
Markov Decision Processes

Johanni Brea

5 March 2024

Artificial Neural Networks/Reinforcement Learning CS-456

Introduction

Many RL papers contain a background

section like the following one:
In this lecture you will learn

1. what a Markov Decision Process is.

2. how MDPs can be solved with dynamic

programming or linear programming.

3. how future discounted MDPs can be

solved with value iteration or policy

iteration.

Recommended reading:

Sutton & Barto, Chapters 3 & 4

Algorithms of Reinforcement Learning

http://www.ualberta.ca/~szepesva/

papers/RLAlgsInMDPs.pdf

MDP Dynamic Programming Linear Programming
1

http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Table of Contents

1. Markov Decision Processes

2. Dynamic Programming

3. Linear Programming

MDP Dynamic Programming Linear Programming
2

Markov Decision Processes

Markov Decision Processes (MDPs)

I finite state space S with |S| < ∞,

I finite action spaces {As |s ∈ S} with

|As | < ∞,

I immediate rewards ra
s ∈ R

I transition probabilities pa
si→sj ∈ [0, 1]

I discount factor γ ∈ [0, 1]

I and initial state probabilities p(0)
si .

For a sequence (or trajectory) of

state-action-reward tuples, we will use the

notation τ = (S0, A0, R1, S1, A1, . . . , RT).

Notation for this Lecture

I St , At , Rt denote state, action and

reward at time t in an episode.

I s1, . . . , s|S| ∈ S denote the actual states

available in the state space. Similarly,

a1, . . . , a|As | ∈ As denote the actual

actions.

I We write S7 = s3 to say that state s3
was reached in the 7’th step of an

episode, or A2 = a6 to say that action

a6 was taken in the second time step of

a given episode.

I St , At , Rt are random variables; their

values can be different from episode to

episode.
MDP Dynamic Programming Linear Programming

3

Notes

Markov Decision Processes

Markov Decision Processes (MDPs)

I finite state space S with |S| < ∞,

I finite action spaces {As |s ∈ S} with

|As | < ∞,

I immediate rewards ra
s ∈ R

I transition probabilities pa
si→sj ∈ [0, 1]

I discount factor γ ∈ [0, 1]

I and initial state probabilities p(0)
si .

For a sequence (or trajectory) of

state-action-reward tuples, we will use the

notation τ = (S0, A0, R1, S1, A1, . . . , RT).

Notation for this Lecture

I St , At , Rt denote state, action and

reward at time t in an episode.

I s1, . . . , s|S| ∈ S denote the actual states

available in the state space. Similarly,

a1, . . . , a|As | ∈ As denote the actual

actions.

I We write S7 = s3 to say that state s3
was reached in the 7’th step of an

episode, or A2 = a6 to say that action

a6 was taken in the second time step of

a given episode.

I St , At , Rt are random variables; their

values can be different from episode to

episode.

• The Markov Decision Processes can also be defined for continuous state and action spaces,

but we restrict ourselves here to finite (and thus discrete) state and action spaces.

• In general, the available actions can depend on the state (it is not possible to advance when

standing in front of a wall). Sometimes the action spaces are independent of the state; in this

case we just writeA for the action space.

• The transition probabilities have the property
∑

sj∈S pa
si→sj = 1, ∀a ∈ Asi , si ∈ S .

• Sometimes rewards are considered stochastic or dependent on the next state Ra
si→sj . In this

case one can define the immediate rewards as the expected immediate rewards ra
si = E[Ra

si→sj].

• The initial state probabilities have the property
∑

si∈S p(0)
si = 1.

• Different authors use different conventions to define MDPs; some include only the state space,

action space, transition probabilities and rewards, others include also the discount factor or the

initial state probabilities.

MDP Example 1

MDP Dynamic Programming Linear Programming
4

Terminal or Absorbing States

Sometimes episodes end in a certain state, e.g. when the task is completed,

independently of when this happens.

