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1 Introduction

This tutorial presents a data analysis sequence which may be applied to en-
vironmental datasets, using a small but typical data set of multivariate point
observations. It is aimed at students in geo-information application fields who
have some experience with basic statistics, but not necessarily with statistical
computing. Five aspects are emphasised:

1. Placing statistical analysis in the framework of research questions;

2. Moving from simple to complex methods: first exploration, then selection
of promising modelling approaches;

3. Visualising as well as computing;

4. Making correct inferences;

5. Statistical computation and visualization.

The analysis is carried out in the R environment for statistical computing and
visualisation [16], which is an open-source dialect of the S statistical computing
language. It is free, runs on most computing platforms, and contains contribu-
tions from top computational statisticians. If you are unfamiliar with R, see the
monograph “Introduction to the R Project for Statistical Computing for use at
ITC” [30], the R Project’s introduction to R [28], or one of the many tutorials
available via the R web page1.

On-line help is available for all R methods using the ?method syntax at the
command prompt; for example ?lm opens a window with help for the lm (fit
linear models) method.

Note: These notes use R rather than one of the many commercial statistics
programs because R is a complete statistical computing environment, based on
a modern computing language (accessible to the user), and with packages con-
tributed by leading computational statisticians. R allows unlimited flexibility and
sophistication. “Press the button and fill in the box” is certainly faster – but as
with Windows word processors, “what you see is all you get”. With R it may be
a bit harder at first to do simple things, but you are not limited. R is completely
free, can be freely-distributed, runs on all desktop computing platforms, is regu-
larly updated, is well-documented both by the developers and users, is the subject
of several good statistical computing texts, and has an active user group.

An introductory textbook with similar intent to these notes, but with a wider set
of examples, is by Dalgaard [7]. A more advanced text, with many interesting
applications, is by Venables and Ripley [35]. Fox [12] is an extensive explanation
of regression modelling; the companion Fox and Weisberg [14] shows how to use
R for this, mostly with social sciences datasets.

This tutorial follows a data analysis problem typical of earth sciences, natural and
water resources, and agriculture, proceeding from visualisation and exploration
through univariate point estimation, bivariate correlation and regression analysis,
multivariate factor analysis, analysis of variance, and finally some geostatistics.

1 http://www.r-project.org/
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In each section, there are some tasks, for which a possible solution is shown as
some R code to be typed at the console (or cut-and-pasted from the PDF version
of this document, or loaded from the accompanying .R R code files). Then there
are some questions to answer, based on the output of the task. Sample answers
are found at the end of each section.

Some readers may want to skip more advanced sections or those that explain
the mathematics behind the methods in more detail; these are marked with anOptional

sections asterisk ‘*’ in the section title and in the table of contents.

These notes only scratch the surface of R’s capabilities. In particular, the reader isGoing
further encouraged to consult the on-line help as necessary to understand all the options

of the methods used. Neither do these notes pretend to teach statistical inference;
the reader should refer to a statistics reference as necessary; some good choices,
depending on your background and the application, are Brownlee [3], Bulmer
[4], Dalgaard [7] (general); Davis [9] (geology),Wilks [39] (meteorology); Snedecor
and Cochran [31], Steel et al. [34] (agriculture); Legendre and Legendre [17]
(ecology); and Webster and Oliver [38] (soil science).

See also §10, “Going further”, at the end of the tutorial.

2 Example Data Set

This data set, fully described in Yemefack [40] and summarized in Yemefack et al.
[41], contains 147 soil profile observations from the research area of the Tropen-
bos Cameroon Programme (TCP), representative of the humid forest region of
southwestern Cameroon and adjacent areas of Equatorial Guinea and Gabon.

Three fixed soil layers (0–10 cm, 10–20 cm, and 30–50 cm) were sampled. The
data set is from two sources. First, 45 representative soil profiles were described
and sampled by genetic horizon. Soil characteristics for each of the three fixed lay-
ers were computed as weighted averages using genetic horizon thickness. Second,
102 plots from various land use/land cover types were sampled at the three fixed
depths. Each of these samples was a bulked composite of five sub-samples taken
with an auger in a plot diagonal basis. For both data sets, samples were located
purposively and subjectively to represent soil and land use types. Laboratory
analysis was by standard local methods [23].

