Artificial Neural Networks (Gerstner). Solutions for week 5

TD-learning and function approximation

Exercise 1. Consistency condition for 3 -step SARSA

In class we have seen the arguments leading to the error function arising from the consistency condition of Q-values:

$$
E=\frac{1}{2} \sum \delta_{t}^{2}
$$

with $\delta_{t}=r_{t}+\gamma Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)$. This specific consistency condition corresponds to 1-step SARSA.
Write down an analogous consistency condition for 3-step SARSA.

Solution:

The error function is $E=\frac{1}{2} \sum \delta_{t}^{2}$, but with a consistency condition $\delta_{t}=r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\gamma^{3} Q\left(s_{t+3}, a_{t+3}\right)-$ $Q(s, a)$ where s_{t+3}, a_{t+3} are state and action three time steps after taking action a in state s. Explanation: the value $Q(s, a)$ must be explained by the (average of the) rewards in the next three steps plus the Q-value of the action three time steps after taking action a in state s. The averaging is taken implicitly by an online on-policy algorithm once the same sequence has been taken multiple times.

Exercise 2. Q-values for continuous states

We approximate the state-action value function $Q(s, a)$ by a weighted sum of basis functions (BF):

$$
Q(s, a)=\sum_{j} w_{a j} \Phi\left(s-s_{j}\right)
$$

where $\Phi(x)$ is the BF "shape", and the s_{j} 's represent the centers of the BFs.
Calculate

$$
\frac{\partial Q(s, a)}{\partial w_{\tilde{a} i}}
$$

the gradient of $Q(s, a)$ along $w_{\tilde{a} i}$ for a specific weight linking the basis function i to the action \tilde{a}.

Solution:

Using the definition of $Q(s, a)$ given, we find the gradient:

$$
\frac{\partial Q(s, a)}{\partial w_{\tilde{a} j}}=\delta_{a \tilde{a}} \Phi\left(s-s_{j}\right) .
$$

Therefore the direction of the gradient vector $\left(d Q(s, a) / d w_{a j}\right)$ for $j=1, \ldots, K$ is given by the magnitude of responses $\Phi\left(s-s_{j}\right)$ of all basis functions.

Exercise 3. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:

$$
Q(s, a)=\sum_{k=1}^{400} w_{a}^{k} \Phi\left(s-s_{k}\right)
$$

For this exercise the function Φ is arbitrary, but you may think of it as a Gaussian function. Note that s and s_{k} are usually vectors in \mathbb{R}^{N} in this case. There are 3 different actions so that the total number of weights is 1200. Now consider the error function $E_{t}=\frac{1}{2} \delta_{t}^{2}$, where

$$
\begin{equation*}
\delta_{t}=r_{t}+\gamma \cdot Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a) \tag{1}
\end{equation*}
$$

is the reward prediction error. Our aim is to optimize $Q(s, a)$ for all s, a by changing the parameters w. We consider $\eta \in[0,1)$ as the learning rate.
a. Use the full gradient of the error function E_{t} and write down the learning rule based on gradient decent. Consider the case where the actions a and a^{\prime} are different.
How many weights need to be updated in each time step?
b. Use the full gradient of the error function E_{t} and write down the learning rule based on gradient decent. Consider the case where the actions a and a^{\prime} are the same.

Is there any difference to the case considered in (a)?
c. Repeat (a) and (b) by using the semi-gradient of the error function E_{t}. Do your answers change?
d. Suppose that the input space is two-dimensional and you discretize the input in 400 small square 'boxes' (i.e., 20×20). The basis function $\Phi\left(s-s_{k}\right)$ is now the indicator function: it has a value equal to one if the current state s is in 'box' k and zero otherwise.

How do your results from (a-c) look like in this case?
e. The learning rules in (d) are very similar to standard SARSA. What is the difference?