Such terminal states can be modeled with absorbing states that transition

deterministically (and for any action) to themselves, without any immediate reward.

Sutton and Barto, Chapter 3.4
MDP Dynamic Programming Linear Programming

5

Notes

Terminal or Absorbing States

Sometimes episodes end in a certain state, e.g. when the task is completed,

independently of when this happens.

Such terminal states can be modeled with absorbing states that transition

deterministically (and for any action) to themselves, without any immediate reward.

Sutton and Barto, Chapter 3.4

The planning example in the simplified map of some cities in Europe can be modeled by introducing

a self-transition with zero reward for the goal city and removing all out-going transitions, e.g. for Rome.

If we want to use the same map to solve another planning problem, we would re-insert the out-going

transitions and remove the self-transition for Rome and apply these changes to the new goal city. This

modification of the MDP results effectively in fixing the value for the goal city at 0.

MDP Example 2: Travel to Rome

L

N

M

R

P

B

V

Z

F

-9
-4

-7

-6

-3

-7

-3
-6

-2

-4

-7

-3

-7

-9

I S = {F, Z, V, L, M, N, R, P, B}
I AL = {Z, M, N}
I Lines indicate deterministic bi-directional

connections, e.g. pN
L→N = 1 and pL

N→L = 1.

I The number on the lines indicate the

“reward” ra
s , i.e. the cost (distance) of traveling

along this line.

I If we want to travel to R, we define R as an

absorbing state.

MDP Dynamic Programming Linear Programming
6

Policies, Value Functions and Objectives

The goal is to find a policy π(t)(a|s) ∈ [0, 1] (i.e. probability of taking action a in state s and
time point t) that maximizes some objective. We use the notation π to denote the policy for

all states and time points. We define the horizon-T value function

V (T)
γ (π, s) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s
]

(1)

=
∑

A0,S1,A1,...,AT–1

π(0)(A0|s)pA0

s→S1
· · ·

(
rA0s + γrA1

S1
+ · · · + γT–1rAT–1

ST–1

)
Objectives find the policy π that maximizes for all s ∈ S

I Horizon-T values: V (T)
γ (π, s).

I Future Discounted Values: V∞
γ (π, s) = limT→∞ V (T)

γ (π, s) for γ ∈ [0, 1).

I Reward Rate: limT→∞
1
T V (T)

1
(π, s).

MDP Dynamic Programming Linear Programming
7

Notes

Policies, Value Functions and Objectives

The goal is to find a policy π(t)(a|s) ∈ [0, 1] (i.e. probability of taking action a in state s and
time point t) that maximizes some objective. We use the notation π to denote the policy for

all states and time points. We define the horizon-T value function

V (T)
γ (π, s) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s
]

(1)

=
∑

A0,S1,A1,...,AT–1

π(0)(A0|s)pA0

s→S1
· · ·

(
rA0s + γrA1

S1
+ · · · + γT–1rAT–1

ST–1

)
Objectives find the policy π that maximizes for all s ∈ S

I Horizon-T values: V (T)
γ (π, s).

I Future Discounted Values: V∞
γ (π, s) = limT→∞ V (T)

γ (π, s) for γ ∈ [0, 1).

I Reward Rate: limT→∞
1
T V (T)

1
(π, s).

• In general, the policy can depend on the time point, but in some cases it is independent of time

and we can drop the upper index (t).
• On the second line of the definition of the value function we write out explicitly the expectation by

summing over all possible actions and states (up to horizon T), weighted by the probabilities of

taking those actions π(t)(At , St) (given by the policy) and the transition probabilities pAt
St→St+1

.

Comments

I Sometimes it will be useful to work with Q-values

Q(T)
γ (π, s, a) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s, A0 = a
]

V (T)
γ (π, s) =

∑
a∈As

π(a|s)Q(T)
γ (π, s, a)

I Why is it called “Markov Decision Process”? A Markov Decision Process together

with a policy defines a Markov chain on space S with transition probabilities

Tsi→sj = pa
si→sjπ(a|si).

