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Regression/ANOVA

(Multiple) linear regression : continuous response, all
explanatory variables quantitative (covariate)

Analysis of variance (ANOVA) : continuous response, all
explanatory variables non-numeric (factor)

– the specific groups within a factor are the factor levels
– e.g. the factor ‘sex’ has 2 levels : female, male
– in R, to specify that a variable is a factor rather than

numeric : use the function factor()

These are both special cases of a General linear model

! No fundamental di↵erence between Regression and ANOVA
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General linear model : mathematical formulation

Exemples :

A model is termed as linear if it is linear in the parameters

Note : linearity of the model is not described by the linearity
or nonlinearity of explanatory variables in the model

Examples :

– y = �1X + 12 + �2
p
X2 + �3 log X3 + ✏ : linear

– y = �2
1X + 1 + �2 X2 + �3 log X3 + ✏ : nonlinear

General linear model : y =

pX

i=0

�i Xi + ✏; X0 = 1
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Pesticide example

> tox = read.table("toxic.txt", header=T)
> tox

dose weight toxicity
1 0.696 0.321 0.324
2 0.729 0.354 0.367
3 0.509 0.134 0.321
4 0.559 0.184 0.375
5 0.679 0.304 0.345
6 0.583 0.208 0.341
7 0.742 0.367 0.327
8 0.781 0.406 0.256
9 0.865 0.490 0.214
10 0.723 0.223 0.501
11 0.940 0.440 0.318
12 0.903 0.403 0.317
13 0.910 0.410 0.349
14 0.684 0.184 0.402
15 0.904 0.404 0.374
16 0.887 0.387 0.340
17 0.593 0.093 0.598
18 0.640 0.140 0.444
19 0.512 0.012 0.543

A study was conducted to assess the
toxic effect of a pesticide on a given
species of insect.
dose: dose rate of the pesticide,
weight: body weight of an insect,
tocicity: rate of toxic action.



Candidate models

Consider 4 possible linear models for this data:

yi = �0 + ei
yi = �0 + �1dosei + ei
yi = �0 + �2weighti + ei
yi = �0 + �1dosei + �2weighti + ei

Fit these models in R:

fit.0 = lm(toxicity ˜ 1, data=tox)
fit.d = lm(toxicity ˜ dose, data=tox)
fit.w = lm(toxicity ˜ weight, data=tox)
fit.dw = lm(toxicity ˜ dose+weight, data=tox)
fit.wd = lm(toxicity ˜ weight+dose, data=tox)



Comparing models using anova

> anova(fit.0, fit.d)
Analysis of Variance Table
Model 1: toxicity ˜ 1
Model 2: toxicity ˜ dose
Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 0.1576
2 17 0.1204 1 0.0372 5.26 0.035 *

> anova(fit.w, fit.wd)
Analysis of Variance Table
Model 1: toxicity ˜ weight
Model 2: toxicity ˜ weight + dose
Res.Df RSS Df Sum of Sq F Pr(>F)

1 17 0.065499
2 16 0.034738 1 0.030761 14.168 0.001697 **

Testing �1 = 0 (dose effect) gives a different result whether
weight is included in the model or not.



Comparing models using anova
We did two different tests:

H0 : [�1 = 0|�0] is testing �1 = 0 (or not) given that only the
intercept �0 is in the model
H0 : [�1 = 0|�0,�2] is testing �1 = 0 assuming that an
intercept �0 and a weight effect �2 are in the model.

They make different assumptions, may reach different results.

The anova function, when given two (or more) different
models, does an f-test by default.
Source df SS MS
�2|�0 1 SS(�2|�0) SS(�2|�0)/1
�1|�0,�2 1 SS(�1|�0,�2) SS(�1|�0,�2)/1
Error n � 3

Pn
i=1(yi � ŷi)2 SSError/(n � 3)

Total n � 1
Pn

i=1(yi � ȳ)2

Fact: if H0 is correct, F = MS(�1|�0,�2)/MSError ⇠ F1,n�3.



