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1 The Dual of a Vector Space

Definition 1. Let V be a finite-dimensional real vector space.

(a) A covector on V is a real-valued linear functional on V , i.e., a linear map ω : V → R.

(b) The set of all covectors on V is a real vector space under the obvious operations of
pointwise addition and scalar multiplication. It is denoted by V ∗ and is called the
dual space of V .

The next proposition expresses the most important fact about V ∗.

Proposition 2. Let V be a real vector space of dimension n. Given any basis (E1, . . . , En)
for V , consider the covectors ε1, . . . , εn ∈ V ∗ defined by

εi(Ej) = δij.

Then (ε1, . . . , εn) is a basis for V ∗, called the dual basis to (Ej). In particular,

dimR V = dimR V
∗.

Proof. Exercise!

In general, if (Ej) is a basis for V and if (εi) is its dual basis, then for any vector
v = vjEj ∈ V we have

εi(v) = vjεi(Ej) = vjδij = vi.

Thus, the i-th basis covector εi picks out the i-th component of a vector with respect to
the basis (Ej).

More generally, we can express an arbitrary covector ω ∈ V ∗ in terms of the dual basis
as

ω = ωiε
i,

where the i-th component is determined by ωi = ω(Ei). Thus, the action of the given
covector ω ∈ V ∗ on a vector v = vjEj ∈ V is

ω(v) = ωiv
jεi(Ej) = ωiv

i.

Let V and W be real vector spaces and let A : V → W be a linear map. The dual map
of A is the linear map A∗ : W ∗ → V ∗ defined by

(A∗ω)(v) := ω(Av), ω ∈ W ∗, v ∈ V.

It is straightforward to check that it satisfies the following properties:

(a) (A ◦B)∗ = B∗ ◦ A∗.

(b) (IdV )
∗ = IdV ∗ .

Proposition 3. The assignment that sends a vector space to its dual space and a linear
map to its dual linear map is a contravariant functor from the category of real vector
spaces to itself.
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Another important fact about the dual of a finite-dimensional vector space is the
following.

Proposition 4. Let V be a finite-dimensional real vector space. For any given v ∈ V ,
define a linear functional ξ(v) by

ξ(v) : V ∗ → R
ω 7→ ξ(v)(ω) := ω(v).

Then ξ(v) ∈ (V ∗)∗, that is, ξ(v) is a linear functional on V ∗. Moreover, the map

ξ : V → (V ∗)∗

v 7→ ξ(v)

is an R-linear isomorphism, which is canonical (it is defined without reference to any
basis).

Proof. The proof that both ξ(v) and ξ are linear maps are left as exercises. Since by
Proposition 2 we have

dimV = dimV ∗ = dim(V ∗)∗,

it suffices to prove that ξ is injective. To this end, let v ∈ V be non-zero, complete it to
a basis v = E1, E2, . . . , En of V , and let (εi) be its dual basis. Then

ξ(v)(ε1) = ε1(v) = ε1(E1) = 1,

so ξ(v) ̸= 0. Therefore, ker ξ = 0; in other words, ξ is injective, as desired.

Due to Proposition 4, the real number ω(v) obtained by applying a covector ω to a
vector v is sometimes denoted by either of the more symmetric-looking notations ⟨ω, v⟩
or ⟨v, ω⟩; both expressions can be thought of either as the action of the covector ω ∈ V ∗

on the vector v ∈ V , or as the action of the linear functional ξ(v) ∈ V ∗∗ on the element
ω ∈ V ∗. There should be no cause for confusion with the use of the same angle bracket
notation for inner products: whenever one of the arguments is a vector and the other a
covector, the notation ⟨ω, v⟩ is always to be interpreted as the natural pairing between
vectors and covectors, not as an inner product.

There is also a symmetry between bases and dual bases for a finite-dimensional vector
space V : any basis for V determines a dual basis for V ∗, and conversely, any basis for V ∗

determines a dual basis for V ∗∗ = V . If (εi) is the basis for V ∗ dual to a basis (Ej) for V ,
then (Ej) is the basis dual to (εi), because both statements are equivalent to the relation
⟨εi, Ej⟩ = δij.
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2 Multilinear Maps and Tensors

In the preceding section, we defined and briefly examined the dual of a vector space
(in the finite-dimensional case), which is the space of real-valued linear functions on the
given vector space. A natural, and from the point of view of (differential) geometry very
important, generalization is to consider functions with several arguments, which are linear
in each individual argument. These are called multilinear functions.

