
Artificial Neural Networks (Gerstner). Solutions for week 5

TD-learning and function approximation

Exercise 1. Consistency condition for 3-step SARSA

In class we have seen the arguments leading to the error function arising from the consistency condition of
Q-values:

E =
1

2

∑
δ2
t

with δt = rt + γQ(s′, a′)−Q(s, a). This specific consistency condition corresponds to 1-step SARSA.

Write down an analogous consistency condition for 3-step SARSA.

Solution:

The error function is E = 1
2

∑
δ2
t , but with a consistency condition δt = rt+γrt+1 +γ2rt+2 +γ3Q(st+3, at+3)−

Q(s, a) where st+3, at+3 are state and action three time steps after taking action a in state s. Explanation: the
value Q(s, a) must be explained by the (average of the) rewards in the next three steps plus the Q-value of the
action three time steps after taking action a in state s. The averaging is taken implicitly by an online on-policy
algorithm once the same sequence has been taken multiple times.

Exercise 2. Q-values for continuous states

We approximate the state-action value function Q(s, a) by a weighted sum of basis functions (BF):

Q(s, a) =
∑
j

wajΦ(s− sj) ,

where Φ(x) is the BF “shape”, and the sj ’s represent the centers of the BFs.

Calculate
∂Q(s, a)

∂wãi
,

the gradient of Q(s, a) along wãi for a specific weight linking the basis function i to the action ã.

Solution:

Using the definition of Q(s, a) given, we find the gradient:

∂Q(s, a)

∂wãj
= δaãΦ(s− sj) .

Therefore the direction of the gradient vector (dQ(s, a)/dwaj) for j = 1, . . . ,K is given by the magnitude of
responses Φ(s− sj) of all basis functions.

Exercise 3. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:

Q(s, a) =

400∑
k=1

wkaΦ(s− sk).

For this exercise the function Φ is arbitrary, but you may think of it as a Gaussian function. Note that s and
sk are usually vectors in RN in this case. There are 3 different actions so that the total number of weights is
1200. Now consider the error function Et = 1

2δ
2
t , where

δt = rt + γ ·Q(s′, a′)−Q(s, a) (1)

is the reward prediction error. Our aim is to optimize Q(s, a) for all s, a by changing the parameters w. We
consider η ∈ [0, 1) as the learning rate.

a. Use the full gradient of the error function Et and write down the learning rule based on gradient decent.
Consider the case where the actions a and a′ are different.

How many weights need to be updated in each time step?



b. Use the full gradient of the error function Et and write down the learning rule based on gradient decent.
Consider the case where the actions a and a′ are the same.

Is there any difference to the case considered in (a)?

c. Repeat (a) and (b) by using the semi-gradient of the error function Et. Do your answers change?

d. Suppose that the input space is two-dimensional and you discretize the input in 400 small square ‘boxes’
(i.e., 20 × 20). The basis function Φ(s − sk) is now the indicator function: it has a value equal to one if
the current state s is in ‘box’ k and zero otherwise.

How do your results from (a-c) look like in this case?

e. The learning rules in (d) are very similar to standard SARSA. What is the difference?

Hint : Consider the difference between Full Gradient and Semi-gradient.

f. Assume that Q(s′, a′) in Equation 1 does not depend on the weights. For example Q(s′, a′) could be
extracted from a separate neural network with its own parameters. How is your result in (a-c) related
to standard SARSA? What do you conclude regarding the choice of semi-gradient versus full gradient?
What do you conclude regarding the choice of Mnih et al. (2015) to model Q(s′, a′) by a separate network
with parameters that are kept fixed for some time?

Solution:

a. Let’s start by computing the derivative of Q(s, a) with respect to wã
k̃

(we’ll use this later):

∂Q(s, a)

∂wã
k̃

= δaã Φ(s− sk̃) ,

where δaã is the Kroneker, i.e., it is 1 if a = ã, and 0 otherwise (not to be confused with δt).

