the given
orientation is said to be positively oriented (or simply oriented). Any ordered basis that
is not in the given orientation is said to be negatively oriented.

Example 5. Consider the Euclidean space V = Rn. The orientation [e1, . . . , en] of Rn

determined by the standard basis {e1, . . . , en} is called the standard orientation. You
should convince yourself that, in our usual way of representing the axes graphically, an
oriented basis for R1 is one that points to the right; an oriented basis for R2 is one for which
the rotation from the first basis vector to the second is counterclockwise; and an oriented
basis for R3 is a right-handed one. (These can be taken as mathematical definitions for
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the words “right”, “counterclockwise”, and “right-handed”.) The standard orientation
for R0 is defined to be +1.

There is an important connection between orientations and alternating tensors, which
is expressed in the following proposition.

Proposition 6. Let V be a real vector space of dimension n. Each nonzero element
ω ∈ Λn(V ∗) determines an orientation Oω of V as follows: if n ≥ 1, then Oω is the set
of ordered bases (E1, . . . , En) for V such that ω(E1, . . . , En) > 0, while if n = 0, then Oω

is +1 if ω > 0, and −1 if ω < 0. Moreover, two nonzero n-covectors on V determine the
same orientation if and only if each is a positive multiple of the other.

Proof. The 0-dimensional case is immediate, since a nonzero element of Λ0(V ∗) is just a
nonzero real number (as it is a function R0 → R). Thus, we may assume that n ≥ 1.
Let ω be a nonzero element of Λn(V ∗), and denote by Oω the set of ordered bases on
which ω gives positive values. We need to show that Oω is exactly one equivalence class.
Suppose (Ei) and (Ẽj) are any two ordered bases for V , and let B : V → V be the linear

map sending Ej to Ẽj for all j. This means that the matrix of B with respect to (Ei) on

the source and (Ẽj) on the target is the transition matrix between the two bases. By the
[PDF: Multilinear Algebra, Proposition 21], we obtain

ω(Ẽ1, . . . , Ẽn) = ω(BE1, . . . , BEn) = (detB)ω(E1, . . . , En).

It follows that the basis (Ẽj) is consistently oriented with (Ei) if and only if ω(Ẽ1, . . . , Ẽn)
and ω(E1, . . . , En) have the same sign, which is the same as saying that Oω is one equiv-
alence class. The last statement then follows easily (and is thus left as an exercise).

Definition 7. If V is an oriented n-dimensional real vector space and if ω is an n-covector
that determines the orientation of V as described in the above proposition, then we say
that ω is a (positively) oriented n-covector.

For example, the n-covector ε1...n = ε1∧ · · · ∧ εn is positively oriented for the standard
orientation on Rn.

Recall that if V is an n-dimensional real vector space, then the space Λn(V ∗) is 1-
dimensional. Proposition 6 shows that choosing an orientation for V is equivalent to
choosing one of the two components of Λn(V ∗) \ {0}. This formulation also works for
0-dimensional vector spaces, and explains why we have defined an orientation of a 0-
dimensional space in the way we did.
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2 Orientations of Smooth Manifolds

In this section we briefly discuss the theory of orientations of smooth manifolds. They
have numerous applications, most notably in the theory of integration on manifolds, which
will be presented in Lecture 14 of this course.

Definition 8. Let M be a smooth manifold with or without boundary. A pointwise
orientation on M is defined to be a choice of orientation of each tangent space.

By itself, this is not a very useful concept, because the orientations at nearby points
may have no relation to each other. For example, a pointwise orientation on Rn might
switch randomly from point to point between the standard orientation and its opposite.
In order for pointwise orientations to have some relationship with the smooth structure,
we need an extra condition to ensure that the orientations of nearby tangent spaces are
consistent with each other.

Definition 9. Let M be a smooth manifold with or without boundary, endowed with a
pointwise orientation. If (Ei) is a local frame for TM over an open subset U ⊆ M , then we
say that (Ei) is positively oriented (or simply oriented) if (E1|p, . . . , En|p) is a positively
oriented ordered basis for TpM at each point p ∈ U ; see Definition 4. A negatively oriented
frame for TM over U ⊆ M is defined analogously.