Definition 5. Let V1, . . . , Vk and W be real vector spaces. A map F : V1×· · ·×Vk → W
is called multilinear if it is linear as a function of each variable separately when the others
are held fixed; that is, if 1 ≤ i ≤ k is arbitrary, and if we are given elements vi, v

′
i ∈ Vi

and real numbers a, a′ ∈ R, then

F (v1, . . . , avi + a′v′i, . . . , vk) = aF (v1, . . . , vi, . . . , vk) + a′F (v1, . . . , v
′
i, . . . , vk).

Denote by L(V1, . . . , Vk;W ) the set of multilinear maps from V1 × · · · × Vk to W , and
note that L(V1, . . . , Vk;W ) has the structure of a real vector space. In the special case
when V1 = . . . = Vk = V and W = R, we often call an element of the space L(V, . . . , V ;R)
a k-multilinear function on V ; see Definition 10.

Now, if the target space is W = R, then there is a simple operation with which one
can succesively build multilinear maps.

Definition 6. Let V1, . . . , Vk and W1, . . . ,Wl be real vector spaces, and consider F ∈
L(V1, . . . , Vk;R) and G ∈ L(W1, . . . ,Wl;R). The function

F ⊗G : V1 × · · · × Vk ×W1 × · · · ×Wl → R
(v1, . . . , vk, w1, . . . , wl) 7→ F (v1, . . . , vk)G(w1, . . . , wl)

is called the tensor product of F and G.

Exercise 7.

(a) Show that, given F and G as above, the function F ⊗G is multilinear, that is,

F ⊗G ∈ L(V1, . . . , Vk,W1, . . . ,Wl;R).

(b) Show that the tensor product operation

−⊗− : L(V1, . . . , Vk;R)× L(W1, . . . ,Wl;R) → L(V1, . . . , Vk,W1, . . . ,Wl;R)
(F,G) 7→ F ⊗G

is bilinear, i.e., multilinear with two variables, and associative, i.e., for any multilinear
real-valued functions F,G,H, we have F ⊗ (G⊗H) = (F ⊗G)⊗H.

Given a finite-dimensional real vector space V , we described in section 1 how to obtain
a basis for the dual space V ∗ = L(V ;R) from a basis for V . With the above operation at
hand, we may now generalize this to the space L(V1, . . . , Vk;R).
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Proposition 8. Let V1, . . . , Vk be R-vector spaces of dimensions n1, . . . nk, respectively.
For each 1 ≤ j ≤ k, let

(
E

(j)
1 , . . . , E

(j)
nj

)
be a basis of Vj, and denote by

(
ε1(j), . . . , ε

nj

(j)

)
the

corresponding dual basis of V ∗
j . Then the set

B :=
{
εi1(1) ⊗ · · · ⊗ εik(k) | 1 ≤ i1 ≤ n1, . . . , 1 ≤ ik ≤ nk

}
is a basis for L(V1, . . . , Vk;R), which therefore has dimension n1 . . . nk.

Proof. First, given F ∈ L(V1, . . . , Vk;R), define for each multi-index I = (i1, . . . , ik) with
1 ≤ ij ≤ nj for all 1 ≤ j ≤ k, a number FI ∈ R by

FI := F
(
E

(1)
i1

, . . . , E
(k)
ik

)
.

Also, use the short-hand notation

ε⊗I := εi1(1) ⊗ · · · ⊗ εik(k).

We will show that
F =

∑
I

FI ε
⊗I ,

where the sum is taken over all multi-indices as above, and thereby show that B spans
L(V1, . . . , Vk;R). To this end, take (v1, . . . , vk) ∈ V1 × · · · × Vk. For integers ij between 1

and nj, let v
ij
j ∈ R be the coefficient of vj with respect to the basis

(
E

(j)
1 , . . . , E

(j)
nj

)
, i.e.,

v
ij
j = ε

ij
(j)(vj).

