1 The Dual of a Vector Space

Let V be a finite-dimensional \mathbb{R}-vector space. A covector on V is a real-valued linear functional on V, that is, a linear map $\omega: V \rightarrow \mathbb{R}$. It is straightforward to check that the set of all covectors on V is an \mathbb{R}-vector space under the obvious operations of pointwise addition and scalar multiplication. It is denoted by V^{*} and is called the dual space of V. The next proposition expresses the most important fact about V^{*}.

Proposition 1. Let V be an \mathbb{R}-vector space of dimension n. Given any basis $\left(E_{1}, \ldots, E_{n}\right)$ for V, consider the covectors $\varepsilon^{1}, \ldots, \varepsilon^{n} \in V^{*}$ defined by

$$
\varepsilon^{i}\left(E_{j}\right)=\delta_{j}^{i} .
$$

Then $\left(\varepsilon^{1}, \ldots, \varepsilon^{n}\right)$ is a basis for V^{*}, called the dual basis to $\left(E_{j}\right)$. In particular,

$$
\operatorname{dim}_{\mathbb{R}} V=\operatorname{dim}_{\mathbb{R}} V^{*}
$$

In general, if $\left(E_{j}\right)$ is a basis for V and if $\left(\varepsilon^{i}\right)$ is its dual basis, then for any vector $v=v^{j} E_{j} \in V$ we have

$$
\varepsilon^{i}(v)=v^{j} \varepsilon^{i}\left(E_{j}\right)=v^{j} \delta_{j}^{i}=v^{i} .
$$

Thus, the i-th basis covector ε^{i} picks out the i-th component of a vector with respect to the basis $\left(E_{j}\right)$.

More generally, we can express an arbitrary covector $\omega \in V^{*}$ in terms of the dual basis as

$$
\omega=\omega_{i} \varepsilon^{i},
$$

where the i-th component is determined by $\omega_{i}=\omega\left(E_{i}\right)$. Thus, the action of the given covector $\omega \in V^{*}$ on a vector $v=v^{j} E_{j} \in V$ is

$$
\omega(v)=\omega_{i} v^{j} \varepsilon^{i}\left(E_{j}\right)=\omega_{i} v^{i} .
$$

Let V and W be \mathbb{R}-vector spaces and let $A: V \rightarrow W$ be a linear map. The dual map of A is the linear map $A^{*}: W^{*} \rightarrow V^{*}$ defined by

$$
\left(A^{*} \omega\right)(v):=\omega(A v), \omega \in W^{*}, v \in V .
$$

Proposition 2. The dual map satisfies the following properties:
(a) $(A \circ B)^{*}=B^{*} \circ A^{*}$.
(b) $\left(\mathrm{Id}_{V}\right)^{*}=\mathrm{Id}_{V^{*}}$.

Therefore, the assignment that sends a vector space to its dual space and a linear map to its dual linear map is a contravariant functor from the category of \mathbb{R}-vector spaces to itself.