We then compute the gradient, i.e., the derivative of Et with respect to wã
k̃
, using the chain rule a few

times and the result above:

∂Et
∂wã

k̃

= δt

[
γ
∂Q(s′, a′)

∂wã
k̃

− ∂Q(s, a)

∂wã
k̃

]
= δt

[
γδa′ã Φ(s′ − sk̃)− δaã Φ(s− sk̃)

]
.

In gradient descent, we move the weights in the direction that minimizes the error, i.e.

∆wã
k̃

= −η ∂Et
∂wã

k̃

= η δt
[
δaã Φ(s− sk̃)− γδa′ã Φ(s′ − sk̃)

]
2 · 400 weights (for actions a and a′) need to be updated in each step.

b. In the case where a = a′ (i.e., the action taken is the same in the two consecutive steps):

∆wã
k̃

= η δt
(
Φ(s− sk̃)− γΦ(s′ − sk̃)

)
δaã.

400 weights need to be updated.

c. When using semi-gradient, we assume that Q(s′, a′) is fixed and independent of the weights. Hence, the
semi-gradient of Et with respect to wã

k̃
is given by

∂Et
∂wã

k̃

= δt

[
γ · 0− ∂Q(s, a)

∂wã
k̃

]
= −δt Φ(s− sk̃)δaã,

which is importantly 0 for ã = a′ 6= a. Therefore, for both cases where a = a′ and a 6= a′, we have

∆wã
k̃

= η δt Φ(s− sk̃)δaã.

400 weights need to be updated.

https://www.nature.com/articles/nature14236


d. Showing box k by Bk, we can write the Q-values as

Q(s, a) =

400∑
k=1

wkaI(s ∈ Bk),

where I(s ∈ Bk) is the indicator function, i.e., is equal to 1 if s ∈ Bk and equal to 0 if s /∈ Bk.

The update rules based on the full gradient (a-b) can be written as (for part a, i.e., a 6= a′)

∆wã
k̃

= −η ∂Et
∂wã

k̃

= η δt
[
δaã I(s ∈ Bk̃)− γδa′ã I(s′ ∈ Bk̃)

]
and (for part b, i.e., a = a′)

∆wã
k̃

= η δt
(
I(s ∈ Bk̃)− γI(s′ ∈ Bk̃)

)
δaã.

For the case of a 6= a′, 2 weights changes (for the boxes to which s and s′ belong). For the case of a = a′,
either 1 weight (if s and s′ are in the same box) or 2 wieghts (if s and s′ are in different boxes) change.

The update rule based on the semi-gradient (c) can be written as

∆wã
k̃

= η δt I(s ∈ Bk̃)δaã.

Only 1 weight changes.

e. Let us define k as the index of the box for which we have s ∈ Bk and k′ as the index of the box for which
we have s′ ∈ Bk′ . Using this notation, we have

Q(s, a) = wka and Q(s′, a′) = wk
′

a′ .

Therefore, the update rule based on the semi-gradient can be re-written as

identical to that of SARSA because it can be written as

∆Q(s, a) = η δt = η
(
rt + γ ·Q(s′, a′)−Q(s, a)

)
,

which is identical to the update rule of SARSA.

The update rule based on the full gradient has an extra term given by γΦ(s′ − sk̄).

f. If Q(s′, a′) is a fixed target that does not depend on the weights, then the full gradient and the semi-
gradient are the same. This implies that the choice of the semi-gradient for the update rule is equivalent
to the setting where Q(s′, a′) is given by a separate neural network.

Hence, if Q(s′, a′) is a fixed target, ∆wã
k̃

in (a-b) should be replaced by ∆wã
k̃

in (c). Hence, the update

rules in (d) are all equivalent to the SARSA update rule.

As a result, the choice of Mnih et al. (2015) is equivalent to using semi-gradient with delayed update of
Q(s′, a′).

Exercise 4. Inductive prior in reinforcement learning (from the final exam 2022)

We consider a 2-dimensional discrete environment with 16 states (Figure 1) plus one goal state where the agent
receives a positive reward r. States are arranged in a triangular fashion in two dimensions. States are labeled
as shown in the Figure 1 on the left. Available actions (Figure 1 on the right) are a1 =up, a2 =down, a3 =right,
a4 =diagonally up right, a5 =diagonally down right, a6 =left (whenever these moves are possible). Returns are
possible, e.g., the action up can be immediately followed by the action down.