Then by the multilinearity of F we have

F (v1, . . . , vk) =
∑
I

vi11 · · · vikk F
(
E

(1)
i1

, . . . , E
(k)
ik

)
=
∑
I

vi11 · · · vikk FI .

On the other hand, we have[∑
I

FI ε
⊗I

]
(v1, . . . , vk) =

∑
I

FI ε
⊗I(v1, . . . , vk) =

∑
I

vi11 · · · vikk FI .

Hence F and
∑

I FIε
⊗I agree at any k-tuple and thus are equal, so B indeed spans

L(V1, . . . , Vk;R).
Finally, in order to see that B is linearly independent, suppose that we have∑

I

λI ε
⊗I = 0

for some real numbers λI ∈ R indexed by multi-indices I. Evaluating both sides at(
E

(1)
i1

, . . . , E
(k)
ik

)
for some fixed multi-index I = (i1, . . . , ik), we obtain by the same com-

putation as above that λI = 0. Hence, B is linearly independent.
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The proof of Proposition 8 shows also that the components Fi1...ik of a multilinear
function F in terms of the basis elements in B are given by

Fi1...ik = F
(
E

(1)
i1

, . . . , E
(k)
ik

)
.

Thus, F is completely determined by its action on all possible sequences of basis vectors.

Remark 9. You might have already encountered the abstract construction of the tensor
product of vector spaces. If so, then regarding the above discussion (which shows that
the real vector space L(V1, . . . , Vk;R) can be viewed as the set of all linear combinations
of objects of the form ω1 ⊗ · · · ⊗ ωk, where ωi ∈ V ∗

i are covectors), one should remark
the following: given finite-dimensional real vector spaces V1, . . . , Vk, there is a canonical
isomorphism

V ∗
1 ⊗ · · · ⊗ V ∗

k
∼= L(V1, . . . , Vk;R),

which is induced by the multilinear map

Φ: V ∗
1 × . . .× V ∗

k → L(V1, . . . , Vk;R)
Φ
(
ω1, . . . , ωk

)
(v1, . . . , vk) :=

(
ω1 ⊗ · · · ⊗ ωk

)
(v1, . . . , vk)

= ω1(v1) · · ·ωk(vk).

Under this canonical isomorphism, abstract tensors correspond to the concrete tensor
product of multilinear functions defined above. As it is a natural isomorphism, we may
use the expression V ∗

1 ⊗· · ·⊗V ∗
k as a notation for L(V1, . . . , Vk;R) (this is a typical example

of slight abuse of notation, where one identifies naturally isomorphic objects). Finally,
using Proposition 4, we also obtain a canonical identification

V1 ⊗ · · · ⊗ Vk
∼= L(V ∗

1 , . . . , V
∗
k ;R).

Therefore, we may view the above construction as a concrete construction of the abstract
tensor product.

Let us now turn our attention to various spaces of multilinear functions on a finite-
dimensional real vector space that naturally appear in (differential) geometry.

Definition 10. Let V be a finite-dimensional real vector space. For any integer k ≥ 1,
we denote by T k(V ∗) the space of k-multilinear functions on V , i.e.,

T k(V ∗) := L(V, . . . , V︸ ︷︷ ︸
k times

;R) ∼= V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
k copies

.

By convention, we also define T 0(V ∗) := R. The elements of T k(V ∗) are often referred to
as covariant k-tensors on V .

Observe that every linear functional ω : V → R is (trivially) multilinear, so a covariant
1-tensor is just a covector on V . Thus,

T 1(V ∗) = V ∗.
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According to Proposition 8, we obtain a basis for T k(V ∗) as follows. Assume that V
has dimension n, let (E1, . . . , En) be a basis for V and denote by (ε1, . . . , εn) the dual
basis for V ∗. For a multi-index I = (i1, . . . , ik), where 1 ≤ ij ≤ n for all j, define the
elementary covariant k-tensor ε⊗I by the formula

ε⊗I := εi1 ⊗ · · · ⊗ εik

(see the proof of Proposition 8) and for an integer m ∈ Z≥1, denote by [m] the set
{1, . . . ,m}. Then the set {

ε⊗I | I ∈ [n][k]
}

is a basis for T k(V ∗); in particular, we have

dimR T
k(V ∗) = nk.