Comparing models using anova
Be very careful with anova on a single model:
> anova(fit.w, fit.wd)
> anova(fit.w, fit.dw) # same output

> anova(fit.dw)
Response: toxicity

Df Sum Sq Mean Sq F value Pr(>F)
dose 1 0.037239 0.037239 17.152 0.0007669 ***
weight 1 0.085629 0.085629 39.440 1.097e-05 ***
Residuals 16 0.034738 0.002171

> anova(fit.wd)
Response: toxicity

Df Sum Sq Mean Sq F value Pr(>F)
weight 1 0.092107 0.092107 42.424 7.147e-06 ***
dose 1 0.030761 0.030761 14.168 0.001697 **
Residuals 16 0.034738 0.002171

Each predictor is added one by one (Type I SS).
The order matters!

Which one is appropriate to test a body weight effect?
to test a dose effect?



Comparing models using drop1

> drop1(fit.dw, test="F")
Single term deletions
Model: toxicity ˜ dose + weight

Df Sum of Sq RSS AIC F value Pr(F)
<none> 0.034738 -113.783
dose 1 0.030761 0.065499 -103.733 14.168 0.001697 **
weight 1 0.085629 0.120367 -92.171 39.440 1.097e-05 ***

> drop1(fit.wd, test="F")
Single term deletions
Model: toxicity ˜ weight + dose

Df Sum of Sq RSS AIC F value Pr(F)
<none> 0.034738 -113.783
weight 1 0.085629 0.120367 -92.171 39.440 1.097e-05 ***
dose 1 0.030761 0.065499 -103.733 14.168 0.001697 **

F-tests, to test each predictors after accounting for all others
(Type III SS). The order does not matter.



Comparing models using anova
Use anova to compare multiple models.
Models are nested when one model is a particular case of
the other model.
anova can perform f-tests to compare 2 or more nested
models

> anova(fit.0, fit.d, fit.dw)
Model 1: toxicity ˜ 1
Model 2: toxicity ˜ dose
Model 3: toxicity ˜ dose + weight
Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 0.157606
2 17 0.120367 1 0.037239 17.152 0.0007669 ***
3 16 0.034738 1 0.085629 39.440 1.097e-05 ***

> anova(fit.0, fit.w, fit.wd)
Model 1: toxicity ˜ 1
Model 2: toxicity ˜ weight
Model 3: toxicity ˜ weight + dose
Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 0.157606
2 17 0.065499 1 0.092107 42.424 7.147e-06 ***
3 16 0.034738 1 0.030761 14.168 0.001697 **



Parameter inference using summary
The summary function performs Wald t-tests.
> summary(fit.d)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6049 0.1036 5.836 1.98e-05 ***
dose -0.3206 0.1398 -2.293 0.0348 *

Residual standard error: 0.08415 on 17 degrees of freedom
Multiple R-squared: 0.2363, Adjusted R-squared: 0.1914
F-statistic: 5.259 on 1 and 17 DF, p-value: 0.03485

> summary(fit.wd)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.22281 0.08364 2.664 0.01698 *
weight -1.13321 0.18044 -6.280 1.10e-05 ***
dose 0.65139 0.17305 3.764 0.00170 **

Residual standard error: 0.0466 on 16 degrees of freedom
Multiple R-squared: 0.7796, Adjusted R-squared: 0.752
F-statistic: 28.3 on 2 and 16 DF, p-value: 5.57e-06



Parameter inference using summary
The order does not matter for t-tests:
> summary(fit.wd)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.22281 0.08364 2.664 0.01698 *
weight -1.13321 0.18044 -6.280 1.10e-05 ***
dose 0.65139 0.17305 3.764 0.00170 **
...

