Deep 3D Surface Meshes

P. Fua
EPFL Computer Vision Lab
Lausanne
Switzerland
Aerial Mapping
Deforming 3D Surfaces
There are many applications at which explicit representations excel:
- High-quality rendering in computer graphics.
- Precise modeling of biological structures from biomedical data.
- Computational fluid dynamics in computer assisted design.

But:
- Their topology is fixed.
- They are not particularly deep learning friendly.

—> Implicit Surface Representations
Signed Distance Fields (SDF)

• Represent a 3D surface S by the zero crossings of a signed distance function $f: \mathbb{R}^3 \rightarrow \mathbb{R}$

\[\forall x \in \mathbb{R}^3, f(x) \text{ is the signed distance to the surface.} \]

• Such surfaces can easily change topology, which is harder to do with explicit surface representations.

• SDFs have long been appealing in theory but hard to use in practice because it was necessary to store the 3D values of f in a cube like structure until ….
But one bottleneck remains: If an explicit surface representation is required, one has to run a marching-cube style algorithm, which is not differentiable and often slow.
Deep SDF Pipeline

Loss function: \(L(\mathcal{V}, \mathcal{F}) \)

Forward pass: \(\mathcal{V}, \mathcal{F} = mc(S), \text{ with } f_\theta(v_i | C) = 0, \forall v_i \in \mathcal{S} \).

Backward pass: \[
\frac{\partial L}{\partial C} = \sum_i \frac{\partial L}{\partial v_i} \left(\frac{\partial v_i}{\partial s} \right) \frac{\partial s}{\partial C}
\]

- A priori \(\frac{\partial v_i}{\partial s} \) cannot be computed because \(mc \) is not differentiable.
- But, \(f_\theta \) approximates a signed distance function ...

\[
\frac{\partial v}{\partial s} = -n(v) = -\nabla s(v), \\
\frac{\partial v}{\partial v} = -\frac{\nabla s(v)}{\|\nabla s(v)\|^2}
\]
is \(s \) is not a signed distance function.
End-to-End Differentiable Pipeline

1. Start with a Deep SDF code.
2. Use marching cube to compute mesh and vertices.
3. Use them for the forward pass and for backpropagation.
4. Update the SDF code and iterate.

\[C_0 \rightarrow \text{Minimizing surface-to-surface distance} \rightarrow C_T \text{ Minimizing image-to-image distance} \]

\[C_0 \rightarrow \text{Minimizing a differentiable objection function} \rightarrow C_T \]

[Remelli et al., arXiv’20]

\[C_0 \rightarrow \text{We can turn a spherical mesh into a toroidal one by minimizing a differentiable objection function.} \]
From Genus 0 to Genus 1
Application: Single View Reconstruction
Network Specification

\[I \in \mathbb{R}^{3 \times 224 \times 224} \]

\[C \in \mathbb{R}^{256} \]

\[x \in \mathbb{R}^{3} \]

Number of encoder parameters: \(24,032,576\)
Number of decoder parameters: \(1,843,195\)

Trained by minimizing

\[
\sum_{x} |f_{I}^{gt}(x) - f_{\theta}(x | C(I))|_1 + \lambda |C(I)|_2
\]

with respect to \(\theta\).
From Discriminative to Generative

Refined by minimizing:

$$|S_I - S(C)|_1 + \lambda |C|_2$$

with respect to C.

I : 3 x 224 x 224

C : $f_\theta(\cdot, C)$

Marching cubes

$S(C)$

Shape Derivative

Differentiable renderer

Mesh
From Silhouettes to 3D Shapes

3D Model from Image

Editable 3D Model from Sketch
Application: Shape Optimization
3D Shape Design

- Design a shape.
- Simulate its performance.
- Redesign.

It works but:

- It takes hours or days to produce a single simulation.
- This constitutes a serious bottleneck in the exploration of the design space.
- Designs are limited by humans’ cognitive biases.
The response surface is approximated by a GP, which only works well when the model **has few parameters**.
Deep Surrogate Method

- Drag
- Pressure Coefficients
- Boundary Layer Velocities
- ...

The response surface can be approximated by a GCNN instead of a GP.

\rightarrow The model can have any number of parameters.

[Baque et al., ICML’18]
GCNN operates directly on the mesh vertices.
Lift Prediction

Full Simulation (1 h)

GCNN Prediction (30 ms)

<table>
<thead>
<tr>
<th>Physics Type</th>
<th>External Aerodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset size</td>
<td>~1000 shapes</td>
</tr>
<tr>
<td>R2-accuracy</td>
<td>95 %</td>
</tr>
</tbody>
</table>
Drag Prediction

- The predicted results are very close to the simulated ones.
- The aerodynamic drag D can be estimated from these predictions.
- D is a differentiable function of the surface mesh vertices.
Minimizing Drag Under Constraints

Minimizing drag while enclosing a sphere.
From UAV To Lifting Body

Sensefly drone (L/D 11.9)

Optimize the wings (L/D 13.7)

Optimize the fuselage as well
Bicycle Shell

Altair 6, IUT Annecy, 2018

World Human Powered Speed Challenge
Battle Mountain Nevada, 2019

Women world record: 126.48 km/h
Men student world record: 136.74 km/h

https://www.facebook.com/team.velo.carene/
Introducing Priors

Train an auto-decoder using ShapeNet cars.
Drag Minimization

Minimize $\mathcal{D}(C)$ with respect to C under constraint.
From Pickup-Truck to Sports Car
Interactive Design
Hybrid Shape Representation

Different types of primitives

Optimization results

—> Individual parts adapt to each other.

[Vasu et al., ArXiv’21]
From Latent Vector to Primitives

We use SDFs to represent:
- Simple geometric primitives, such as spheres and cylinders.
- Primitives that bear a close resemblance to the simple ones but can deviate from them.
- Free form primitives that have arbitrarily complex shapes.
The wheels are better separated from the car body.
Shape Manipulation

Changing the explicit parameters

Changing the implicit parameters
Interactive Shape Manipulation

Changing the wheels

[Vasu et al., ArXiv’21]
Dynamic Soaring

- We plan to design for ease of control.
- We will use dynamic soaring to prove the concept.
Conclusion

• Combining explicit and implicit representations early makes it possible to exploit the strength of both representations.

• Deep Signed Distance Functions can be used to implement 3D surface meshes that can change their topology while preserving end-to-end differentiability.

—> This opens the door for new applications in fields as diverse as Computer Assisted Design and Medical Imaging.
Many Thanks To

• Timur Bagautdinov (NeuralConcept)
• Pierre Baque (NeuralConcept)
• Benoît Guillard (EPFL)
• Graham Knott (EPFL)
• Artem Lukoianov (NeuralConcept)
• Edoardo Remelli (EPFL)
• Stephan Richter (Intel)
• Udaranga Wickramasinghe (EPFL)
• Pierre Yvernay (EPFL)