Therefore, every covariant k-tensor α ∈ T k(V ∗) can be written uniquely in the form

α = αI ε
⊗I = αi1...ik ε

i1 ⊗ · · · ⊗ εik ,

where the nk coefficients αI = αi1...ik are determined by

αi1...ik = α(Ei1 , . . . , Eik).

For example, T 2(V ∗) is the space of bilinear forms on V – note that a covariant 2-tensor
on V is simply a real-valued bilinear function of two vectors – and every bilinear form on
V can be written as β = βij ε

i ⊗ εj for some uniquely determined n× n matrix (βij).

Definition 11. For a covariant k-tensor α ∈ T k(V ∗) and a permutation σ ∈ Sk, denote
by σα the covariant k-tensor given by

σα : V × · · · × V → R
(v1, . . . , vk) 7→ α

(
vσ(1), . . . , vσ(k)

)
.

In the following two sections we will discuss two important subspaces of T k(V ∗),
namely the subspaces of symmetric resp. alternating covariant k-tensors. Both are de-
scribed by the way that a permutation of the arguments of the given covariant k-tensor
changes its value. A significant application of symmetric tensors in the theory of smooth
manifolds is in the form of Riemannian metrics. Loosely speaking, a Riemannian metric is
a choice of an inner product on each tangent space of the given manifold, varying smoothly
from point to point, and allows one to define geometric concepts such as lenghts, angles
and distances on the manifold. Riemannian metrics will not be discussed in this course,
and this is the main reason why the discussion about symmetric tensors in section 3 will
be kept to a minimum. On the other hand, differential forms will be discussed thoroughly
in Lecture 13 and Lecture 14 of this course. They constitute a significant application of
alternating tensors in smooth manifold theory, and they will be presented in section 4.
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3 Symmetric Tensors

In all probability, you have already encountered the concept of inner product on a finite-
dimensional real vector space V . It is a bilinear map ⟨·, ·⟩ : V ×V → R which is symmetric
and positive definite; in particular, ⟨·, ·⟩ is a covariant 2-tensor on V , having the additional
property that its value is unchanged when the two input arguments are exchanged; namely,
we have ⟨v1, v2⟩ = ⟨v2, v1⟩ for any v1, v2 ∈ V . We now generalize this notion to any
covariant k-tensor on V .

Definition 12. Let V be a finite-dimensional real vector space.

(a) A covariant k-tensor α ∈ T k(V ∗) on V is said to be symmetric if its value is unchanged
by interchanging any pair of its arguments; namely, for all v1, . . . , vk ∈ V and all
1 ≤ i < j ≤ k, we have

α(v1, . . . , vi, . . . , vj, . . . , vk) = α(v1, . . . , vj, . . . , vi, . . . , vk).

(b) The set of symmetric covariant k-tensors on V is denoted by Σk(V ∗). It is clearly a
linear subspace of T k(V ∗). By convention, we define Σ0(V ∗) := R, and we also note
that Σ1(V ∗) = T 1(V ∗) = V ∗.

Exercise 13. We define a projection Sym: T k(V ∗) → Σk(V ∗), called symmetrization, by
the formula

Sym(α) :=
1

k!

∑
σ∈Sk

σα,

where σα was defined in Definition 11. Show that Sym is well-defined and linear, and
that the following are equivalent:

(a) α is symmetric,

(b) α = σα for all σ ∈ Sk,

(c) α = Sym(α).
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4 Alternating Tensors

Recall that the determinant may be regarded as a function det : Rn×· · ·×Rn → R, taking
as input n column vectors with n entries each, and having as output the determinant of
the n × n matrix formed by these n column vectors. This map is multilinear, so det is
a covariant n-tensor on Rn. Moreover, it has the property that its value changes sign
whenever two of its input entries are interchanged; in other words, det is an alternating
n-tensor. We now generalize this notion to arbitrary covariant k-tensors.

Definition 14. Let V be a finite-dimensional real vector space.