For this exercise, we have selected three soil properties:

1. Clay content (code Clay), weight % of the mineral fine earth (< 2 mm);

2. Cation exchange capacity (code CEC), cmol+ (kg soil)-1

3. Organic carbon (code OC), volume % of the fine earth.

These three variables are related; in particular we know from theory and many
detailed studies that the CEC of a soil depends on reactive sites, either on clay
colloids or on organic complexes such as humus, where cations (such as K+ and
Ca++) can be easily adsorbed and desorbed [22, 32].

The CEC is important for soil management, since it controls how
much added artificial or natural fertiliser or liming materials will be
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retained by the soil for a long-lasting e↵ect on crop growth. Heavy
doses of fertiliser on soils with low CEC will be wasted, since the extra
nutrients will leach.

In addition, for each observation the following site information was recorded:

East and North Coordinates, UTM Zone 32N, WGS84 datum, in meters
(codes e and n)

Elevation in meters above sea level (code elev)

Agro-ecological zone, arbitrary code (code zone)

Reference soil group, arbitrary code (code wrb1)

Land cover type (code LC)

The soil group codes refer to Reference Groups of the World Reference Base for
Soil Resources (WRB) , the international soil classification system [11]. These
are presented in the text file as integer codes which correspond to three of the
31 Reference Groups identified worldwide, and which di↵er substantially in their
properties and response to management [10]:

1. Acrisols (from the Haplic, Ferralic, and Plinthic subgroups)

2. Cambisols (from the Ferralic subgroup)

3. Ferralsols (from the Acri-ferric and Xanthic subgroups )

2.1 Loading the dataset

Note: The code in these exercises was tested with Sweave [18, 19] on R version
3.3.2 (2016-10-31), sp package Version: 1.2-4, gstat package Version: 1.1-5, and
lattice package Version: 0.20-35 running on Mac OS X 10.6.3. So, the text
and graphical output you see here was automatically generated and incorporated
into LATEX by running actual code through R and its packages. Then the LATEX
document was compiled into the PDF version you are now reading. Your output
may be slightly di↵erent on di↵erent versions and on di↵erent platforms.

The dataset was originally prepared in a spreadsheet and exported as a text
“comma-separated value”(CSV) file named obs.csv. This is a typical spreadsheet
product with several inadequacies for processing in R, which we will fix up as we
go along. This a tedious but necessary step for almost every dataset; so the
techniques shown here should be useful in your own projects.

Task 1 : Start the R program and switch to the directory where the dataset is
stored. •

Task 2 : Examine the contents of the CSV file. •
You can do this with a plain-text editor (not a spreadsheet) such as (in Windows)
Notepad or Wordpad or (on Mac OS) TextEdit. We can also examine a file from
within R, with the file.show method:
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> file.show("obs.csv")

"e","n","elev","zone","wrb1","LC","Clay1","Clay2","Clay5","CEC1","CEC2","CEC5","OC1","OC2","OC5"

"1",702638,326959, 657,"2","3","FF",72,74,78,13.6,10.1, 7.1, 5.500,3.100,1.500

"2",701659,326772, 628,"2","3","FF",71,75,80,12.6, 8.2, 7.4, 3.200,1.700,1.000

"3",703488,322133, 840,"1","3","FV",61,59,66,21.7,10.2, 6.6, 6.980,2.400,1.300

...

"146",686534,339916, 445,"3","3","CF",34,40,45,13.2,12.2,11.7, 3.600,2.000,1.000

"147",688608,339579, 435,"3","3","BF",30,38,46, 6.9, 4.7, 2.9, 2.700,1.600,0.750

Q1 : What is the format of the first line? What does it represent? Jump to
A1 •

Q2 : What is the format of the following lines? What do they represent? Jump
to A2 •

Task 3 : Load the dataset into R using the read.csv method2 and examine its
structure. Identify each variable from the list above. Note its data type and (if
applicable) numerical precision. •

> obs <- read.csv("obs.csv")

> str(obs)

data.frame : 147 obs. of 15 variables:

$ e : int 702638 701659 703488 703421 703358 702334 681328 681508 681230 683989 ...

$ n : int 326959 326772 322133 322508 322846 324551 311602 311295 311053 311685 ...

$ elev : int 657 628 840 707 670 780 720 657 600 720 ...

$ zone : int 2 2 1 1 2 1 1 2 2 1 ...

