EPFL

Differential Geometry II - Smooth Manifolds
Winter Term 2023/2024
Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 13 - Part I

Exercise 1 (Smoothness criteria for covector fields):
Let $\omega: M \rightarrow T^{*} M$ be a rough covector field on a smooth manifold M. Prove that the following assertions are equivalent:
(a) ω is smooth.
(b) In every smooth coordinate chart the component functions of ω are smooth.
(c) Every point of M is contained in some smooth coordinate chart in which ω has smooth component functions.
(d) For every smooth vector field X on M, the function $\omega(X): M \rightarrow \mathbb{R}$ is smooth on M.
(e) For every open subset $U \subseteq M$ and every smooth vector field X on U, the function $\omega(X): U \rightarrow \mathbb{R}$ is smooth on U.
[Hint: Try proving $(a) \Longrightarrow(b) \Longrightarrow(c) \Longrightarrow(a)$ and $(c) \Longrightarrow(d) \Longrightarrow(e) \Longrightarrow(b)$.]

Exercise 2 (Properties of the differential):
Let M be a smooth manifold and let $f, g \in C^{\infty}(M)$. Prove the following assertions:
(a) If $a, b \in \mathbb{R}$, then $d(a f+b g)=a d f+b d g$.
(b) $d(f g)=f d g+g d f$.
(c) $d(f / g)=(g d f-f d g) / g^{2}$ on the set where $g \neq 0$.
(d) If $J \subseteq \mathbb{R}$ is an interval containing the image of f and if $h: J \rightarrow \mathbb{R}$ is a smooth function, then $d(h \circ f)=\left(h^{\prime} \circ f\right) d f$.
(e) If f is constant, then $d f=0$. Conversely, if $d f=0$, then f is constant on each connected component of M.

Exercise 3:

(a) Derivative of a function along a curve: Let M be a smooth manifold, $\gamma: J \rightarrow M$ be a smooth curve, and $f: M \rightarrow \mathbb{R}$ be a smooth function. Show that the derivative of $f \circ \gamma: J \rightarrow \mathbb{R}$ is given by

$$
(f \circ \gamma)^{\prime}(t)=d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)
$$

(b) Let M be a smooth manifold and let $f \in C^{\infty}(M)$. Show that $p \in M$ is a critical point of f if and only if $d f_{p}=0$.
(c) Let M be a smooth manifold, let S be an immersed submanifold of M, and let $\iota: S \hookrightarrow M$ be the inclusion map. For any $f \in C^{\infty}(M)$, show that $d\left(\left.f\right|_{S}\right)=\iota^{*}(d f)$. Conclude that the pullback of $d f$ to S is zero if and only if f is constant on each connected component of S.

Exercise 4 (to be submitted by Friday, 22.12.2023, 20:00):
(a) Consider the smooth map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(s, t) \mapsto\left(s t, e^{t}\right)
$$

and the smooth covector field

$$
\omega=x d y-y d x \in \mathfrak{X}^{*}\left(\mathbb{R}^{2}\right) .
$$

Compute $F^{*} \omega$.
(b) Consider the function

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto x^{2}+y^{2}+z^{2}
$$

and the map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right) .
$$

(Note that F is the inverse of the stereographic projection from the north pole $N \in \mathbb{S}^{2}$; see Exercise 6, Sheet 2.) Compute $F^{*}(d f)$ and $d(f \circ F)$ separately, and verify that they are equal.
(c) Consider the smooth manifold

$$
M:=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}
$$

and the smooth function

$$
f: M \rightarrow \mathbb{R},(x, y) \mapsto \frac{x}{x^{2}+y^{2}} .
$$

Compute the coordinate representation for $d f$ and determine the set of all points $p \in M$ at which $d f_{p}=0$.