(a) A covariant k-tensor α ∈ T k(V ∗) on V is said to be alternating (or anti-symmetric
or skew-symmetric) if its value changes sign whenever any two of its arguments are
interchanged; namely, for all v1, . . . , vk ∈ V and 1 ≤ i < j ≤ k, we have

α(v1, . . . , vi, . . . , vj, . . . , vk) = −α(v1, . . . , vj, . . . , vi, . . . , vk).

(b) The set of alternating covariant k-tensors on V is denoted by Λk(V ∗). It is clearly a
linear subspace of T k(V ∗) and its elements of Λk(V ∗) are also called exterior forms,
multicovectors or k-covectors. By convention, we define Λ0(V ∗) := R, and we also
note that Λ1(V ∗) = T 1(V ∗) = V ∗.

Note that every covariant 2-tensor β can be expressed as a sum of an alternating and
a symmetric tensor, because

β(v, w) =
1

2

(
β(v, w)− β(w, v)

)
+

1

2

(
β(v, w) + β(w, v)

)
= α(v, w) + σ(v, w),

where

α(v, w) :=
1

2

(
β(v, w)− β(w, v)

)
∈ Λ2(V ∗)

is an alternating 2-tensor on V and

σ(v, w) :=
1

2

(
β(v, w) + β(w, v)

)
∈ Σ2(V ∗)

is a symmetric 2-tensor on V . However, this is not true for tensors of higher rank, as the
following exercise demonstrates.

Exercise 15. Let (e1, e2, e3) be the standard dual basis for (R3)∗. Show that e1 ⊗ e2 ⊗ e3

is not equal to a sum of an alternating tensor and a symmetric tensor.

Recall that there is a group homomorphism sgn: Sk → {±1}, which maps a permuta-
tion σ ∈ Sk to 1 if it is a product of an even number of transpositions (even permutation),
and to −1 otherwise (odd permutation). We may use it to describe alternating tensors as
follows.

Exercise 16. We define a projection Alt : T k(V ∗) → Λk(V ∗), called alternation, by the
formula

Alt(α) :=
1

k!

∑
σ∈Sk

(sgnσ) σα,

where σα was defined in Definition 11. Show that Alt is well-defined and linear, and that
the following are equivalent:
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(a) α is alternating,

(b) α = (sgnσ) σα for all σ ∈ Sk,

(c) α = Alt(α),

(d) α(v1, . . . , vk) = 0 whenever v1, . . . , vk ∈ V are linearly dependent,

(e) α(v1, . . . , vk) = 0 whenever there are i ̸= j such that vi = vj.

Example 17. Let us explicitly compute Alt for 1-, 2- and 3-tensors.

• If α is a 1-tensor, then Alt(α) = α.

• If β is a 2-tensor, then

Alt(β)(u, v) =
1

2

(
β(u, v)− β(v, u)

)
.

• If γ is a 3-tensor, then

Alt(γ)(u, v, w) =
1

6

(
γ(u, v, w) + γ(v, w, u) + γ(w, u, v)

−γ(v, u, w)− γ(u,w, v)− γ(w, v, u)
)
.

4.1 Elementary Alternating Tensors

Recall that for any basis of V , we described an induced basis of T k(V ∗) in terms of
tensor products of elements of the dual basis; cf. Proposition 8. We obtain here a similar
description for a basis of Λk(V ∗).

Let V be a real vector space of dimension n, let (E1, . . . , En) be a basis for V ,
and denote by (ε1, . . . , εn) the corresponding dual basis for V ∗. For a multi-index I =
(i1, . . . , ik) ∈ [n][k], define the elementary alternating k-tensor (or elementary k-covector)
εI by the formula

εI := k! Alt
(
ε⊗I
)
,

where
ε⊗I = εi1 ⊗ · · · ⊗ εik ∈ T k(V ∗)

is the elementary k-tensor. Therefore, if v1, . . . , vk ∈ V , then the value of εI at the k-tuple
(v1, . . . , vk) is given by the formula

εI(v1, . . . , vk) =
∑
σ∈Sk

(sgnσ) ε⊗I
(
vσ(1), . . . , vσ(k)

)
=
∑
σ∈Sk

(sgnσ)
∏

1≤j≤k

εij
(
vσ(j)

)

= det

εi1(v1) · · · εi1(vk)
...

