Artificial Neural Networks (Gerstner). Exercises for week 5

TD-learning and function approximation

Exercise 1. Consistency condition for 3-step SARSA

In class we have seen the arguments leading to the error function arising from the consistency condition of Q-values:

$$E = \frac{1}{2} \sum \delta_t^2$$

with $\delta_t = r_t + \gamma Q(s', a') - Q(s, a)$. This specific consistency condition corresponds to 1-step SARSA.

Write down an analogous consistency condition for 3-step SARSA.

Exercise 2. Q-values for continuous states

We approximate the state-action value function Q(s, a) by a weighted sum of basis functions (BF):

$$Q(s,a) = \sum_{i} w_{aj} \Phi(s - s_j),$$

where $\Phi(x)$ is the BF "shape", and the s_j 's represent the centers of the BFs.

Calculate

$$\frac{\partial Q(s,a)}{\partial w_{\tilde{a}i}}\,,$$

the gradient of Q(s,a) along $w_{\tilde{a}i}$ for a specific weight linking the basis function i to the action \tilde{a} .

Exercise 3. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:

$$Q(s,a) = \sum_{k=1}^{400} w_a^k \Phi(s - s_k).$$

For this exercise the function Φ is arbitrary, but you may think of it as a Gaussian function. Note that s and s_k are usually vectors in \mathbb{R}^N in this case. There are 3 different actions so that the total number of weights is 1200. Now consider the error function $E_t = \frac{1}{2}\delta_t^2$, where

$$\delta_t = r_t + \gamma \cdot Q(s', a') - Q(s, a) \tag{1}$$

is the reward prediction error. Our aim is to optimize Q(s,a) for all s,a by changing the parameters w. We consider $\eta \in [0,1)$ as the learning rate.

a. Use the full gradient of the error function E_t and write down the learning rule based on gradient decent. Consider the case where the actions a and a' are different.

How many weights need to be updated in each time step?

b. Use the full gradient of the error function E_t and write down the learning rule based on gradient decent. Consider the case where the actions a and a' are the same.

Is there any difference to the case considered in (a)?

- c. Repeat (a) and (b) by using the semi-gradient of the error function E_t . Do your answers change?
- d. Suppose that the input space is two-dimensional and you discretize the input in 400 small square 'boxes' (i.e., 20×20). The basis function $\Phi(s s_k)$ is now the indicator function: it has a value equal to one if the current state s is in 'box' k and zero otherwise.

How do your results from (a-c) look like in this case?

e. The learning rules in (d) are very similar to standard SARSA. What is the difference?

Hint: Consider the difference between Full Gradient and Semi-gradient.

f. Assume that Q(s',a') in Equation 1 does not depend on the weights. For example Q(s',a') could be extracted from a separate neural network with its own parameters. How is your result in (a-c) related to standard SARSA? What do you conclude regarding the choice of semi-gradient versus full gradient? What do you conclude regarding the choice of Mnih et al. (2015) to model Q(s',a') by a separate network with parameters that are kept fixed for some time?

Exercise 4. Inductive prior in reinforcement learning (from the final exam 2022)

We consider a 2-dimensional discrete environment with 16 states (Figure 1) plus one goal state where the agent receives a positive reward r. States are arranged in a triangular fashion in two dimensions. States are labeled as shown in the Figure 1 on the left. Available actions (Figure 1 on the right) are $a_1 = \text{up}$, $a_2 = \text{down}$, $a_3 = \text{right}$, $a_4 = \text{diagonally up right}$, $a_5 = \text{diagonally down right}$, $a_6 = \text{left}$ (whenever these moves are possible). Returns are possible, e.g., the action up can be immediately followed by the action down.

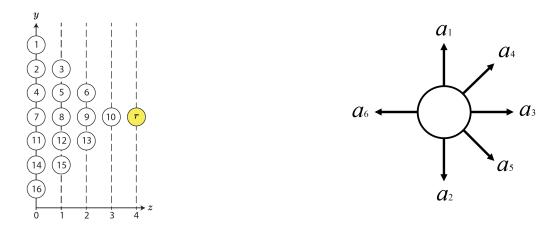


Figure 1: Figure for Exercise 4

Suppose that we use function approximation for

$$Q(a;X) = \sum_{j} w_{aj} x_{j}$$

with continuous state representation X with the following encoding scheme: Input is encoded in 18 dimensions $X = (x_1, x_2, ..., x_{16}, x_{17}, x_{18})$, where the first 16 entriesare 1-hot encoded discrete states; entry 17 is $x_{17} = 0.5 \cdot (z+1)$ and $x_{18} = 0.1$ where z is the horizontal coordinate of the environment (Figure 1). Before the first episode, we initialize all weights at zero. During the first episode, we update Q-values using the Q-learning algorithm in continuous space derived with the semi-gradient method from the Q-learning error function. We consider $\eta \in [0,1)$ as the learning rate and $\gamma \in [0,1]$ as the discount factor.

