

Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

Exercise Sheet 14

Definition. Let M be a smooth manifold with or without boundary.

- (a) A curve segment in M is defined to be a continuous curve $\gamma : [a, b] \to M$ whose domain is a compact interval. It is a smooth curve segment in M if it is smooth when [a, b] is considered as a manifold with boundary (or, equivalently, if γ has an extension to a smooth curve defined in a neighborhood of each endpoint). It is a piecewise smooth curve segment in M if there exists a finite partition $a_0 = a < a_1 < \cdots < a_{k-1} < a_k = b$ of [a, b] such that $\gamma|_{[a_{i-1}, a_i]}$ is smooth¹ for every $1 \le i \le k$.
- (b) Let ω be a smooth covector field on M. If $\gamma \colon [a, b] \to M$ is a piecewise smooth curve segment, then the line integral of ω over γ is defined to be the real number

$$\int_{\gamma} \omega \coloneqq \sum_{i=1}^{k} \int_{[a_{i-1}, a_i]} \gamma^* \omega,$$

where $[a_{i-1}, a_i]$, $1 \leq i \leq k$, are subintervals of [a, b] on which γ is smooth. If t denotes the standard coordinate on \mathbb{R} , then the smooth covector field $\omega_i \coloneqq \gamma^* \omega = (\gamma|_{[a_{i-1}, a_i]})^* \omega$ on $[a_{i-1}, a_i]$ can be written as $\omega_i = f_i(t) dt$ for some smooth function $f_i: [a_{i-1}, a_i] \to \mathbb{R}$, so the integral of ω_i over $[a_{i-1}, a_i]$ is given by

$$\int_{[a_{i-1},a_i]} \omega_i = \int_{a_{i-1}}^{a_i} f_i(t) dt$$

Therefore,

$$\int_{\gamma} \omega = \sum_{i=1}^{k} \int_{a_{i-1}}^{a_i} f_i(t) \, dt.$$

¹Continuity of γ means that $\gamma(t)$ approaches the same value as t approaches any of the points a_i (other than a_0 or a_k) from the left or the right. Smoothness of γ in each subinterval means that γ has one-sided velocity vectors at each such a_i when approaching from the left or the right, but these one-sided velocities need not be equal.

Exercise 1 (*Properties of line integrals*):

Let M be a smooth manifold with or without boundary. Let $\gamma \colon [a, b] \to M$ be a piecewise smooth curve segment in M, and let $\omega, \omega_1, \omega_2 \in \mathfrak{X}^*(M)$. Prove the following assertions:

(a) For any $c_1, c_2 \in \mathbb{R}$ we have

$$\int_{\gamma} \left(c_1 \omega_1 + c_2 \omega_2 \right) = c_1 \int_{\gamma} \omega_1 + c_2 \int_{\gamma} \omega_2.$$

(b) If γ is a constant map, then

$$\int_{\gamma} \omega = 0.$$

(c) If $\gamma_1 \coloneqq \gamma|_{[a,c]}$ and $\gamma_2 \coloneqq \gamma|_{[c,b]}$, where $a, b, c \in \mathbb{R}$ with a < c < b, then

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega.$$

(d) If $F: M \to N$ is any smooth map and if $\eta \in \mathfrak{X}^*(N)$, then

$$\int_{\gamma} F^* \eta = \int_{F \circ \gamma} \eta.$$

Exercise 2:

Let $M = \mathbb{R}^2 \setminus \{0\}$. Consider the smooth covector field ω on M given by

$$\omega = \frac{xdy - ydx}{x^2 + y^2}.$$

- (a) Show that ω is closed.
- (b) Compute the integral of ω over the smooth curve segment

$$\gamma \colon [0, 2\pi] \to M, \ t \mapsto (\cos t, \sin t).$$

- (c) Deduce that ω is not exact.
- (d) Let (r, θ) be polar coordinates on the right half-plane $H = \{(x, y) \mid x > 0\}$. Compute the polar coordinate expression for $\omega \in \mathfrak{X}^*(M)$.

Exercise 3:

Consider the covector field $\omega \in \mathfrak{X}^*(\mathbb{R}^3)$ given by

$$\omega = e^{y^2} \, dx + 2xy e^{y^2} \, dy - 2z \, dz.$$

- (a) Show that ω is closed.
- (b) Using the fact (*Poincaré's lemma*) that ω is exact on (the star-shaped set) \mathbb{R}^3 , find a *potential* for ω , i.e., a function $f \in C^{\infty}(\mathbb{R}^3)$ such that $\omega = df$.

Definition. Let M be a smooth manifold with or without boundary. If $\gamma: [a, b] \to M$ and $\tilde{\gamma}: [c, d] \to M$ are piecewise smooth curve segments in M, then we say that $\tilde{\gamma}$ is a *reparametrization* of γ if $\tilde{\gamma} = \gamma \circ \varphi$ for some diffeomorphism $\varphi: [c, d] \to [a, b]$. If φ is an increasing function, then we say that $\tilde{\gamma}$ is a *forward reparametrization*, while if φ is a decreasing function, then we say that $\tilde{\gamma}$ is a *backward reparametrization*. (More generally, with obvious modifications one can allow φ to be piecewise smooth.)

Exercise 4 (*Parameter independence of line integrals*): Let M be a smooth manifold with or without boundary, $\omega \in \mathfrak{X}^*(M)$, and let γ be a piecewise smooth curve segment in M. Show that for any reparametrization $\tilde{\gamma}$ of γ we have

$$\int_{\widetilde{\gamma}} \omega = \begin{cases} \int_{\gamma} \omega & \text{if } \widetilde{\gamma} \text{ is a forward reparametrization,} \\ -\int_{\gamma} \omega & \text{if } \widetilde{\gamma} \text{ is a backward reparametrization.} \end{cases}$$

Exercise 5:

Let M be a smooth manifold with or without boundary and let $\omega \in \mathfrak{X}^*(M)$. If $\gamma : [a, b] \to M$ is a piecewise smooth curve segment in M, then the line integral of ω over γ can also be expressed as the ordinary integral

$$\int_{\gamma} \omega = \int_{a}^{b} \omega_{\gamma(t)} \big(\gamma'(t) \big) dt.$$

[Hint: Assume first that γ is smooth and that its image $\gamma([a, b])$ is contained in the domain of a single smooth chart for M, and then apply formula (\star_6) from the proof of *Proposition* 8.12. Finally, use the compactness of [a, b] to deal with the general case.]

Definition. Let M be a smooth manifold. The *length* of a smooth curve segment $\gamma: [a, b] \to \mathbb{R}^n$, where n > 0, is defined to be the value of the (ordinary) integral

$$L(\gamma) \coloneqq \int_{a}^{b} \left| \gamma'(t) \right| dt.$$

Exercise 6:

Show that there is no smooth covector field ω on \mathbb{R}^n with the property that

$$\int_{\gamma} \omega = L(\gamma)$$

for every smooth curve segment γ in \mathbb{R}^n .