> summary(fit.dw)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.22281 0.08364 2.664 0.01698 *
dose 0.65139 0.17305 3.764 0.00170 **
weight -1.13321 0.18044 -6.280 1.10e-05 ***

Residual standard error: 0.0466 on 16 degrees of freedom
Multiple R-squared: 0.7796, Adjusted R-squared: 0.752
F-statistic: 28.3 on 2 and 16 DF, p-value: 5.57e-06



Parameter inference

For testing the same hypothesis, the f-test and t-test
match: (�2.293)2 = 5.26 and 3.7642 = 14.168
But two different tests:

Weak evidence for a dose effect if body weight is ignored
Strong evidence of a dose effect after adjusting for a body
weight effect.

Results are different because dose and weight are
correlated.



Consequences of correlated predictors
Also called multicollinearity.

F-tests are order dependent
Counter-intuitive results:

> summary(fit.d)
... Estimate Std. Error t value Pr(>|t|)
dose -0.3206 0.1398 -2.293 0.0348 *

Negative effect of dose, if dose alone!! As dose rate increases,
the rate of toxic action decreases!? When results are against
intuition, this is a warning.

Correlation between dose and body weight:
> plot(dose ˜ weight, data=tox)
> with(tox, cor(dose,weight))
[1] 0.8943634
> plot(toxicity ˜ dose, data=tox, pch=16)
> plot(toxicity ˜ dose, data=tox, pch=16, col=grey(weight))
> plot(toxicity ˜ dose, data=tox, pch=16, col=grey(weight*2))



Can we have uncorrelated predictors?
Predictors x1 and x2 are uncorrelated if

nX

i=1
(xi1 � x̄1)(xi2 � x̄2) = 0

In designed experiments we can choose combination of xi1
and xi2 values so that these predictors are uncorrelated in
the experiment.
Qualitative predictors: can also be correlated
Example: sex and smoke, in the fev data set

Completely balanced designs (more later)



Model selection

Testing parameters is the same as selecting between 2 models.
In our example, we have 4 models to choose from.

1 yi = �0 + ei
2 yi = �0 + �2weighti + ei
3 yi = �0 + �1dosei + ei
4 yi = �0 + �1dosei + �2weighti + ei

H0 : [�2 = 0|�0] is a test to choose between
model 1 (H0) and model 2 (Ha).
H0 : [�2 = 0|�0,�1] is a test to choose between
model 3 (H0) and model 4 (Ha).
H0 : [�1 = �2 = 0|�0] is an overall test to choose between
model 0 (H0) and model 4 (Ha).



Nested models

Two models are nested if one of them is a particular case of the
other one: the simpler model can be obtained by setting some
coefficients of the more complex model to particular values.

Among the 4 models to explain pesticide toxicity
which ones are nested?
which ones are not nested?



Example: Cow data set

4 treatment with 4 levels of an additive in the cow feed:
control (0.0), low (0.1), medium (0.2) and high (0.3)
treatment: factor with 4 levels
level: numeric variable, whose values are 0, 0.1, 0.2 or 0.3.
fat: fat percentage in milk yield (%)
milk: milk yield (lbs)

Are these models nested?
1 fati = �0 + �2 ⇤ initial.weighti + ei
2 fati = �0 + �j(i) + ei , where j(i) is the treatment # for cow i
3 fati = �0 + �1 ⇤ leveli + ei



Multiple R2

R2 is a measure of fit quality:

R2 =
SSRegression
SSTotal

It is the proportion of the total variation of the response variable
explained by the multiple linear regression model.

Equivalently:
R2 = 1� SSError

SSTotal

The SSError always decreases as more predictors are
added to the model.
R2 always increases and can be artificially large.
Cows: R2 from model 2 is necessarily higher than R2 from
model 1. What can we say about R2 from models 1 and 3?



Additional Sum-of-Squares principle

ANOVA F-test, to compare two nested models: a “full” and
a “reduced” model.
we used it to test a single predictor.
can be used to test multiple predictors at a time.