Hint: Consider the difference between Full Gradient and Semi-gradient.
f. Assume that $Q\left(s^{\prime}, a^{\prime}\right)$ in Equation 1 does not depend on the weights. For example $Q\left(s^{\prime}, a^{\prime}\right)$ could be extracted from a separate neural network with its own parameters. How is your result in (a-c) related to standard SARSA? What do you conclude regarding the choice of semi-gradient versus full gradient? What do you conclude regarding the choice of Mnih et al. (2015) to model $Q\left(s^{\prime}, a^{\prime}\right)$ by a separate network with parameters that are kept fixed for some time?

Solution:

a. Let's start by computing the derivative of $Q(s, a)$ with respect to $w_{\tilde{k}}^{\tilde{a}}$ (we'll use this later):

$$
\frac{\partial Q(s, a)}{\partial w_{\tilde{k}}^{\tilde{\tilde{k}}}}=\delta_{a \tilde{a}} \Phi\left(s-s_{\tilde{k}}\right),
$$

where $\delta_{a \tilde{a}}$ is the Kroneker, i.e., it is 1 if $a=\tilde{a}$, and 0 otherwise (not to be confused with δ_{t}).
We then compute the gradient, i.e., the derivative of E_{t} with respect to $w_{\tilde{k}}^{\tilde{a}}$, using the chain rule a few times and the result above:

$$
\begin{aligned}
\frac{\partial E_{t}}{\partial w_{\tilde{k}}^{\tilde{a}}} & =\delta_{t}\left[\gamma \frac{\partial Q\left(s^{\prime}, a^{\prime}\right)}{\partial w_{\tilde{k}}^{\tilde{a}}}-\frac{\partial Q(s, a)}{\partial w_{\tilde{k}}^{\tilde{a}}}\right] \\
& =\delta_{t}\left[\gamma \delta_{a^{\prime} \tilde{a}} \Phi\left(s^{\prime}-s_{\tilde{k}}\right)-\delta_{a \tilde{a}} \Phi\left(s-s_{\tilde{k}}\right)\right] .
\end{aligned}
$$

In gradient descent, we move the weights in the direction that minimizes the error, i.e.

$$
\Delta w_{\tilde{k}}^{\tilde{a}}=-\eta \frac{\partial E_{t}}{\partial w_{\tilde{k}}^{\tilde{\tilde{k}}}}=\eta \delta_{t}\left[\delta_{a \tilde{a}} \Phi\left(s-s_{\tilde{k}}\right)-\gamma \delta_{a^{\prime} \tilde{a}} \Phi\left(s^{\prime}-s_{\tilde{k}}\right)\right]
$$

$2 \cdot 400$ weights (for actions a and a^{\prime}) need to be updated in each step.
b. In the case where $a=a^{\prime}$ (i.e., the action taken is the same in the consecutive steps):

$$
\Delta w_{\tilde{k}}^{\tilde{a}}=\eta \delta_{t}\left(\Phi\left(s-s_{\tilde{k}}\right)-\gamma \Phi\left(s^{\prime}-s_{\tilde{k}}\right)\right) \delta_{a \tilde{a}} .
$$

400 weights need to be updated.
c. When using semi-gradient, we assume that $Q\left(s^{\prime}, a^{\prime}\right)$ is fixed and independent of the weights. Hence, the semi-gradient of E_{t} with respect to $w_{\tilde{k}}^{\tilde{a}}$ is given by

$$
\frac{\partial E_{t}}{\partial w_{\tilde{k}}^{\tilde{\tilde{k}}}}=\delta_{t}\left[\gamma \cdot 0-\frac{\partial Q(s, a)}{\partial w_{\tilde{k}}^{\tilde{a}}}\right]=-\delta_{t} \Phi\left(s-s_{\tilde{k}}\right) \delta_{a \tilde{a}},
$$

which is importantly 0 for $\tilde{a}=a^{\prime} \neq a$. Therefore, for both cases where $a=a^{\prime}$ and $a \neq a^{\prime}$, we have

$$
\Delta w_{\tilde{k}}^{\tilde{a}}=\eta \delta_{t} \Phi\left(s-s_{\tilde{k}}\right) \delta_{a \tilde{a}} .
$$