$ wrb1 : int 3 3 3 3 3 3 3 3 3 3 ...

$ LC : Factor w/ 8 levels "BF","CF","FF",..: 3 3 4 4 4 4 3 3 4 4 ...

$ Clay1: int 72 71 61 55 47 49 63 59 46 62 ...

$ Clay2: int 74 75 59 62 56 53 66 66 56 63 ...

$ Clay5: int 78 80 66 61 53 57 70 72 70 62 ...

$ CEC1 : num 13.6 12.6 21.7 11.6 14.9 18.2 14.9 14.6 7.9 14.9 ...

$ CEC2 : num 10.1 8.2 10.2 8.4 9.2 11.6 7.4 7.1 5.7 6.8 ...

$ CEC5 : num 7.1 7.4 6.6 8 8.5 6.2 5.4 7 4.5 6 ...

$ OC1 : num 5.5 3.2 6.98 3.19 4.4 5.31 4.55 4.5 2.3 7.34 ...

$ OC2 : num 3.1 1.7 2.4 1.5 1.2 3.2 2.15 1.42 1.36 2.54 ...

$ OC5 : num 1.5 1 1.3 1.26 0.8 ...

> row.names(obs)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

[11] "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"

[21] "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"

[31] "31" "32" "33" "34" "35" "36" "37" "38" "39" "40"

[41] "41" "42" "43" "44" "45" "46" "47" "48" "49" "50"

[51] "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"

2 a wrapper for the very general read.table method
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[61] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70"

[71] "71" "72" "73" "74" "75" "76" "77" "78" "79" "80"

[81] "81" "82" "83" "84" "85" "86" "87" "88" "89" "90"

[91] "91" "92" "93" "94" "95" "96" "97" "98" "99" "100"

[101] "101" "102" "103" "104" "105" "106" "107" "108" "109" "110"

[111] "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"

[121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130"

[131] "131" "132" "133" "134" "135" "136" "137" "138" "139" "140"

[141] "141" "142" "143" "144" "145" "146" "147"

Each variable has a name, which the import method read.csv reads from the
first line of the CSV file; by default the first field (here, the observation number)
is used as the row name (which can be accessed with the row.names method) and
is not listed as a variable. The su�xes 1, 2, and 5 on the variable name roots
Clay, CEC, and OC refer to the lower boundary of three depths, in dm; e.g. OC5 is
the organic C content of the 30–50 cm (3–5 dm) layer.

Each variable also has a data type. The import method attempts to infer the
data type from the format of the data. In this case it correctly found that LC is
a factor, i.e. has fixed set of codes. But it identified zone and wrb1 as integers,
when in fact these are coded factors. That is, the ‘numbers’ 1, 2, . . . are just
codes. R should be informed of their correct data type, which is important in
linear models (§5.5) and analysis of variance (§6). In the case of the soils, we can
also change the uninformative integers to more meaningful abbrevations, namely
the first letter of the Reference Group name:

> obs$zone <- as.factor(obs$zone)

> obs$wrb1 <- factor(obs$wrb1, labels=c("a", "c", "f"))

Q3 : What are the names, data types and numerical precision of the clay contents
at the three depths? Jump to A3 •

Q4 : What are the names, data types and numerical precision of the cation
exchange capacities at the three depths? Jump to A4 •

You can save this as an R data object, so it can be read directly by R (not
imported) with the load method; this will preserve the corrected data types.

> save(obs, file="obs.RData")

You can recover this dataset in another R session with the command:

> load(file="obs.RData")

2.2 A normalized database structure*

If you are familiar with relational database theory, the structure of our dataset
may have bothered you, because it mixes the sample depth with the variable. For
example, there are three fields for clay content (Clay1, Clay2, and Clay5), and
similarly for organic C and CEC. How could we plot, for example, clay against
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3 Research questions

A statistical analysis may be descriptive, simply reporting, visualizing and sum-
marizing a data set, but usually it is also inferential ; that is, statistical proce-
dures are used as evidence to answer research questions. The most important of
these are generally formulated by the researcher before data collection; indeed
the sampling plan (number, location, strata, physical size) and data items should
be motivated by the research questions. Of course, during field work or analysis
other questions may suggest themselves from the data.