I Are there non-Markovian Decision Processes? Yes! Depending on how the state

space is defined, the next state sj may depend on more than just the current state and

action. For example, in partially observable Markov Decision Processes (POMDPs) one

assumes there is an underlying MDP, but instead of observing the full state the agent

observes only parts of the full state.

MDP Dynamic Programming Linear Programming
8

Notes

Comments

I Sometimes it will be useful to work with Q-values

Q(T)
γ (π, s, a) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s, A0 = a
]

V (T)
γ (π, s) =

∑
a∈As

π(a|s)Q(T)
γ (π, s, a)

I Why is it called “Markov Decision Process”? A Markov Decision Process together

with a policy defines a Markov chain on space S with transition probabilities

Tsi→sj = pa
si→sjπ(a|si).

I Are there non-Markovian Decision Processes? Yes! Depending on how the state

space is defined, the next state sj may depend on more than just the current state and

action. For example, in partially observable Markov Decision Processes (POMDPs) one

assumes there is an underlying MDP, but instead of observing the full state the agent

observes only parts of the full state.

A famous, academic example of a partially observable Markov Decision Process is the so-called Tiger

Problem (https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf), where a tiger is behind

one door and a large reward is behind the other door. The agent can either listen, or open the left

or the right door. When the agent listens, it observes a roar either behind the left or the right door, but

the observation is not always accurate; with a small probability the agent may observe a roar behind

the left door, even when the tiger is behind the right door and vice versa.

All non-Markovian Decision Processes could in principle be turned into Markov Decision Processes by

augmenting the state space (for example with perfect knowledge about the actual position of the tiger)

but in practice it may be difficult or impossible to do this augmentation.

Our world is usually partially observable: as long as the door of the fridge is closed we do not directly

observe the content of the fridge; the full state of mind of another person is usually unobservable to us.

https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf

What is the Relationship with Reinforcement Learning?

MDP RL

“Solving” an MDP amounts to a solving

an optimal control problem, i.e. finding

the optimal policy, where the dynamics

and rewards are known, i.e. pa
si→sj and

ra
s are assumed to be known.

In reinforcement learning one also

wants to solve an optimal control

problem, but one assumes that the

dynamics and rewards are unknown.

I In model-free RL, the agent tries to find the optimal policy, without ever

explicitly estimating the dynamics pa
si→sj and rewards ra

s .

I In model-based RL, the agent tries to estimate the dynamics and then solves

the control problem.

MDP Dynamic Programming Linear Programming
9

Notes

What is the Relationship with Reinforcement Learning?

MDP RL

“Solving” an MDP amounts to a solving

an optimal control problem, i.e. finding

the optimal policy, where the dynamics

and rewards are known, i.e. pa
si→sj and

ra
s are assumed to be known.

In reinforcement learning one also

wants to solve an optimal control

problem, but one assumes that the

dynamics and rewards are unknown.

I In model-free RL, the agent tries to find the optimal policy, without ever

explicitly estimating the dynamics pa
si→sj and rewards ra

s .

I In model-based RL, the agent tries to estimate the dynamics and then solves

the control problem.

• There is no estimation problem involved in solving an MDP, but solving the optimal control

problem is still a non-trivial problem itself.

• Model-based reinforcement learning solves explicitly an estimation problem and an optimal

control problem. Model-free reinforcement learning solves the estimation and the optimal

control problem implicitly.

• You have already seen an examples of model-free reinforcement learning: Q-learning!

• You will see examples of model-based RL later in the semester.

• The exploration-exploitation trade-off exists only in reinforcement learning, but not when solving

MDPs. One could say, solving MDPs is solving an exploitation problem. The exploration part in

reinforcement learning is needed to tackle the estimation problem.

Exercise: The Cliff-Walking MDP

1. How many states are needed (at least) to represent this environment as an MDP?

2. What is the size of the action space for the initial state?

3. Does this MDP have any absorbing states?

4. What is the optimal policy?

5. What is the value V∞
1

(π∗, initialstate) of the initial state for the optimal policy?