400 weights need to be updated.
d. Showing box k by \mathcal{B}_{k}, we can write the Q-values as

$$
Q(s, a)=\sum_{k=1}^{400} w_{a}^{k} I\left(s \in \mathcal{B}_{k}\right),
$$

where $I\left(s \in \mathcal{B}_{k}\right)$ is the indicator function, i.e., is equal to 1 if $s \in \mathcal{B}_{k}$ and equal to 0 if $s \notin \mathcal{B}_{k}$. The update rules based on the full gradient (a-b) can be written as (for part a, i.e., $a \neq a^{\prime}$)

$$
\Delta w_{\tilde{k}}^{\tilde{a}}=-\eta \frac{\partial E_{t}}{\partial w_{\tilde{k}}^{\tilde{\tilde{k}}}}=\eta \delta_{t}\left[\delta_{a \tilde{a}} I\left(s \in \mathcal{B}_{\tilde{k}}\right)-\gamma \delta_{a^{\prime} \tilde{a}} I\left(s^{\prime} \in \mathcal{B}_{\tilde{k}}\right)\right]
$$

and (for part b, i.e., $a=a^{\prime}$)

$$
\Delta w_{\tilde{k}}^{\tilde{a}}=\eta \delta_{t}\left(I\left(s \in \mathcal{B}_{\tilde{k}}\right)-\gamma I\left(s^{\prime} \in \mathcal{B}_{\tilde{k}}\right)\right) \delta_{a \tilde{a}} .
$$

For the case of $a \neq a^{\prime}, 2$ weights changes (for the boxes to which s and s^{\prime} belong). For the case of $a=a^{\prime}$, either 1 weight (if s and s^{\prime} are in the same box) or 2 wieghts (if s and s^{\prime} are in different boxes) change. The update rule based on the semi-gradient (c) can be written as

$$
\Delta w_{\tilde{k}}^{\tilde{a}}=\eta \delta_{t} I\left(s \in \mathcal{B}_{\tilde{k}}\right) \delta_{a \tilde{a}}
$$

Only 1 weight changes.
e. Let us define k as the index of the box for which we have $s \in \mathcal{B}_{k}$ and k^{\prime} as the index of the box for which we have $s^{\prime} \in \mathcal{B}_{k^{\prime}}$. Using this notation, we have

$$
Q(s, a)=w_{a}^{k} \quad \text { and } \quad Q\left(s^{\prime}, a^{\prime}\right)=w_{a^{\prime}}^{k^{\prime}} .
$$

Therefore, the update rule based on the semi-gradient can be re-written as identical to that of SARSA because it can be written as

$$
\Delta Q(s, a)=\eta \delta_{t}=\eta\left(r_{t}+\gamma \cdot Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)
$$

which is identical to the update rule of SARSA.
The update rule based on the full gradient has an extra term given by $\gamma \Phi\left(s^{\prime}-s_{\bar{k}}\right)$.
f. If $Q\left(s^{\prime}, a^{\prime}\right)$ is a fixed target that does not depend on the weights, then the full gradient and the semigradient are the same. This implies that the choice of the semi-gradient for the update rule is equivalent to the setting where $Q\left(s^{\prime}, a^{\prime}\right)$ is given by a separate neural network.
Hence, if $Q\left(s^{\prime}, a^{\prime}\right)$ is a fixed target, $\Delta w_{\tilde{k}}^{\tilde{a}}$ in (a-b) should be replaced by $\Delta w_{\tilde{k}}^{\tilde{a}}$ in (c). Hence, the update rules in (d) are all equivalent to the SARSA update rule.
As a result, the choice of Mnih et al. (2015) is equivalent to using semi-gradient with delayed update of $Q\left(s^{\prime}, a^{\prime}\right)$.