Definition 10. Let M be a smooth manifold with or without boundary.

(a) A pointwise orientation on M is said to be continuous if every point of M is in the
domain of an oriented local frame for TM .

(b) An orientation of M is a continuous pointwise orientation.

(c) We say that M is orientable if there exists an orientation for it; otherwise we say that
M is nonorientable.

Example 11. We give here some examples of orientable and nonorientable manifolds.

(a) Every parallelizable1 manifold is orientable. Indeed, if (E1, . . . , En) is a smooth global
frame for M , then we define a pointwise orientation on M by declaring the basis
(E1|p, . . . , En|p) for TpM to be positively oriented at each p ∈ M , and it is clear that
this pointwise orientation is continuous, because every point of M is in the domain
of the oriented smooth global frame (Ei). Therefore, for each n ∈ N, the Euclidean
space Rn is orientable.

(b) For each n ∈ N, the unit n-sphere Sn ⊆ Rn+1 is orientable. Indeed, this follows
from Proposition 20 (because Sn is a hypersurface in Rn+1, to which the vector field
N = xi∂/∂xi is nowhere tangent) or Proposition 22 (because Sn is the boundary of
the closed unit ball).

(c) The so-called Möbius band is nonorientable.

1A smooth manifoldM with or without boundary which admits a smooth global frame or, equivalently,
whose tangent bundle TM is the trivial smooth vector bundle of rank dimM (see Exercise 5, Sheet 10)
is called parallelizable. Note that the Euclidean space Rn is parallelizable, and it can also be shown that
S1, S3 and S7 are the only spheres that are parallelizable.
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Definition 12. An oriented manifold (with or without boundary) is an orderer pair
(M,O), where M is an orientable smooth manifold (with or without boundary) and O is
a choice of orientation for M . For each p ∈ M , the orientation of TpM determined by O
is denoted by Op.

If M is zero-dimensional, then this definition just means that an orientation of M
is a choice of ±1 attached to each of its points. The continuity condition is vacuous in
this case, and the notion of oriented frames is not useful. Clearly, every 0-manifold is
orientable.

Exercise 13. Let M be an oriented smooth manifold with or without boundary of di-
mension n ≥ 1. Show that every local frame with connected domain is either positively
oriented or negatively oriented. Moreover, show that the connectedness assumption is
necessary.

2.1 Two Ways of Specifying Orientations

The following two propositions, namely Proposition 14 and Proposition 18, give ways of
specifying orientations on manifolds that are more practical to use than the definition.

Proposition 14 (The orientation determined by an n-form). Let M be a smooth n-
manifold with or without boundary. Any nonvanishing n-form ω on M determines a
unique orientation of M for which ω is positively oriented at each point. Conversely, if
M is given an orientation, then there is a smooth nonvanishing n-form on M that is
positively oriented at each point.

Proof. Let ω be a nonvanishing n-form on M . By Proposition 6, ω defines a pointwise
orientation on M , so it remains to show that it is continuous. Since this is trivially true
for n = 0, we may assume that n ≥ 1. Given p ∈ M , let (Ei) be any local frame for TM
over a connected open neighborhood U of p in M , and let (εi) be the dual coframe. On
U , the expression for ω in this frame is

ω = f ε1 ∧ . . . ∧ εn

for some continuous function f on U . The fact that ω is nonvanishing means that f is
nonvanishing, and thus

ωp (E1|p, . . . , En|p) = f(p) ̸= 0 for all p ∈ U.

Since U is connected, it follows that this expression is either always positive or always
negative on U , and therefore the given frame is either positively oriented or negatively
oriented. If the latter case holds, then we can replace E1 by −E1 to obtain a new frame
that is positively oriented. Hence, the pointwise orientation determined by ω is continuous.

The proof of the converse uses partitions of unity and is thus omitted.

Due to Proposition 14, we may now give the following definition.