MDP Dynamic Programming Linear Programming
10

Notes

Exercise: The Cliff-Walking MDP

1. How many states are needed (at least) to represent this environment as an MDP?

2. What is the size of the action space for the initial state?

3. Does this MDP have any absorbing states?

4. What is the optimal policy?

5. What is the value V∞
1

(π∗, initialstate) of the initial state for the optimal policy?

In the cliff-walking environment, the agent (red dot) starts each episode at the bottom left (where the

agent is in the image); the agent can move to neighboring squares with the up, down, left, right actions

(unless there is a wall). An episode ends, when falling into the cliff (black area) or when landing in the

green state at the bottom right. Each normal step costs r = –1, falling into the cliff costs r = –100.
There are 12 yellow states in the top row.

Table of Contents

1. Markov Decision Processes

2. Dynamic Programming

3. Linear Programming

MDP Dynamic Programming Linear Programming
11

The Optimal Fixed Horizon Policy

The policy π∗ that maximizes the horizon-T values can be found with Dynamic

Programming: recursively find the optimum for problems of growing horizon.

1. The optimal horizon-1 values are V (1)
γ (π∗, s) = maxa∈As ra

s .

2. The optimal horizon-(t + 1) values are

V (t+1)
γ (π∗, s) = max

a∈As
Q(t+1)
γ (π∗, s, a) = max

a∈As
ra
s + γ

∑
s′∈S

pa
s→s′V

(t)
γ (π∗, s ′) (2)

The optimal horizon-T policy picks at time t an action in the set

arg maxa∈As Q(T–t+1)
γ (π∗, s, a).

The horizon-T policy is not stationary, in general, i.e. π(t)(a|s) 6= π(t′)(a|s) for t 6= t ′,
but it can be chosen to be deterministic.

MDP Dynamic Programming Linear Programming
12

Notes

The Optimal Fixed Horizon Policy

The policy π∗ that maximizes the horizon-T values can be found with Dynamic

Programming: recursively find the optimum for problems of growing horizon.

1. The optimal horizon-1 values are V (1)
γ (π∗, s) = maxa∈As ra

s .

2. The optimal horizon-(t + 1) values are

V (t+1)
γ (π∗, s) = max

a∈As
Q(t+1)
γ (π∗, s, a) = max

a∈As
ra
s + γ

∑
s′∈S

pa
s→s′V

(t)
γ (π∗, s ′) (2)

The optimal horizon-T policy picks at time t an action in the set

arg maxa∈As Q(T–t+1)
γ (π∗, s, a).

The horizon-T policy is not stationary, in general, i.e. π(t)(a|s) 6= π(t′)(a|s) for t 6= t ′,
but it can be chosen to be deterministic.

• The dynamic programmingmethod breaks decision problems into smaller subproblems.

Bellman’s principle of optimality describes how to do this: An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision. (See Bellman, 1957, Chap.

III.3.)

• The arg maxa∈As Q(T–t+1)
γ (π∗, s, a) may contain multiple actions. In this case one can randomly

break ties and select any action that maximizes the Q-values.

• For a horizon-T problem, one finds first the (set of) optimal action(s) for the last time step (the

solution for the horizon-1 problem), for example π(T)(a|s) = 1 if a = first(arg maxa∈As ra
s) and

π(T)(a′|s) = 0 for all a′ 6= a.
• Then one finds the (set of) optimal action(s) for the second to last time step (the solution for the

horizon-2 problem), e.g. π(T–1)(a|s) = 1 if a = first(arg maxa∈As Q(2)(π∗, s, a)) and
π(T–1)(a′|s) = 0 for all a′ 6= a, etc.

• In the exercises you will construct an example to show that the horizon-T policy can be

non-stationary.

