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The Projective Space

So far, most of the smooth manifolds we encountered in this course were intrinsically
subspaces of some Euclidean space Rn. However, the set-up of the general theory (that
is, endowing topological manifolds with a smooth structure) is designed precisely to allow
our objects of study to come along as abstract spaces, rather than requiring them to
be subsets of Rn. So it would be nice to see an example of a smooth manifold which
takes advantage of this abstract set-up. An elementary yet important example is the real
projective space RPn, which will be described in this short note.

The underlying set of RPn:

Let n ∈ N∗. There is a natural group action of R× := R \ {0} on Rn+1 \ {0} given by

R× × (Rn+1 \ {0}) → Rn+1 \ {0}
(λ, x) 7→ λx.

As with any group action, we can form the quotient set, whose points are the orbits of the
action. Concretely, we define the real projective space of dimension n, denoted by RPn,
to be the quotient of the above action, i.e.,

RPn := (Rn+1 \ {0}) /R× .

Note that RPn comes equipped with a natural surjection

π : Rn+1 \ {0} → RPn

x 7→ [x] := R× · x.
In particular, notice that points of RPn are in one-to-one correspondence with one-
dimensional subspaces of Rn+1: if [x] ∈ RPn, then [x]∪{0} = R ·x is the one-dimensional
subspace of Rn+1 generated by x, while if L is any one-dimensional subspace of Rn+1,
then L \ {0} = [x] for any x ∈ L \ {0}. (This is the geometric picture you should have in
mind when thinking about RPn.) If

x = (x0, . . . , xn)

is a point of Rn+1 \ {0}, then we denote by

π(x) = [x] = [x0 : . . . : xn]

the corresponding point of RPn. Note that [x0 : . . . : xn] = [y0 : . . . : yn] if and only if
there exists λ ̸= 0 such that λxi = yi for all i.
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The topology of RPn:

By definition, RPn is a quotient of Rn+1 \ {0}, and the latter can be equipped with its
natural Euclidean topology. Recall that in general there is a procedure with which the
quotient of some topological space can be equipped with a natural topology. Concretely,
one can easily show that the collection

TRPn :=
{
U ⊆ RPn | π−1(U) ⊆ Rn+1 \ {0} is open

}
is a topology on RPn. Moreover, if we endow RPn with this topology, then the quotient
map π : Rn+1 \ {0} → RPn is continuous, and a map f : RPn → X from RPn to some
topological space X is continuous if and only if so is the composite map f ◦ π. The same
is true for any subset A ⊆ RPn endowed with the subspace topology. (If this is new for
you, you can verify this as an exercise.)

At this point, there are several things that need to be checked about the topological
space RPn.

Exercise 1: Show that RPn is Hausdorff by going through the following steps:

(i) Show that the quotient map π : Rn+1 \ {0} → RPn is open.

(ii) Show that the set

∆̃ :=
{
(x, y) ∈ (Rn+1 \ {0})× (Rn+1 \ {0}) | [x] = [y]

}
is closed in (Rn+1 \ {0})× (Rn+1 \ {0}).

(iii) Show that the set

∆ :=
{(

[x], [x]
)
∈ RPn × RPn | [x] ∈ RPn

}
is closed in RPn × RPn.

(iv) Conclude that RPn is Hausdorff.

[Hint: Use (iii) and that the collection{
U × V | U, V ∈ TRPn

}
is a basis for the topology of RPn × RPn by definition of the product topology.]

Exercise 2: Show that RPn is second-countable.

[Hint: Use Exercise 1(i).]

Exercise 3: Show that RPn is locally Euclidean of dimension n as follows.

(i) For each 0 ≤ i ≤ n, set

Ui :=
{
[x0 : . . . : xn] | xi ̸= 0

}
⊆ RPn.

Show that Ui is open, and that

RPn =
n⋃

i=0

Ui.
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(ii) For each 0 ≤ i ≤ n, consider the map

φi : Ui → Rn

[x0 : . . . : xn] 7→
(
x0

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn

xi

)
.

Show first that φi is well-defined, and then that it is a homeomorphism. Conclude
that RPn is locally Euclidean of dimension n.

Exercise 4:

(i) Show that RPn is connected.

(ii) Show that the restriction of π to Sn ⊆ Rn+1 \ {0} is still surjective. Conclude that
RPn is compact.

By the above exercises we infer that RPn is an n-dimensional topological manifold,
which is additionally compact and connected.