Definition 15. Let M be a smooth n-manifold with or without boundary. Any non-
vanishing n-form on M is called an orientation form. If M is oriented and if ω is an
orientation form determining the given orientation, then we also say that ω is positively
oriented (or simply oriented).
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If M is zero-dimensional, then a nonvanishing 0-form (i.e., a nonvanishing smooth
real-valued function) on M assigns the orientation +1 to points where it is positive and
−1 to points where it is negative.

Remark 16. It is easy to check that if ω and ω̃ are two positively oriented smooth n-
forms on M , then ω̃ = fω for some strictly positive smooth real-valued function f on M ;
see Proposition 6.

Definition 17.

(a) A smooth atlas {(Uα, φα)} for a smooth manifold M with or without boundary is said
to be consistently oriented if for each α, β, the transition map φβ ◦ φ−1

α has positive
Jacobian determinant everywhere on φα(Uα ∩ Uβ).

(b) A smooth coordinate chart
(
U, (xi)

)
on an oriented smooth manifold with or without

boundary is said to be positively oriented (or simply oriented) if the coordinate frame
(∂/∂xi) is positively oriented, and negatively oriented if the coordinate frame (∂/∂xi)
is negatively oriented.

Proposition 18 (The orientation determined by a coordinate atlas). Let M be a smooth
manifold with or without boundary of dimension n ≥ 1. Given any consistently oriented
smooth atlas for M , there exists a unique orientation for M with the property that each
chart in the given atlas is positively oriented. Conversely, if M is oriented and either
∂M = ∅ or n > 1, then the collection of all oriented smooth charts is a consistently
oriented atlas for M .

Proof. Assume first that M has a consistently oriented smooth atlas. Each chart in the
atlas determines a pointwise orientation at each point of its domain. Wherever two of
the charts overlap, the transition matrix between their respective coordinate frames is the
Jacobian matrix of the transition map (see the solution to part (c) of Exercise 1, Sheet
10), which has positive determinant by assumption, so they determine the same pointwise
orientation at each point. The pointwise orientation on M thus determined is continuous,
because each point of M is in the domain of an oriented coordinate frame.

Conversely, assume that M is oriented and either ∂M = ∅ or n > 1. Each point is
in the domain of a smooth chart with connected domain, and if the chart is negatively
oriented (see Exercise 13), then we can replace x1 with −x1 to obtain a new chart that is
positively oriented. The fact that all these charts are positively oriented guarantees that
their transition maps have positive Jacobian determinants, so they form a consistently
oriented atlas.2

Exercise 19. Let M be a connected, orientable, smooth manifold with or without bound-
ary. Show that M has exactly two orientations. Moreover, if two orientations of M agree
at one point, then they are equal.

2This does not work for boundary charts when dimM = n = 1, because of our convention that the
last coordinate is nonnegative in a boundary chart.
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2.2 Orientations of Hypersurfaces

If M is an oriented smooth manifold and if S is a smooth immersed submanifold of M
(with or without boundary), then S might not inherit an orientation from M , even if S is
embedded. Clearly, it is not sufficient to restrict an orientation form from M to S, since
the restriction of an n-form to a manifold of lower dimension must necessarily be zero.
For example, the so-called Möbius band is nonorientable, even though it can be embedded
in R3, which is orientable.

However, when S is an immersed or embedded hypersurface in M (i.e., a codimension
1-submanifold of M), it is sometimes possible to use an orientation on M to induce an
orientation on S; see Proposition 20 below for the details. Recall first that a vector
field along S is a section of the ambient tangent bundle TM |S, i.e., a continuous map
N : S → TM with the property that Np ∈ TpM for every p ∈ S, and that such a vector
field is said to be nowhere tangent to S if Np ∈ TpM \ TpS for all p ∈ S; cf. Proposition
7.8. Note that any vector field on M restricts to a vector field along S, but in general,
not every vector field along S is of this form.

Proposition 20. Let M be an oriented smooth n-manifold with or without boundary, let
S be an immersed hypersurface with or without boundary in M , and let N be a vector field
along S which is nowhere tangent to S. Then S has a unique orientation such that for
each p ∈ S, (E1, . . . , En−1) is an oriented basis for TpS if and only if (Np, E1, . . . , En−1)
is an oriented basis for TpM .