- a. Write down the quadratic loss function for 1-step Q-learning.
- b. Using the semi-gradient update rule, what are the new weight values w_{ai} and Q-values Q(s, a) for all 16 states and all actions at the end of the first episode? Write down all weights and Q-values that have changed.
- c. In episode 2 you use a greedy policy in which ties are broken by random search. What is the probabilty p that the agent will choose a path with a minimal number of steps to the goal? Consider two initial states 7 and 11.
- d. Is this behavior for episode 2 typical for 1-step Q-learning? Comment on your result in (c) in view of the no-free lunch theorem. (DO NOT write down the no-free lunch theorem, but use it in order to interpret your result.)
- e. What can you say about the inductive prior of the variable x_{18} ? To let you focus on the role of x_{18} , consider for a moment the representation $x_{17} = \alpha[z \beta]$ with $\alpha = 0$ (instead $\alpha = 0.5$).
- f. What can you say about the inductive prior of the variable x_{17} ? To answer this question consider the representation $x_{17} = \alpha[z \beta]$ and redo the calculations as in (b). Then compare parameters $\alpha = 0.5$ and $\beta = 2$ with parameters $\alpha = 0.5$ and $\beta = -1$.

What happens if the sing of α switches from +1 to -1?

g. What would be a great choice of functional representation for input x_{17} and x_{18} if you know that the reward is located at state 6 with coordinates (z, y) = (2, 1)?

Exercise 5. Review of TD algorithms 1¹

You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly.

You have 2 possible actions from each state. You read-out the values after n episodes and find the following values:

$$\begin{array}{l} Q(1,a1)=0,\ Q(2,a1)=5\ Q(3,a1)=3\ Q(4,a1)=4\ Q(5,a1)=6\ Q(6,a1)=12\ Q(7,a1)=10\ Q(8,a1)=11\ Q(9,a1)=9\ Q(10,a1)=10 \\ Q(1,a2)=1,\ Q(2,a2)=1\ Q(3,a2)=3\ Q(4,a2)=2\ Q(5,a2)=1\ Q(6,a2)=4\ Q(7,a2)=2\ Q(8,a2)=6\ Q(9,a2)=11\ Q(10,a1)=10 \end{array}$$

You run one episode and observe the following sequence (state, action, reward)

$$(1, a2, 1)$$
 $(2, a2, 1)$ $(3, a1, 0)$ $(5, a1, 4)$ $(6, a1, 1)$ $(8, a2, 1)$

What are the updates of 2-step SARSA that the algorithm should produce?

Exercise 6. Review of TD algorithms 2

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

```
Initialize Q(s, a) = 0
                                             for all s \in \mathcal{S}, a \in \mathcal{A}
Initialize \pi to be \varepsilon-greedy
Parameters: step size \alpha \in (0, 1], small \varepsilon > 0.
All store and access operations (for S_t, A_t, and R_t) can take their index mod 4
Repeat (for each episode):
    Initialize and store S_0 \neq \text{terminal}
    Select and store an action A_0 \sim \pi(\cdot|S_0)
    T \leftarrow 10000
    For t = 0, 1, 2, \dots:
         If t < T, then:
              Take action A_t
              Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
              If S_{t+1} is terminal, then:
                  T \leftarrow t + 1
              else:
                  Select and store an action A_{t+1} \sim \pi(\cdot|S_{t+1})
         \tau \leftarrow t –
         If \tau > 0:
             \begin{array}{l} X \leftarrow \sum_{i=\tau+1}^{\min(\tau + 4, T)} \gamma^{i-\tau-1} R_i \\ \text{If } \tau + 4 < T \text{, then } X \leftarrow X + \gamma^{4} Q(S_{\tau + 4} \mid A_{\tau + 4}) \end{array}
              Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[ X - Q(S_{\tau}, A_{\tau}) \right]
    Until \tau = T - 1
```

a. Is the algorithm On-Policy or Off-Policy?

Answer:

b. What does the variable X represent?

Answer

¹Solving Exercise ⁵ is not nesscary. You can instead also run similar problems using simulations.

c. Is this algorithm novel, similar to, or equivalent to an existing algorithm? Answer (fill in/choose)

This algorithm is identical/very similar to \dots .

There is no difference to the named algorithm/the main difference is \dots

d. Is this algorithm a TD algorithm? What is the reason for your answer? Answer: Yes/No, because \dots