. . .
...

εik(v1) · · · εik(vk)

 .

In other words, to compute εI(v1, . . . , vk), we write the coefficients of (v1, . . . , vk) with
respect to the basis (E1, . . . , En) of V in the form of a n×k-matrix, we consider the k×k
submatrix formed by the lines i1, . . . , ik, and then we compute its determinant.
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Example 18. In terms of the standard dual basis (e1, e2, e3) for (R3)∗, we have

e13(v, w) = det

(
v1 w1

v3 w3

)
= v1w3 − v3w1,

since v = v1e1 + v2e2 + v3e3 and w = w1e1 + w2e2 + w3e3, and

e123(v, w, z) = det(v, w, z).

Since Alt : T k(V ∗) → Λk(V ∗) is surjective, we know that
{
εI | I ∈ [n][k]

}
is a gener-

ating set of Λk(V ∗). To extract from it a basis of Λk(V ∗), we need the following lemma,
which describes the redundancy of

{
εI | I ∈ [n][k]

}
. In order to state it nicely, we need to

introduce the following notation: for a multi-index I ∈ [n][k] and a permutation σ ∈ Sk,
denote by Iσ the multi-index

Iσ =
(
iσ(1), . . . , iσ(k)

)
.

Also, denote by δIJ the following generalization of the Kronecker-delta to multi-indices
I, J ∈ [n][k]:

δIJ :=

{
sgnσ if neither I nor J have repeated entries and J = Iσ for some σ ∈ Sk,

0 if I or J have repeated entries or J is not a permutation of I.

and observe that

δIJ = det


δi1j1 . . . δi1jk
...

. . .
...

δikj1 . . . δikjk

 .

Lemma 19. With the same notation as in the preceeding paragraph, the following state-
ments hold:

(a) If I has a repeated index, then εI = 0.

(b) If J = Iσ for some σ ∈ Sk, then εJ = (sgnσ) εI .

(c) For I, J ∈ [n][k] we have
εI
(
Ej1 , . . . , Ejk

)
= δIJ .

Proof. Exercise!

Lemma 19 tells us that from the generating set
{
εI | I ∈ [n][k]

}
of Λk(V ∗), we may

discard all those εI ’s for which I has a repeated index, and for any I having no re-
peated index, we need only take one element from the set {εIσ | σ ∈ Sk} and dis-
card the rest. A nice choice is thus the following: notice that for any multi-index I
having no repeated indices, there exists a unique permutation σ ∈ Sk such that Iσ is
strictly increasing, i.e., iσ(1) < · · · < iσ(k). Therefore, according to Lemma 19, the set{
εI | I ∈ [n][k] is strictly increasing

}
still generates Λk(V ∗), and there is no obvious re-

dundancy in it. Essentially due to Lemma 19(c), this set is linearily independent, and
thus we obtain the following result:
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Proposition 20. With the same notation as above, the set{
εI | I ∈ [n][k] is a strictly increasing multi-index

}
is a basis for Λk(V ∗). In particular, we have

dimR Λ
k(V ∗) =

(
n

k

)
=

n!

k!(n− k)!
,

and
Λk(V ∗) = {0} for k > n.

Proof. Assume first that k > n. Since then every k-tuple of vectors is linearly dependent,
it follows from Exercise 16(d) that Λk(V ∗) = {0}.

Assume now that k ≤ n. We need to show that

E :=
{
εI | I ∈ [n][k] is a strictly increasing multi-index

}
is linearly independent and spans Λk(V ∗). The fact that E generates Λk(V ∗) was already
discussed above. Suppose now that we have some linear relation∑

I∈[n][k] strictly increasing

λI ε
I = 0

for some λI ∈ R. If we fix a strictly increasing multi-index J ∈ [n][k], then evaluating
the above relation at (Ej1 , . . . , Ejk) gives λJ = 0 according to Lemma 19(c). Thus, E is
linearly independent. In conclusion, E is a basis of Λk(V ∗), as desired.