Example:
reduced: has k = 1 coefficient (other than intercept)

fati = �0 + �1 ⇤ leveli + ei

full: has p =

4

coefficients other than intercept

fati = �0+�1⇤leveli+�2⇤initial.weighti+�3⇤lactationi+�4⇤agei+ei



Additional Sum-of-Squares principle

Fit “full” model:
yi = �0 + �1xi1 + · · · + �kxik + · · · + �pxip + ei . Obtain
SSE(full) from the ANOVA:

Source df SS
Regression p SSR(full)

Error n � p � 1 SSE(full)
Total n � 1 SSTot

Fit “reduced” model: yi = �0 + �1xi1 + · · · + �kxik + ei .
Obtain SSE(reduced) from the ANOVA:

Source df SS
Regression k SSR(reduced)

Error n � k � 1 SSE(reduced)
Total n � 1 SSTot



Example

> full = lm(fat ˜ level+initial.weight+lactation+age, data=cow)
> reduced = lm(fat ˜ level, data=cow)
> anova(full)
> anova(reduced)

Source df SS
Regression 4 3.547

Error 45 7.952
Total 49 11.499

Source df SS
Regression 1 2.452

Error 48 9.047
Total 49 11.499



Additional Sum-of-Squares principle

Compute the “additional sum of squares” as

SSR(full) � SSR(reduced) = SSE(reduced) � SSE(full)

which is always � 0, on df = p � k = (n � p � 1)� (n � k � 1)

F-test
if the reduced model is true, then

F =
(SSE(reduced) � SSE(full))/(p � k)

(SSE(full))/(n � p � 1) ⇠ Fp�k ,n�p�1.

An f-test is used to test the reduced (H0) versus the full (Ha)
model.

Hypotheses: ei ⇠ normal distribution, are independent, and
have homogeneous variance.



Example

Source df SS
Regression 4 3.547

Error 45 7.952
Total 49 11.499

Source df SS
Regression 1 2.452

Error 48 9.047
Total 49 11.499

So F =

(9.047�7.952)/(48�45)
7.952/45

= 2.0651 on df = 3 and 45. Then
p = 0.12.
> anova(reduced, full)
Model 1: fat ˜ level
Model 2: fat ˜ level + initial.weight + lactation + age
Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 9.0469
2 45 7.9521 3 1.0948 2.0651 0.1182



PAUSE
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Sequential testing

Often, there are many models we want to consider. Example:
There are 25 = 16 models equal or nested within each of these:

fat ˜ initial.weight+lactation+age+treatment
fat ˜ initial.weight+lactation+age+level

We may not analyze them all!

Various ways to do model selection:
Many criteria: p-value from F-test, Adjusted R2, AIC, etc.
Different ways to search: backward elimination, forward
selection, stepwise selection.



Backward elimination

1 fit the full model with all the predictors
2 find the predictor with the smallest f-value / t-value or
largest associated p-value

if its p-value is above some threshold, go to step 3.
if not, keep the corresponding predictor and stop.

3 delete the predictor, re-fit the model and go to step 2.
Note: a threshold of p > .05 is often used, which corresponds
approximately to |t | < 2 or f < 4.

There are multiple tests being done... The Bonferroni idea is
rarely used, because it is overly conservative. Every term might
be removed.



> drop1(full, test="F")
fat ˜ level + initial.weight + lactation + age

Df Sum of Sq RSS AIC F value Pr(F)
<none> 7.952 -81.929
level 1 2.078 10.030 -72.324 11.7567 0.001308 **
initial.weight 1 0.086 8.038 -83.394 0.4845 0.489987
lactation 1 0.497 8.449 -80.898 2.8126 0.100463
age 1 0.302 8.254 -82.065 1.7091 0.197746

> newfit = update(full, . ˜ . - initial.weight)
> drop1(newfit, test="F")
fat ˜ level + lactation + age

Df Sum of Sq RSS AIC F value Pr(F)
<none> 8.038 -83.394
level 1 2.211 10.249 -73.243 12.6541 0.000882 ***
lactation 1 0.487 8.525 -82.453 2.7869 0.101829
age 1 0.229 8.267 -83.990 1.3098 0.258357

> newfit = update(newfit, . ˜ . - age)
> drop1(newfit, test="F")
fat ˜ level + lactation

Df Sum of Sq RSS AIC F value Pr(F)
<none> 8.267 -83.990
level 1 2.546 10.813 -72.565 14.4756 0.0004094 ***
lactation 1 0.780 9.047 -81.480 4.4365 0.0405448 *



Forward selection

1 fit the most simple model, using only predictors you want to
force in the model, not matter what. Also prepare a list of
candidate predictors.