Exercise 4. Inductive prior in reinforcement learning (from the final exam 2022)

We consider a 2-dimensional discrete environment with 16 states (Figure 1) plus one goal state where the agent receives a positive reward r. States are arranged in a triangular fashion in two dimensions. States are labeled as shown in the Figure 1 on the left. Available actions (Figure 1 on the right) are $a_{1}=\mathrm{up}, a_{2}=$ down, $a_{3}=$ right, $a_{4}=$ diagonally up right, $a_{5}=$ diagonally down right, $a_{6}=$ left (whenever these moves are possible). Returns are possible, e.g., the action up can be immediately followed by the action down.

Suppose that we use function approximation for

$$
Q(a ; X)=\sum_{j} w_{a j} x_{j}
$$

with continuous state representation X with the following encoding scheme: Input is encoded in 18 dimensions $X=\left(x_{1}, x_{2}, \ldots, x_{16}, x_{17}, x_{18}\right)$, where the first 16 entriesare 1-hot encoded discrete states; entry 17 is $x_{17}=$ $0.5 \cdot(z+1)$ and $x_{18}=0.1$ where z is the horizontal coordinate of the environment (Figure 1). Before the first episode, we initialize all weights at zero. During the first episode, we update Q-values using the Q-learning algorithm in continuous space derived with the semi-gradient method from the Q-learning error function. We consider $\eta \in[0,1)$ as the learning rate and $\gamma \in[0,1]$ as the discount factor.

Figure 1: Figure for Exercise 4
a. Write down the quadratic loss function for 1-step Q-learning.
b. Using the semi-gradient update rule, what are the new weight values $w_{a i}$ and Q-values $Q(s, a)$ for all 16 states and all actions at the end of the first episode? Write down all weights and Q-values that have changed.
c. In episode 2 you use a greedy policy in which ties are broken by random search. What is the probabilty p that the agent will choose a path with a minimal number of steps to the goal? Consider two initial states 7 and 11.
d. Is this behavior for episode 2 typical for 1-step Q-learning? Comment on your result in (c) in view of the no-free lunch theorem. (DO NOT write down the no-free lunch theorem, but use it in order to interpret your result.)
e. What can you say about the inductive prior of the variable x_{18} ? To let you focus on the role of x_{18}, consider for a moment the representation $x_{17}=\alpha[z-\beta]$ with $\alpha=0($ instead $\alpha=0.5)$.
f. What can you say about the inductive prior of the variable x_{17} ? To answer this question consider the representation $x_{17}=\alpha[z-\beta]$ and redo the calculations as in (b). Then compare parameters $\alpha=0.5$ and $\beta=2$ with parameters $\alpha=0.5$ and $\beta=-1$.
What happens if the sing of α switches from +1 to -1 ?
g. What would be a great choice of functional representation for input x_{17} and x_{18} if you know that the reward is located at state 6 with coordinates $(z, y)=(2,1)$?

Solution:

a. For the tuple $\left(X^{t}, a^{t}, r^{t+1}, X^{t+1}\right)$, we have

$$
\mathcal{L}(w)=\frac{1}{2}\left[\delta^{t}\right]^{2}
$$

with

$$
\delta^{t}=r^{t+1}+\gamma \max _{a} Q\left(X^{t+1}, a\right)-Q\left(X^{t}, a^{t}\right)
$$

b. Update of the weights for transition $\left(X^{t}, a^{t}, r^{t+1}, X^{t+1}\right)$ is given by

$$
\Delta w_{a j}=\eta \delta^{t} x_{j}^{t} \delta_{a, a^{t}}
$$

Importantly, the only update happens after the tuple ($X^{t}=10, a^{t}=a_{3}, r^{t+1}=r, X^{t+1}=$ terminal $)$ with $\delta^{t}=r$. The updated weights are given by