Note that not every hypersurface admits a nowhere tangent vector field. However, the
following result gives a sufficient condition that holds in many cases.

Corollary 21. If M is an oriented smooth manifold and if S ⊆ M is a regular level set
of a smooth function f : M → R, then S is orientable.

2.3 Boundary Orientations

If M is a smooth manifold with boundary, then its boundary ∂M is an embedded hyper-
surface (without boundary) in M (see the Theorem in Remark 9.7 (4)) and there always
exists a smooth outward-pointing vector field along ∂M (see the second Proposition in
Remark 9.7 (5)). Since such a vector field is nowhere tangent to ∂M (see the first Proposi-
tion in Remark 9.7 (5)), it determines an orientation on ∂M by Proposition 20, provided
that M is oriented. The following proposition shows that this orientation is independent
of the choice of an outward-pointing vector field along ∂M , and is called the induced
orientation or the Stokes orientation on ∂M .

Proposition 22 (The induced orientation on a boundary). Let M be an oriented smooth
n-manifold with boundary, where n ≥ 1. Then ∂M is orientable, and all outward-pointing
vector fields along ∂M determine the same orientation on ∂M .

Example 23. We determine the induced orientation on ∂Hn when Hn itself has the
standard orientation inherited from Rn. We can identify ∂Hn with Rn−1 under the corre-
spondence

(x1, . . . , xn−1, 0) ↔ (x1, . . . , xn−1).
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Since the vector field −∂/∂xn is outward-pointing along Hn, the standard coordinate
frame for Rn−1 is positively oriented for ∂Hn if and only if [−∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1]
is the standard orientation for Rn; see Proposition 20. This orientation satisfies[

−∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1
]
= −

[
∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1

]
= (−1)n

[
∂/∂x1, . . . , ∂/∂xn−1, ∂/∂xn

]
.

Thus, the induced orientation on ∂Hn is equal to the standard orientation on Rn−1 when
n is even, but it is opposite to the standard orientation when n is odd. In particular, the
standard coordinates on ∂Hn ≈ Rn−1 are positively oriented if and only if n is even.

2.4 Orientations and Smooth Maps

Definition 24. Let M and N be oriented smooth manifolds with or without boundary
and let F : M → N be a local diffeomorphism. If both M and N are positive-dimensional,
then we say that F is orientation-preserving if for each p ∈ M , the isomorphism dFp takes
positively oriented bases of TpM to positively oriented bases of TF (p)N , and orientation-
reversing if it takes positively oriented bases of TpM to negatively oriented bases of
TF (p)N . If, on the other hand, both M and N are zero-dimensional, then we say that F is
orientation preserving if for every p ∈ M , the points p and F (p) have the same orientation,
and it is orientation reversing if they have opposite orientation; see the paragraph after
Definition 12.

Note that a composition of orientation-preserving maps is also orientation-preserving.

Exercise 25. Let M and N be oriented positive-dimensional smooth manifolds with or
without boundary and let F : M → N be a local diffeomorphism. Show that the following
are equivalent:

(a) F is orientation-preserving.

(b) With respect to any oriented smooth charts for M and N , the Jacobian matrix of F
has positive determinant.

(c) If ω is any positively oriented orientation form for N , then F ∗ω is a positively oriented
orientation form for M .

Proposition 26 (The pullback orientation). Let M and N be smooth manifolds with or
without boundary. If F : M → N is a local diffeomorphism and if N is oriented, then M
has a unique orientation, called the pullback orientation induced by F , such that F is
orientation-preserving.

Proof. For each p ∈ M there is a unique orientation on TpM that makes the isomorphism
dFp : TpM → TF (p)N orientation-preserving. This defines a pointwise orientation on M ;
provided that it is continuous, it is the unique orientation on M with respect to which F
is orientation-preserving. To see that it is continuous, just choose a smooth orientation
form ω of N using Proposition 14 (so that ω is positively oriented) and note that F ∗ω is
a smooth orientation form for M , determining by construction and by Proposition 14 the
above pointwise orientation on M , which is thus continuous, as desired.
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