Suppose that we use function approximation for

Q(a;X) =
∑
j

wajxj

with continuous state representation X with the following encoding scheme: Input is encoded in 18 dimensions
X = (x1, x2, ..., x16, x17, x18), where the first 16 entriesare 1-hot encoded discrete states; entry 17 is x17 =
0.5 · (z + 1) and x18 = 0.1 where z is the horizontal coordinate of the environment (Figure 1). Before the first
episode, we initialize all weights at zero. During the first episode, we update Q-values using the Q-learning
algorithm in continuous space derived with the semi-gradient method from the Q-learning error function. We
consider η ∈ [0, 1) as the learning rate and γ ∈ [0, 1] as the discount factor.



Figure 1: Figure for Exercise 4

a. Write down the quadratic loss function for 1-step Q-learning.

b. Using the semi-gradient update rule, what are the new weight values wai and Q-values Q(s, a) for all 16
states and all actions at the end of the first episode? Write down all weights and Q-values that have
changed.

c. In episode 2 you use a greedy policy in which ties are broken by random search. What is the probabilty p
that the agent will choose a path with a minimal number of steps to the goal? Consider two initial states
7 and 11.

d. Is this behavior for episode 2 typical for 1-step Q-learning? Comment on your result in (c) in view of the
no-free lunch theorem. (DO NOT write down the no-free lunch theorem, but use it in order to interpret
your result.)

e. What can you say about the inductive prior of the variable x18? To let you focus on the role of x18,
consider for a moment the representation x17 = α[z − β] with α = 0 (instead α = 0.5).

f. What can you say about the inductive prior of the variable x17? To answer this question consider the
representation x17 = α[z − β] and redo the calculations as in (b). Then compare parameters α = 0.5 and
β = 2 with parameters α = 0.5 and β = −1.

What happens if the sing of α switches from +1 to −1?

g. What would be a great choice of functional representation for input x17 and x18 if you know that the
reward is located at state 6 with coordinates (z, y) = (2, 1)?

Solution:

a. For the tuple (Xt, at, rt+1, Xt+1), we have

L(w) =
1

2

[
δt
]2

with

δt = rt+1 + γmax
a

Q(Xt+1, a)−Q(Xt, at).

b. Update of the weights for transition (Xt, at, rt+1, Xt+1) is given by

∆waj = ηδtxtjδa,at .

Importantly, the only update happens after the tuple (Xt = 10, at = a3, r
t+1 = r,Xt+1 = terminal) with

δt = r. The updated weights are given by

waj =


ηr if a = a3 and j = 10

2ηr if a = a3 and j = 17

0.1ηr if a = a3 and j = 18

0 otherwise



and the updated Q-values by

Q(X, a) =

{
ηr
[
δx10,1 + (z + 1) + 0.01

]
if a = a3

0 otherwise.

c. Starting from state 7, the agent with the greedy policy goes directly to the goal state, without any ties in
the Q-values: p = 1.

For starting from state 11, the agent with the greedy policy goes directly to state 13, where is a tie between
a1, a4, and a6. To take the shortest, the agent needs to take a6 with probability 1/3. Then, from state
10, it directly goes to the goal state: p = 1

3 .

d. No, it is a consequence of the particular functional form of Q function: it generalizes that the good actions
are similar in all states (x18 > 0 and x17 > 0). This form is harmful in environment where the assumption
is not satisfied (which is the price of the served lunch)!

e. When x17 = 0, we have

Q(X, a) =

{
ηr
[
δx10,1 + 0.01

]
if a = a3

0 otherwise

x18 adds a value to the rewarded actions in all states, so, in simple words, the inference prior of variable
x18 is that the good action is the same for all states.

f. For x17 = α[z − β], we have

Q(X, a) =

{
ηr
[
δx10,1 + α2(3− β)(z − β) + 0.01

]
if a = a3

0 otherwise

* In simple words, the inference prior of variable x17 is that the good action is similar among all states
with z < β (i.e., where α2(3 − β)(z − β) < 0) but different from all states with z > β (i.e., where
α2(3 − β)(z − β) > 0). Hence, for β = 2, agents starting from X = 7 will never take the direct path to
the goal! For β = −1, the inference prior of variable x17 is qualitatively similar to that of x18.