2 find the predictor with the largest f-value / t-value or
smallest associated p-value

if its p-value is below some threshold, go to step 3.
if not, stop. Do not add the predictor to the final model.

3 Add the predictor, re-fit the model and go to step 2.
Note: a threshold of p < .05 is often used, which corresponds
approximately to |t | > 2 or f > 4.

There are multiple tests being done...



> basic = lm(fat ˜ 1, data=cow)
> add1(basic, test="F",

scope = ˜initial.weight+lactation+age*level)
fat ˜ 1

Df Sum of Sq RSS AIC F value Pr(F)
<none> 11.499 -71.488
initial.weight 1 0.566 10.933 -72.011 2.4841 0.1215677
lactation 1 0.686 10.813 -72.565 3.0470 0.0872835 .
age 1 0.352 11.147 -71.043 1.5163 0.2241734
level 1 2.452 9.047 -81.480 13.0101 0.0007363 ***

> newfit = update(basic, . ˜ . + level)
> add1(newfit, test="F",

scope = ˜initial.weight+lactation+age*level)
...
> newfit = update(newfit, . ˜ . + lactation)
> add1(newfit, test="F",

scope = ˜initial.weight+lactation+age*level)
fat ˜ level + lactation

Df Sum of Sq RSS AIC F value Pr(F)
<none> 8.267 -83.990
initial.weight 1 0.012 8.254 -82.065 0.0694 0.7934
age 1 0.229 8.038 -83.394 1.3098 0.2584



Stepwise selection

start with some model, simple or complex
do a forward step as well as a backward step
until no predictor should be added, and no predictor should
be removed.



> library(MASS)

> best1 = stepAIC(full, test="F",
scope=˜ initial.weight+lactation+age*level)

> best2 = stepAIC(basic, test="F",
scope=˜ initial.weight+lactation+age*level)

...
Step: AIC=-83.99
fat ˜ level + lactation

Df SumofSq RSS AIC F Value Pr(F)
<none> 8.267 -83.990
+ age 1 0.229 8.038 -83.394 1.310 0.25835
+ initial.weight 1 0.012 8.254 -82.065 0.069 0.79338
- lactation 1 0.780 9.047 -81.480 4.437 0.04054 *
- level 1 2.546 10.813 -72.565 14.476 0.00040 ***



Warnings

Forward selection, backward selection, stepwise selection
can all miss an optimal model. Forward selection has the
potential of ’stopping short’.
They may not agree.
No adjustment for multiple testing... It is important to start
with a model that is not too large, guided by biological
sense.

They can only compare nested models.



The adjusted R2

Recall R2 =
SSRegression
SSTotal

= 1� SSError
SSTotal

always increases and
can be artificially large.

Adjusted R2

adjR2 = 1� MSError
SSTotal/(n � 1) = 1� n � 1

n � 1� k (1� R2)

where k is the number of coefficients (other than the intercept).
It is penalized version of R2. The more complex the model, the
highest the penalty.

As k goes up, R2 increases but n � 1� k decreases.
adjusted R2 may decrease when the added predictors do
not improve the fit.
MSError and adjusted R2 are equivalent for choosing
among models.



The adjusted R2

Example: predict fat percentage using level and lactation.
R2 = 0.28, MSError= 0.42%, n = 50 cows and k =
adjR2 = = 0.25

Another example:

> summary(lm(fat ˜ treatment*age + initial.weight, data=cow))
Residual standard error: 0.4362 on 41 degrees of freedom
Multiple R-squared: 0.3215, Adjusted R-squared: 0.1891

> summary(lm(fat ˜ level + lactation, data=cow))
Residual standard error: 0.4194 on 47 degrees of freedom
Multiple R-squared: 0.2811, Adjusted R-squared: 0.2505

Are these two models nested?
Which model would be preferred, based on adjusted R2?
based on MSError?