$$
w_{a j}= \begin{cases}\eta r & \text { if } a=a_{3} \text { and } j=10 \\ 2 \eta r & \text { if } a=a_{3} \text { and } j=17 \\ 0.1 \eta r & \text { if } a=a_{3} \text { and } j=18 \\ 0 & \text { otherwise }\end{cases}
$$

and the updated Q-values by

$$
Q(X, a)= \begin{cases}\eta r\left[\delta_{x_{10}, 1}+(z+1)+0.01\right] & \text { if } a=a_{3} \\ 0 & \text { otherwise }\end{cases}
$$

c. Starting from state 7 , the agent with the greedy policy goes directly to the goal state, without any ties in the Q-values: $p=1$.
For starting from state 11 , the agent with the greedy policy goes directly to state 13 , where is a tie between a_{1}, a_{4}, and a_{6}. To take the shortest, the agent needs to take a_{6} with probability $1 / 3$. Then, from state 10 , it directly goes to the goal state: $p=\frac{1}{3}$.
d. No, it is a consequence of the particular functional form of Q function: it generalizes that the good actions are similar in all states $\left(x_{18}>0\right.$ and $\left.x_{17}>0\right)$. This form is harmful in environment where the assumption is not satisfied (which is the price of the served lunch)!
e. When $x_{17}=0$, we have

$$
Q(X, a)= \begin{cases}\eta r\left[\delta_{x_{10}, 1}+0.01\right] & \text { if } a=a_{3} \\ 0 & \text { otherwise }\end{cases}
$$

x_{18} adds a value to the rewarded actions in all states, so, in simple words, the inference prior of variable x_{18} is that the good action is the same for all states.
f. For $x_{17}=\alpha[z-\beta]$, we have

$$
Q(X, a)= \begin{cases}\eta r\left[\delta_{x_{1} 0,1}+\alpha^{2}(3-\beta)(z-\beta)+0.01\right] & \text { if } a=a_{3} \\ 0 & \text { otherwise }\end{cases}
$$

* In simple words, the inference prior of variable x_{17} is that the good action is similar among all states with $z<\beta$ (i.e., where $\alpha^{2}(3-\beta)(z-\beta)<0$) but different from all states with $z>\beta$ (i.e., where $\left.\alpha^{2}(3-\beta)(z-\beta)>0\right)$. Hence, for $\beta=2$, agents starting from $X=7$ will never take the direct path to the goal! For $\beta=-1$, the inference prior of variable x_{17} is qualitatively similar to that of x_{18}.
* The sign of α does not matter because only its squared appears in the updated weights.
g. One choice can be $x_{17}=(z-2)$ and $x_{18}=(y-1)$, but there are multiple good solutions with $f_{1}(z-2)$ and $f_{2}(y-1)$ for different functions f_{1} and f_{2}

Exercise 5. Review of TD algorithms $\mathbf{1}^{1}$

You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly. You have 2 possible actions from each state. You read-out the values after n episodes and find the following values:

```
Q(1,a1)=0,Q(2,a1)=5 Q(3,a1)=3 Q(4,a1)=4Q(5,a1)=6 Q(6,a1)=12Q(7,a1)=10 Q(8,a1)=11
Q(9,a1)=9 Q(10,a1)=10
Q(1,a2)=1,Q(2,a2)=1 Q(3,a2)=3 Q(4,a2)=2 Q(5,a2)=1 Q(6,a2)=4 Q(7,a2)=2 Q(8,a2)=6
Q(9,a2)=11Q(10,a1)=10
```

You run one episode and observe the following sequence (state, action, reward)
$(1, a 2,1)(2, a 2,1)(3, a 1,0)(5, a 1,4)(6, a 1,1)(8, a 2,1)$
What are the updates of 2-step SARSA that the algorithm should produce?

