

# Differential Geometry II - Smooth Manifolds Winter Term 2023/2024 Lecturer: Dr. N. Tsakanikas Assistant: L. E. Rösler

# Exercise Sheet 13 – Part II

### Exercise 1:

Let  $F: M \to N$  be a smooth map. Prove the following assertions:

- (a)  $F^*: \Omega^k(N) \to \Omega^k(M)$  is an  $\mathbb{R}$ -linear map.
- (b) It holds that  $F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$ .
- (c) In any smooth chart  $(V, (y^i))$  for N, we have

$$F^*\left(\sum_{I}'\omega_{I}dy^{i_{1}}\wedge\ldots\wedge dy^{i_{k}}\right)=\sum_{I}'(\omega_{I}\circ F)d\left(y^{i_{1}}\circ F\right)\wedge\ldots\wedge d\left(y^{i_{k}}\circ F\right).$$

### Exercise 2:

Let  $(r, \theta)$  be polar coordinates on the right half-plane  $H = \{(x, y) \mid x > 0\}$ . Compute the polar coordinate expression for the smooth 1-form  $x \, dy - y \, dx \in \Omega^1(\mathbb{R}^2)$  and for the smooth 2-form  $dx \wedge dy \in \Omega^2(\mathbb{R}^2)$ .

[Hint: Think of the change of coordinates  $(x, y) = (r \cos \theta, r \sin \theta)$  as the coordinate expression for the identity map of H, but using  $(r, \theta)$  as coordinates for the domain and (x, y) as coordinates for the codomain.]

#### Exercise 3 (to be submitted by Friday, 22.12.2023, 20:00):

- (a) Let M be a compact, connected, smooth manifold of dimension n > 0. Show that every exact smooth covector field on M vanishes at least at two points of M.
- (b) Let V be a finite-dimensional real vector space and let  $\omega^1, \ldots, \omega^k \in V^*$ . Show that the covectors  $\omega^1, \ldots, \omega^k$  are linearly dependent if and only if  $\omega^1 \wedge \ldots \wedge \omega^k = 0$ .
- (c) Consider the smooth map

$$F \colon \mathbb{R}^2 \to \mathbb{R}^2, \ (s,t) \mapsto (st,e^t)$$

and the smooth covector field  $\omega \in \mathfrak{X}^*(\mathbb{R}^2)$  given by

$$\omega = x dy.$$

Compute  $d\omega$  and  $F^*\omega$ , and verify by direct computation that  $d(F^*\omega) = F^*(d\omega)$ .

**Exercise 4:** Consider the smooth 2-form

$$\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$$

on  $\mathbb{R}^3$  with standard coordinates (x, y, z).

(a) Compute  $\omega$  in spherical coordinates for  $\mathbb{R}^3$  defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (b) Compute  $d\omega$  in spherical coordinates.
- (c) Consider the inclusion map  $\iota: \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$  and compute the pullback  $\iota^* \omega$  to  $\mathbb{S}^2$ , using coordinates  $(\varphi, \theta)$  on the open subset where these coordinates are defined.
- (d) Show that  $\iota^* \omega$  is nowhere zero.

**Definition.** Let M be a smooth n-manifold. Given a local frame  $(E_1, \ldots, E_n)$  for M over an open subset  $U \subseteq M$ , there is a uniquely determined (rough) local coframe  $(\varepsilon^1, \ldots, \varepsilon^n)$ over U such that  $(\varepsilon^i|_p)$  is the dual basis to  $(E_i|_p)$  for each  $p \in U$ , or equivalently  $\varepsilon^i(E_j) = \delta_j^i$ . This coframe is called *the coframe dual to*  $(E_i)$ . Conversely, if we start with a local coframe  $(\varepsilon^i)$  for M over an open subset  $U \subseteq M$ , there is a uniquely determined (rough) local frame  $(E_i)$ , called *the frame dual to*  $(\varepsilon^i)$ , determined by  $\varepsilon^i(E_j) = \delta_j^i$ . For example, in a smooth chart, the coordinate frame  $(\partial/\partial x^i)$  and the coordinate coframe  $(dx^i)$  are dual to each other. It can easily be shown that  $(E_i)$  is smooth if and only if  $(\varepsilon^i)$  is smooth.

#### Exercise 5:

(a) Exterior derivative of a smooth 1-form: Show that for any smooth 1-form  $\omega$  and any smooth vector fields X and Y on a smooth manifold M it holds that

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

(b) Let M be a smooth n-manifold, let  $(E_i)$  be a smooth local frame for M and let  $(\varepsilon^i)$  be the dual coframe. For each i, denote by  $b_{jk}^i$  the component functions of the exterior derivative of  $\varepsilon^i$  in this frame, and for each j, k, denote by  $c_{jk}^i$  the component functions of the Lie bracket  $[E_j, E_k]$ :

$$d\varepsilon^i = \sum_{j < k} b^i_{jk} \, \varepsilon^j \wedge \varepsilon^k$$
 and  $[E_j, E_k] = c^i_{jk} \, E_i.$ 

Show that  $b_{jk}^i = -c_{jk}^i$ .

## Exercise 6:

- (a) Let M be a smooth manifold and let  $\omega \in \Omega^1(M) = \mathfrak{X}^*(M)$ . Show that the following are equivalent:
  - (i)  $\omega$  is closed.
  - (ii)  $\omega$  satisfies

$$\frac{\partial \omega_j}{\partial x^i} = \frac{\partial \omega_i}{\partial x^j}$$

in some smooth chart  $(U, (x^i))$  around every point  $p \in M$ .

(iii) For any open subset  $U \subseteq M$  and any  $X, Y \in \mathfrak{X}(U)$ , we have

$$X(\omega(Y)) - Y(\omega(X)) = \omega([X,Y]).$$

(b) Consider the smooth covector fields

$$\omega = y\cos(xy)\,dx + x\cos(xy)\,dy \in \mathfrak{X}^*(\mathbb{R}^2)$$

and

$$\eta = x\cos(xy)\,dx + y\cos(xy)\,dy \in \mathfrak{X}^*(\mathbb{R}^2).$$

Show that  $\omega$  is closed and exact, whereas  $\eta$  is neither closed nor exact.