* The sign of α does not matter because only its squared appears in the updated weights.

g. One choice can be x17 = (z − 2) and x18 = (y − 1), but there are multiple good solutions with f1(z − 2)
and f2(y − 1) for different functions f1 and f2

Exercise 5. Review of TD algorithms 11

You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly.

You have 2 possible actions from each state. You read-out the values after n episodes and find the following
values:

Q(1, a1) = 0, Q(2, a1) = 5 Q(3, a1) = 3 Q(4, a1) = 4 Q(5, a1) = 6 Q(6, a1) = 12 Q(7, a1) = 10 Q(8, a1) = 11
Q(9, a1) = 9 Q(10, a1) = 10

Q(1, a2) = 1, Q(2, a2) = 1 Q(3, a2) = 3 Q(4, a2) = 2 Q(5, a2) = 1 Q(6, a2) = 4 Q(7, a2) = 2 Q(8, a2) = 6
Q(9, a2) = 11 Q(10, a1) = 10

You run one episode and observe the following sequence (state, action, reward)

(1, a2, 1) (2, a2, 1) (3, a1, 0) (5, a1, 4) (6, a1, 1) (8, a2, 1)

What are the updates of 2-step SARSA that the algorithm should produce?

Solution:

The update algorithm for 2-step SARSA is

∆Q(st, at) = α(rt+1 + γrt+2 + γ2Q(st+2, at+2)−Q(st, at))

with step size/learning rate α and discount factor γ. As a result, the update for the episode above should be

1Solving Exercise 5 is not nesscary. You can instead also run similar problems using simulations.



∆Q(1, a2) = α(1 + 1γ + 3γ2 − 1)

∆Q(2, a2) = α(1 + 0γ + 6γ2 − 1)

∆Q(3, a1) = α(0 + 4γ + 12γ2 − 3)

∆Q(5, a1) = α(4 + 1γ + 6γ2 − 6)

∆Q(6, a1) = α(1 + 1γ − 12)

∆Q(8, a2) = α(1− 6).

Here, we use the fact that no rewards can be received after the episode ends to truncate the summation. This
can be thought of as a special “terminal” state at the end of each episode, that always transitions into itself
with reward 0, and all Q–values equal to 0.

Exercise 6. Review of TD algorithms 2

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

4

= 0

10000

3

+4,T)

4

X
X X

X
+4 +4 )4

a. Is the algorithm On-Policy or Off-Policy?

Answer: ..........

b. What does the variable X represent?

Answer .............

c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?

Answer (fill in/choose)

This algorithm is identical/very similar to .... .

There is no difference to the named algorithm/the main difference is ....



d. Is this algorithm a TD algorithm? What is the reason for your answer?

Answer: Yes/No, because ....

Solution:

a. The algorithm is On–Policy. In the third–to–last line, the value is bootstrapped using the Q–value estimate
Q(st+4, at+4), i.e. the action that was taken in state st+4 according to the agent’s actual policy.

b. The variable X represents the 4–step truncated discounted returns. That is, X is a sample from the
distribution over the returns that the agent can expect from taking action Aτ in state Sτ ; the agent
estimates the mean of this distribution with Q(Sτ , Aτ ).

The agent gets this sample using the actual (discounted) rewards observed in the episode over the first 4
steps, plus an estimate of the average discounted returns from step 5 onwards (given by γ4Q(Sτ+4, Aτ+4)).

c. The algorithm is equivalent to 4–step SARSA, which itself is very similar to the more commonly used
1–step SARSA.

d. The algorithm is a TD algorithm because it uses bootstrapping (updating estimates from other, later
estimates) to estimate the target (the Q–value function).