In particular, if V is a real vector space of dimension n, then the above proposition
implies that Λn(V ∗) is 1-dimensional, spanned by the elementary n-covector ε(1,...,n). As
discussed in the beginning of this subsection, ε(1,...,n) sends an n-tuple (v1, . . . , vn) to the
determinant of the matrix (vij)1≤i,j,≤n, where vij = εi(vj) is the i-th component of vj with
respect to the chosen basis of V . Note that when V = Rn with the standard basis, the
covector ε(1,...,n) (which by definition is a function from (Rn)n = Rn2

to R) is precisely the
usual determinant function.

One consequence of this observation is the following useful description of the behavior
of an n-covector on an n-dimensional vector space under linear maps. Recall that if
T : V → V is a linear map, then the determinant of T is defined to be the determinant of
the matrix representation of T with respect to any basis (recall that any two such matrix
representation are conjugations of each other and hence have the same determinant, so
this is well-defined).

Proposition 21. Let V be an n-dimensional real vector space and let ω ∈ Λn(V ∗). If
T : V → V is any linear map and if v1, . . . , vn ∈ V are arbitrary vectors, then

ω(Tv1, . . . , T vn) = (detT )ω(v1, . . . , vn). (•)

Proof. Let (Ei) be any basis for V , and let (εi) be the dual basis. Denote by (T j
i )1≤i,j≤n the

matrix of T with respect to this basis, and set Ti = TEi =
∑

j T
j
i Ej. By Proposition 20,

we can write ω = cε(1,...,n) for some c ∈ R. Since both sides of (•) are multilinear
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functions of (v1, . . . , vn), it suffices to verify the identity when the vi’s are basis vectors.
Furthermore, since both sides are alternating, by Lemma 19 we only need to check the
case (v1, . . . , vn) = (E1, . . . , En). In this case, the right-hand side of (•) is

(detT ) c ε(1,...,n)(E1, . . . , En) = c detT.

On the other hand, the left-hand side of (•) reduces to

ω(TE1, . . . , TEn) = c ε(1,...,n)(T1, . . . , Tn) = c det
(
(εj(Ti))1≤i,j≤n

)
= c det

(
(T j

i )1≤i,j≤n

)
.

which is thus equal to the right-hand side.

4.2 The Wedge Product

Recall that for any covariant tensors α ∈ T k(V ∗) and β ∈ T l(V ∗) we defined the covariant
(k + l)-tensor α⊗ β; see Definition 6. This allowed us to build ’higher’ covariant tensors
out of lower ones, and also to describe a basis for T k(V ∗) in terms of tensor products of
elements of a dual basis. We now describe a similar construction for alternating tensors.

Definition 22. Let V be a finite-dimensional real vector space, and let ω ∈ Λk(V ∗) and
η ∈ Λl(V ∗) be alternating tensors on V . The wedge product (or exterior product) of ω
and η is denoted by ω ∧ η and is defined to be the (k + l)-covector given by the formula

ω ∧ η :=
(k + l)!

k!l!
Alt(ω ⊗ η).

As ⊗ is bilinear and Alt is linear, the map − ∧ − : Λk(V ∗) × Λl(V ∗) → Λk+l(V ∗) is
bilinear. It is therefore natural to examine what the wedge product looks like on basis
vectors. This also motivates the somewhat mysterious normalization factor (k+ l)!/(k!l!),
because we have the following result.

Lemma 23. Let V be a finite-dimensional real vector space, and let (ε1, . . . , εn) be a basis
for V ∗. For any multi-indices I = (i1, . . . , ik) and J = (j1, . . . , jl) we have the formula

εI ∧ εJ = εI⌢J ,

where I ⌢ J = (i1, . . . , ik, j1, . . . , jl) is the (k + l)-multi-index obtained by concatenating
I and J .

Proof. By multilinearity, as in the proof of Proposition 8, it suffices to show that

εI ∧ εJ(Ep1 , . . . , Epk+l
) = εI⌢J(Ep1 , . . . , Epk+l

) (⋆)

for any sequence of basis vectors (Ep1 , . . . , Epk+l
). We do this by considering several cases.