The Optimal 3-step Policy for the MDP in Example 1

MDP Dynamic Programming Linear Programming
13

Fixed-Point Iterations and Banach’s Fixed Point Theorem

Some equations of the form

x = T (x) can be solved with a

fixed point iteration:

Start with x(0) and compute

x(k) = T (x(k–1))

until x(k) ≈ x(k–1).

Example: Heron’s method for

computing the square root of a

x = 1

2

(a
x + x

)
= Ta(x)

0
√
7 T7(10) 10

0

5

10

y = x

y = T7(x)

x

y
https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c

MDP Dynamic Programming Linear Programming
14

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c

Notes

Fixed-Point Iterations and Banach’s Fixed Point Theorem

Some equations of the form

x = T (x) can be solved with a

fixed point iteration:

Start with x(0) and compute

x(k) = T (x(k–1))

until x(k) ≈ x(k–1).

Example: Heron’s method for

computing the square root of a

x = 1

2

(a
x + x

)
= Ta(x)

0
√
7 T7(10) 10

0

5

10

y = x

y = T7(x)

x

y

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c

For the interested students, here is the mathematical background

(see also Appendix A of http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf):

Let (X , d) be a complete metric space. Then a map T : X → X is called a contractionmapping on X
if there exists q ∈ [0, 1) such that d(T (x), T (y)) ≤ qd(x , y) for all x , y ∈ X .

Banach Fixed Point Theorem. Let (X , d) be a non-empty complete metric space with a contraction

mapping T : X → X . Then T admits a unique fixed-point x∗ in X (i.e. T (x∗) = x∗). Furthermore,

x∗ can be found as follows: start with an arbitrary element x0 ∈ X and define a sequence (xn)n∈N by

xn = T (xn–1) for n ≥ 1. Then limn→∞ xn = x∗.

For Heron’s method for computing the square root, we can take the distance d(x , y) = |x – y | and
the contraction mapping T : [

√
a/2,∞) → [

√
a/2,∞), x → Ta(x) for a > 0. It is easy to show that∣∣∣ dfa

dx (x)
∣∣∣ ≤ 1

2
on [

√
a/2,∞) and therefore (by the mean value theorem) |fa(x) – fa(y)| ≤ 1

2
|x – y |.

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c
http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Maximizing Future Discounted Values with Dynamic Programming

Let us define the mapping (sometimes called Bellman operator)

Tγ : R|S| → R|S|, Tγ(X)s = max
a∈As

ra
s + γ

∑
s′∈S

pa
s→s′Xs′

 . (3)

I One can show that the mapping Tγ is a contraction mapping and Banach’s

fixed point theorem can be applied. Hence, there is a unique fixed point

X∗ = Tγ(X∗).
I Note that X∗ = Tγ(X∗) is exactly the same equation we want the optimal

horizon-∞ values to satisfy (c.f. Eq. 2).

I Therefore, this fixed point is the solution V∞
γ (π∗, s) = X∗

s .
I The optimal policy is to choose actions in arg maxa∈As Q∞

γ (π∗, s, a).
I This policy is stationary, i.e. π(t)(a|s) = π(t′)(a|s) for t 6= t ′, and it can be

chosen to be deterministic!

MDP Dynamic Programming Linear Programming
15

Notes

Maximizing Future Discounted Values with Dynamic Programming

Let us define the mapping (sometimes called Bellman operator)

Tγ : R|S| → R|S|, Tγ(X)s = max
a∈As

ra
s + γ

∑
s′∈S

pa
s→s′Xs′

 . (3)

I One can show that the mapping Tγ is a contraction mapping and Banach’s

fixed point theorem can be applied. Hence, there is a unique fixed point

X∗ = Tγ(X∗).
I Note that X∗ = Tγ(X∗) is exactly the same equation we want the optimal

horizon-∞ values to satisfy (c.f. Eq. 2).

I Therefore, this fixed point is the solution V∞
γ (π∗, s) = X∗

s .
I The optimal policy is to choose actions in arg maxa∈As Q∞

γ (π∗, s, a).
I This policy is stationary, i.e. π(t)(a|s) = π(t′)(a|s) for t 6= t ′, and it can be

chosen to be deterministic!