AIC: the Akaike criterion
Model fit (R2) always improves with model complexity. We
would like to strike a good balance between model fit and
model simplicity.
AIC combines a measure of model fit with a measure of
model complexity: The smaller, the better.

Akaike Information Criterion
For a given data set and a given model,

AIC = �2 logL+ 2p

where L is the maximum likelihood of the data using the model,
and p is the number of parameters in the model.

Here, �2 logL is a function of the prediction error: the
smaller, the better. Measures how the model fits the data.
2p penalizes complex models: the smaller, the better.



AIC: the Akaike criterion

Strategy
Consider a number of candidate models. They need not be
nested. Calculate their AIC. Choose the model(s) with the
smallest AIC.

Theoretically: AIC aims to estimate the prediction accuracy
of the model for new data sets. Up to a constant.
The absolute value of AIC is meaningless. The relative AIC
values, between models, is meaningful.
Often there are too many models, we cannot get all the
AIC values. We can use stepwise selection.



Stepwise selection with AIC

Look for a model with the smallest AIC:
start with some model, simple or complex
do a forward step as well as a backward step based on AIC
until no predictor should be added, and no predictor should
be removed.



> library(MASS)
> stepAIC(basic,scope= ˜ initial.weight+lactation+age*level)
Step: AIC=-83.99
fat ˜ level + lactation

Df Sum of Sq RSS AIC
<none> 8.267 -83.990
+ age 1 0.229 8.038 -83.394
+ initial.weight 1 0.012 8.254 -82.065
- lactation 1 0.780 9.047 -81.480
- level 1 2.546 10.813 -72.565

> fullt = lm(fat ˜ treatment+initial.weight+lactation+age,
data=cow)

> stepAIC(fullt,
scope= ˜ initial.weight+lactation+age*treatment+level)

...
Step: AIC=-80.76
fat ˜ treatment + lactation

Df Sum of Sq RSS AIC
<none> 8.141 -80.755
+ age 1 0.256 7.885 -80.353
+ initial.weight 1 0.002 8.139 -78.766
- lactation 1 0.686 8.827 -78.710
- treatment 3 2.672 10.813 -72.565



Model selection: recap

We can use p-values if models are nested. Or adjusted R2

(or MSError) or information criteria like AIC or BIC.
When there are too many candidate models, we can do a
stepwise search for the best model(s).
To describe the method, indicate both

the search criterion (F-test, LRT, adjusted R2, AIC, etc.)
the search method (exhaustive (!), forward, backward, both)

Use simple models. Do not start with an overly complex
model: danger of data dredging and spurious relationships.
Use biological knowledge to start with a sensible model.
Sometimes there is no single “best” model. There may not
be enough information in the data to tell what the truth is
exactly.



Multicolinearity of variables

Another way to reduce the number of variables is by
eliminating variables that are multicolinear, that is, variables
that are highly correlated with each other

In the extreme, if two variables are perfectly related, one of
them can be eliminated, since it cannot add information as a
predictor

To decide which correlated variable to remove, compute the
Variance Inflation Factor (VIF)

5 / 6



Variance inflation factor (VIF)

The VIF measures the e↵ect of a set of explanatory variables
(predictors) on the variance of the coe�cient of another
predictor in the multiple regression equation including all
predictors (i.e. how much the variance of an estimated
regression coe�cient is increased because of colinearity)

The square root of the VIF gives the increase in the standard
error of the coe�cient in the full model, compared with what
it would be if the target predictor were uncorrelated with the
other predictors

Many consider VIF � 5 as a caution and VIF � 10 as a
definite indication of multicolinearity

(This test does not tell which variables, of the set, that each
variable with a high VIF is correlated with – it could be with
just one or with several taken together)
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