Case 1: The multi-index P = (p1, . . . , pk+l) has a repeated index. Then by part (e) of Exer-
cise 16, both sides of (⋆) evaluate to 0.

Case 2: P contains an index that does not appear in either I or J . In this case, the right-
hand side of (⋆) is zero by part (c) of Lemma 19. Similarly, each term in the
expansion of the left-hand side of (⋆) involves either I or J evaluated on a sequence
of basis vectors that is not a permutation of I or J , respectively, so the left-hand
side is also zero.
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Case 3: P = I ⌢ J and P has no repeated indices. In this case, the right-hand side of (⋆)
is equal to 1, again by part (c) of Lemma 19, so we need to show that the left-hand
side is also equal to 1. By definition,

εI ∧ εJ(Ep1 , . . . , Epk+l
) =

=
(k + l)!

k!l!
Alt(εI ⊗ εJ)

=
1

k!l!

∑
σ∈Sk+l

(sgnσ)εI(Epσ(1)
, . . . , Epσ(k)

)εJ(Epσ(k+1)
, . . . , Epσ(k+l)

).

By Lemma 19 again, the only terms in the sum above that give nonzero values are
those in which σ permutes the first k indices and the last l indices of P separately.
In other words, σ must be of the form σ = τη, where τ ∈ Sk acts by permuting
{1, . . . , k} and η ∈ Sl acts by permuting {k + 1, . . . , k + l}. Since then sgnσ =
(sgn τ)(sgn η), we have

εI ∧ εJ(Ep1 , . . . , Epk+l
) =

=
1

k!l!

∑
τ∈Sk
η∈Sl

(sgn τ)(sgn η) εI(Epτ(1) , . . . , Epτ(k)) ε
J(Epk+η(1)

, . . . , Epk+η(l)
)

=

(
1

k!

∑
τ∈Sk

(sgn τ) εI(Epτ(1) , . . . , Epτ(k))

)(
1

l!

∑
η∈Sl

(sgn η) εJ(Epk+η(1)
, . . . , Epk+η(l)

)

)
=
(
Alt(εI)(Ep1 , . . . , Epk)

) (
Alt(εJ)(Epk+1

, . . . , Epk+l
)
)

= εI(Ep1 , . . . , Epk) ε
J(Epk+1

, . . . , Epk+l
)

= 1

where we used that Alt fixes alternating tensors by Exercise 16, and again used part
(c) of Lemma 19 (recall that we are in the case P = I ⌢ J).

Case 4: P is a permutation of I ⌢ J and has no repeated indices. In this case, applying a
permutation to P brings us back to Case 3. As both sides of (⋆) are alternating,
the effect of this permutation is to multiply both sides by the same sign. Hence the
result holds in this final case as well.

This completes the proof of the lemma.

Together with the bilinearity of −∧−, this gives the following properties of the wedge
product.

Proposition 24. Let ω, η, ξ be multicovectors on a finite-dimensional real vector space
V . Then we have the following properties:

(a) Associativity:
ω ∧ (η ∧ ξ) = (ω ∧ η) ∧ ξ.

(b) Anticommutativity: if ω ∈ Λk(V ∗) and η ∈ Λl(V ∗), then

ω ∧ η = (−1)kl η ∧ ω.
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(c) If (ε1, . . . , εn) is a basis of V ∗ and I = (i1, . . . , ik) a multi-index, then

εi1 ∧ . . . ∧ εik = εI .

(d) For any ω1, . . . , ωk ∈ V ∗ and v1, . . . , vk ∈ V we have

ω1 ∧ . . . ∧ ωk(v1, . . . , vk) = det
((

ωj(vi)
)
1≤i,j≤k

)
.

Proof. Exercise!

Due to Proposition 24(c), we generally use the notations εI and εi1 ∧ . . . ∧ εik inter-
changably.

An element η ∈ Λk(V ∗) is said to be decomposable if it can be expressed in the form
η = ω1 ∧ . . . ∧ ωk for some covectors ω1, . . . , ωk ∈ V ∗. Note that not every k-covector is
decomposable when k > 1; however, it follows from Proposition 20 and Proposition 24(c)
that every k-covector can be written as a linear combination of decomposable ones.
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