Solution:

The update algorithm for 2-step SARSA is

$$
\Delta Q\left(s_{t}, a_{t}\right)=\alpha\left(r_{t+1}+\gamma r_{t+2}+\gamma^{2} Q\left(s_{t+2}, a_{t+2}\right)-Q\left(s_{t}, a_{t}\right)\right)
$$

with step size/learning rate α and discount factor γ. As a result, the update for the episode above should be

[^0]\[

$$
\begin{aligned}
& \Delta Q(1, a 2)=\alpha\left(1+1 \gamma+3 \gamma^{2}-1\right) \\
& \Delta Q(2, a 2)=\alpha\left(1+0 \gamma+6 \gamma^{2}-1\right) \\
& \Delta Q(3, a 1)=\alpha\left(0+4 \gamma+12 \gamma^{2}-3\right) \\
& \Delta Q(5, a 1)=\alpha\left(4+1 \gamma+6 \gamma^{2}-6\right) \\
& \Delta Q(6, a 1)=\alpha(1+1 \gamma-12) \\
& \Delta Q(8, a 2)=\alpha(1-6) .
\end{aligned}
$$
\]

Here, we use the fact that no rewards can be received after the episode ends to truncate the summation. This can be thought of as a special "terminal" state at the end of each episode, that always transitions into itself with reward 0 , and all Q -values equal to 0 .

Exercise 6. Review of TD algorithms 2

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

Initialize $Q(s, a)=0 \quad$ for all $s \in \mathcal{S}, a \in \mathcal{A}$
Initialize π to be ε-greedy
Parameters: step size $\alpha \in(0,1]$, small $\varepsilon>0$
All store and access operations (for S_{t}, A_{t}, and R_{t}) can take their index mod 4
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal
Select and store an action $A_{0} \sim \pi\left(\cdot \mid S_{0}\right)$
$T \leftarrow 10000$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take action A_{t}
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then:

$$
T \leftarrow t+1
$$

else:
Select and store an action $A_{t+1} \sim \pi\left(\cdot \mid S_{t+1}\right)$
$\tau \leftarrow t-3$
If $\tau \geq 0$:
$X \leftarrow \sum_{i=\tau+1}^{\min (\tau+4, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+4<T$, then $X \leftarrow X+\gamma^{4} Q\left(S_{\tau}+4 A_{\tau+4}\right)$
$\left.Q\left(S_{\tau}, A_{\tau}\right) \leftarrow Q\left(S_{\tau}, A_{\tau}\right)+\alpha \mid X-Q\left(S_{\tau}, A_{\tau}\right)\right\rfloor$
Until $\tau=T-1$
a. Is the algorithm On-Policy or Off-Policy?

Answer: \qquad
b. What does the variable X represent?

Answer \qquad
c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?

Answer (fill in/choose)
This algorithm is identical/very similar to .. \qquad
There is no difference to the named algorithm/the main difference is
d. Is this algorithm a TD algorithm? What is the reason for your answer?

Answer: Yes/No, because

Solution:

a. The algorithm is On-Policy. In the third-to-last line, the value is bootstrapped using the Q -value estimate $Q\left(s_{t+4}, a_{t+4}\right)$, i.e. the action that was taken in state s_{t+4} according to the agent's actual policy.
b. The variable X represents the 4 -step truncated discounted returns. That is, X is a sample from the distribution over the returns that the agent can expect from taking action A_{τ} in state S_{τ}; the agent estimates the mean of this distribution with $Q\left(S_{\tau}, A_{\tau}\right)$.

The agent gets this sample using the actual (discounted) rewards observed in the episode over the first 4 steps, plus an estimate of the average discounted returns from step 5 onwards (given by $\gamma^{4} Q\left(S_{\tau+4}, A_{\tau+4}\right)$).
c. The algorithm is equivalent to 4 -step SARSA, which itself is very similar to the more commonly used 1-step SARSA.
d. The algorithm is a TD algorithm because it uses bootstrapping (updating estimates from other, later estimates) to estimate the target (the Q -value function).

[^0]: ${ }^{1}$ Solving Exercise 5 is not nesscary. You can instead also run similar problems using simulations.