X is a vector in R|S|. The Bellman operator thus maps vectors to vectors.

Value Iteration

Iteratively compute horizon-t values until maxs∈S |V (t+1)
γ (π∗, s) – V (t)

γ (π∗, s)| < θ, where
θ > 0 is some convergence criterion. The optimal stationary policy picks actions in

arg maxa∈As Qt∗
γ (π∗, s, a), where t∗ is the stopping iteration.

MDP Dynamic Programming Linear Programming
16

Notes

Value Iteration

Iteratively compute horizon-t values until maxs∈S |V (t+1)
γ (π∗, s) – V (t)

γ (π∗, s)| < θ, where
θ > 0 is some convergence criterion. The optimal stationary policy picks actions in

arg maxa∈As Qt∗
γ (π∗, s, a), where t∗ is the stopping iteration.

Value iteration is a naive application of the convergence property of the Bellman operator: just apply it

until some stopping criterion is reached.

It is not unreasonable to start the fixed-point iteration with Xs = maxa∈As ra
s (as for the horizon-T so-

lution), but value iteration would also converge, if one initialized X randomly (thanks to the contraction

mapping and Banach’s fixed point theorem).

Having to define some stopping criterion makes value iteration a bit unattractive.

Policy Improvement Theorem

For deterministic policies

π(a|s) = 1 for some a and

π(a′|s) = 0,∀a′ 6= a, we will use

here the notation a = π(s).

Policy Improvement Theorem

Let π and π′ be a pair of

deterministic policies such that ∀s

Qγ(π, s,π′(s)) ≥ Vγ(π, s) .

Then the policy π′ must be as

good as or better than π, i.e.

Vγ(π′, s) ≥ Vγ(π, s) .

MDP Dynamic Programming Linear Programming
17

Policy Iteration

Policy Evaluation

V∞
γ (π, s) = rπ(s)

s + γ
∑
s′∈S

pπ(s)
s→s′V

∞
γ (π, s ′)

V∞
γ (π) = (I – γP)–1r

with rs = rπ(s)
s and identity matrix I and Ps,s′ = pπ(s)

s→s′ .

Policy Improvement

π′(s) = first(arg maxa∈As Q∞
γ (π, s, a))

Policy Iteration

Start with a random deterministic policy, evaluate it,

improve it and repeat evaluation and improvement until

the policy does not change anymore.

MDP Dynamic Programming Linear Programming
18

Notes

Policy Iteration

Policy Evaluation

V∞
γ (π, s) = rπ(s)

s + γ
∑
s′∈S

pπ(s)
s→s′V

∞
γ (π, s ′)

V∞
γ (π) = (I – γP)–1r

with rs = rπ(s)
s and identity matrix I and Ps,s′ = pπ(s)

s→s′ .

Policy Improvement

π′(s) = first(arg maxa∈As Q∞
γ (π, s, a))

Policy Iteration

Start with a random deterministic policy, evaluate it,

improve it and repeat evaluation and improvement until

the policy does not change anymore.

• V∞
γ (π) and r are vectors in

R|S|, I is the
|S|-dimensional identity

matrix.

• The policy evaluation can

be done by explicitly

inverting the matrix (I – γP)
or by approximating the

Neumann series

(I – γP)–1 =
∑∞

k=0 γkPk

as in the example of

iterative policy evaluation in

the pseudocode on the

right.

Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting

processes, one making the value function consistent with

the current policy (policy evaluation), and the other making

the policy greedy with respect to the current value func-

tion (policy improvement). In policy iteration, these twopro-

cesses alternate, each completing before the other be-

gins, but this is not really necessary. In value iteration,

for example, only a single iteration of policy evaluation is

performed in between each policy improvement. In asyn-

chronous dynamic programming methods, the evaluation

and improvement processes are interleaved at an even

finer grain. In some cases a single state is updated in one

process before returning to the other. As long as both pro-

cesses continue to update all states, the ultimate result is

typically the same—convergence to the optimal value func-

tion and an optimal policy.
Sutton and Barto, Chapter 4.6

MDP Dynamic Programming Linear Programming
19

Notes

Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting

processes, one making the value function consistent with

the current policy (policy evaluation), and the other making

the policy greedy with respect to the current value func-

tion (policy improvement). In policy iteration, these twopro-

cesses alternate, each completing before the other be-

gins, but this is not really necessary. In value iteration,

for example, only a single iteration of policy evaluation is

performed in between each policy improvement. In asyn-

chronous dynamic programming methods, the evaluation

and improvement processes are interleaved at an even

finer grain. In some cases a single state is updated in one

process before returning to the other. As long as both pro-

cesses continue to update all states, the ultimate result is

typically the same—convergence to the optimal value func-

tion and an optimal policy.
Sutton and Barto, Chapter 4.6

Standard Q-learning can be seen as an example of asynchronous dynamic programming, where in

every step the policy is evaluated only for the current state action pair and the policy is only improved

(if necessary) for the current state.

Summary

MDP Dynamic Programming Linear Programming
20

Table of Contents

1. Markov Decision Processes

2. Dynamic Programming

3. Linear Programming

MDP Dynamic Programming Linear Programming
21

Maximizing Future Discounted Values with Linear Programming

As an alternative to dynamic programming, one can define the problem of finding

optimal values as a linear program.

Let us use the notation vs = V∞
γ (π∗, s), for the optimal policy π∗. We have

vs = max
a

ra
s + γ

∑
s′∈S

pa
s→s′vs′

 ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S . (4)

This inspires the linear program:

min
vs

∑
s∈S

vs (5)

subject to

vs ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S

MDP Dynamic Programming Linear Programming
22

Notes

Maximizing Future Discounted Values with Linear Programming

As an alternative to dynamic programming, one can define the problem of finding

optimal values as a linear program.

Let us use the notation vs = V∞
γ (π∗, s), for the optimal policy π∗. We have

vs = max
a

ra
s + γ

∑
s′∈S

pa
s→s′vs′

 ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S . (4)

This inspires the linear program:

min
vs

∑
s∈S

vs (5)

subject to

vs ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S

Linear Programming is a technique for the optimization of a linear objective function, subject to linear

equality and linear inequality constraints. There exist efficient solvers for linear programming problems.

We will not discuss linear programming solutions of MDPs in details, but you should know that MDPs

can be solved with linear programming and you should get an idea how MDP problems can be de-

scribed as a linear programming problems.

All techniques to solve MDPs can give us inspirations for solving reinforcement learning problems (see

for example http://proceedings.mlr.press/v130/bas-serrano21a.html).

http://proceedings.mlr.press/v130/bas-serrano21a.html

Example

MDP Dynamic Programming Linear Programming
23

Maximizing the Reward Rate with Linear Programming

Let us define the Markov chain with transition probabilities pπ
s→s′ =

∑
a∈As π(a|s)pa

s→s′ and
let us assume that this Markov chain is irreducible and aperiodic for all π. Then there exists

the stationary distribution ρπ Note that this is a strong assumption, which, however, is e.g.

fulfilled when pa
s→s′ is positive for all a, s, s ′. Let us define the reward rate

r̄ =
∑

s∈S,a∈As

ππs π(a|s)ra
s

and introduce the variables ca
s = ρπs π(a|s). Then we can define the linear program

max
ca

s

∑
s∈S,a∈As

ra
s ca

s (6)

subject to∑
s∈S,a∈As

ca
s = 1 and

∑
a∈As′

ca
s′ =

∑
s∈S,a∈As

ca
s pa

s→s′ (7)

MDP Dynamic Programming Linear Programming
24

	Markov Decision Processes
	Dynamic Programming
	Linear Programming