Before continuing the study of RPn, a few words about the open subsets Ui defined
in Exercise 3(i) are in order. The open cover RPn =

⋃n
i=0 Ui is called the standard open

cover of RPn. The equality, for example, φn([x]) = y, means that the line corresponding
to [x] meets the plane Rn×{1} at the point (y, 1). The complement of Un consists of those
lines which do not intersect the plane Rn×{1}, which (as you may convince yourself) are
precisely the lines contained in Rn × {0}. Hence, we may somewhat suggestively write

RPn = Un ⊔ P
(
Rn × {0}

) ∼= Rn ⊔ RPn−1.

We may thus regard RPn as a compactification of Rn by adding the points of RPn−1,
which from this point of view are often called points at infinity. In particular, the real
projective line RP1 (n = 1) may be regarded a one-point compactification of the real
line R1, obtained by adding to it a “point at infinity”, and the real projective plane RP2

(n = 2) may be viewed as a compactification of the real plane R2 by adding to it a “line
at infinity”.

The smooth structure of RPn:

The standard open cover

RPn =
n⋃

i=0

Ui.

together with the homeomorphisms

φi : Ui → Rn, [x0 : . . . : xn] 7→
(
x0

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn

xi

)
, 0 ≤ i ≤ n

determine an atlas of RPn. According to part (a) of Exercise 1, Sheet 2, to obtain a
smooth structure on RPn, it only remains to check that the charts {(Ui, φi)}0≤i≤n are
smoothly compatible.
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Exercise 5: Let 0 ≤ i < j ≤ n. Show that the transition map from (Ui, φi) to (Uj, φj)
is a diffeomorphism by computing that

φj ◦ φ−1
i : Rn

xj ̸=0 → Rn
xi+1 ̸=0

(x1, . . . , xn) 7→
1

xj

(x1, . . . , xi, 1, xi+1, . . . , xj−1, xj+1, . . . , xn) ,

and

φi ◦ φ−1
j : Rn

xi+1 ̸=0 → Rn
xj ̸=0

(x1, . . . , xn) 7→
1

xi+1

(x1, . . . , xi, xi+2, . . . , xj, 1, xj+1, . . . , xn) .

It follows from Exercise 5 that

ARPn :=
{
(Ui, φi)

}n

i=0

is a smooth atlas for RPn, and the smooth structure it induces is referred to as the standard
one. Thus, we now have a smooth manifold, namely RPn, which is not intrinsically defined
as a subset of Rn!

Remark. A posteriori, the so-called Whitney’s embedding theorem asserts that there is a
smooth embedding RPn ↪→ R2n (and the 2n is in fact minimal if n is a power of 2), so in
principle we can also realize the smooth manifold RPn as a submanifold of R2n. But it
would be very awkward if we were only able to speak about RPn as a smooth manifold
once we find such an embedding, so the flexibility of defining it abstractly is certainly
very helpful.

Further exercises about RPn:

Exercise 6: Prove the following assertions:

(i) The quotient map π : Rn+1 \ {0} → RPn is smooth.

(ii) A map F : RPn → M to a smooth manifold M is smooth if and only if the composite
map F ◦ π : Rn+1 \ {0} → M is smooth.

Exercise 7: Show that RP1 ∼= S1 as smooth manifolds.

[Hint: To define an appropriate map, it might be helpful to use the identifications R2 ∼= C
and S1 ∼= {z ∈ C | |z| = 1}.]

Exercise 8: Show that the quotient map π : Rn+1 \ {0} → RPn is a smooth submersion,
and that the kernel of the differential dπp : Tp

(
Rn+1 \ {0}

)
→ T[p]RPn is the subspace

generated by p.

Exercise 9: Let P : Rn+1 \ {0} → Rk+1 \ {0} be a smooth map, and suppose that for
some d ∈ Z we have P (λx) = λdP (x) for all λ ∈ R× and x ∈ Rn+1 \ {0}. Show that the

map P̃ : RPn → RPk given by P̃
(
[x]

)
= [P (x)] is well-defined and smooth.
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Exercise 10: Let V be a real vector space of dimension n+ 1. Define P(V ) analogously
to RPn, and construct a smooth structure on it. Show that the smooth structure is
independent of the choice of a basis of V .

Exercise 11: Show that the map

F : Rn → RPn, (x1, . . . , xn) 7→ [x1 : · · · : xn : 1]

is a diffeomorphism onto a dense open subset of RPn.

Exercise 12: Consider the smooth map

F : R2 → RP2, (x, y) 7→ [x : y : 1]

and the smooth vector field X on R2 defined by

X = −y
∂

∂x
+ x

∂

∂y
.

Show that there is a smooth vector field Y on RP2 that is F -related to X, and compute
its coordinate representation in terms of each of the charts defined in Exercise 3(ii).
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