The data set for this case study was intended to answer at least the following
research questions:

1. What are the values of soil properties important for agricultural production
and soil ecology in the study area? In particular, the organic matter content
(OM), proportion of clay vs. sand and silt (Clay), and the cation exchange
capacity (CEC) in the upper 50 cm of the soil.3

OM promotes good soil structure, easy tillage, rapid infiltration and
reduced runo↵ (hence less soil loss by surface water erosion); it also
adsorbs nutrient cations and is a direct source of Nitrogen;

The proportion of clay has a major influence on soil structure, hard-
ness, infiltration vs. runo↵; almost all the nutrient cations not adsorbed
on the OM are exchanged via the clay;

CEC is a direct measure of how well the soil can adsorb added cations
from burned ash, natural animal and green manures, and artificial
fertilizers.

2. What is the inter-relation (association, correlation) between these three
variables? How much total information do they provide?

3. How well can CEC be predicted by OM, Clay, or both?

4. What is the depth profile of these variables? Are they constant over the
first 50 cm depth; if not, how do they vary with depth?

5. Four agro-ecological zones and three major soil groups have been identified
by previous mapping. Do the soil properties di↵er among these? If so, how
much? Can the zones or soils groups be grouped or are they all di↵erent?

6. Each observation is located geographically. Is there a trend in any of the
properties across the region? If so, how much variation does it explain, in
which direction is it, and how rapidly does the property vary with distance?

7. Before or after taking any trend into account, is there any local spatial
dependence in any of the variables?

These statistical question can then be used with knowledge of processes and
causes to answer another set of research questions, more closely related to prac-
tical concerns or scientific knowledge:

3 Note that the original data set included many more soil properties.
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8. Is it necessary to do the (expensive) lab. procedure for CEC, or can it be
predicted satisfactorily from the cheaper determinations for Clay and OM
(or just one of these)?

9. Is it necessary to sample at depth, or can the values at depth be calculated
from the values in the surface layer? If so, the cost of soil sampling could
be greatly reduced.

10. Are the agro-ecological zones and/or soil maps a useful basis for predicting
soil behaviour, and therefore a useful stratification for recommendations?

11. What soil-forming factor explains any regional trend?

12. What soil-forming factor explains any local spatial dependence?

Finally, the statistical questions can be used to predict :

13. How well can CEC be predicted by OM, Clay, or both?

14. What are the expected values of the soil properties, and the uncertainties
of these predictions, at unvisited locations in the study area?

The last question can be answered by a predictive map.

4 Univariarte Analysis

Here we consider each variable separately.

4.1 Univariarte Exploratory Data Analysis

Task 4 : Summarise the clay contents at the three depths. •
To save typing, we first attach the obs data frame; this makes the field names
in the data frame visible in the outer R environment; e.g. when we type Clay1,
this field of the attached frame is accessed; otherwise we would have had to type
obs$Clay1.

> attach(obs)

> summary(Clay1); summary(Clay2); summary(Clay5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.0 21.0 30.0 31.3 39.0 72.0

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.0 27.0 36.0 36.7 47.0 75.0

Min. 1st Qu. Median Mean 3rd Qu. Max.

16.0 36.5 44.0 44.7 54.0 80.0

Q5 : What does the summary say about the trend of clay content with depth?
Jump to A5 •
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7 Multivariate correlation and regression

In many datasets we measure several variables. We may ask, first, how are they
inter-related? This is multiple correlation analysis. We may also be interested in
predicting one variable from several others; this is multiple regression analysis.

7.1 Multiple Correlation Analysis

The aim here is to see how a set of variables are inter-related. This will be dealt
with in a more sophisticated manner in Principal Components Analysis (§8.1)
and factor analysis (§8.2).

7.1.1 Pairwise simple correlations

For two variables, we used bivariate correlation analysis (§5.3). For more vari-
ables, a natural extension is to compute their pairwise correlations of all variables.

As explained in the next section, we expect correlations between soil cation ex-
change capacity (CEC), clay content, and organic carbon content.

Task 41 : Display all the bivariate relations between the three variables CEC,
clay content, and organic carbon content of the 0-10cm (topsoil) layer. •

> pairs( ~ Clay1 + OC1 + CEC1, data=obs)
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Q59 : Describe the relations between the three variables. Jump to A59 •

The numeric strength of association is computed as for any pair of variables with
a correlation coe�cient such as Pearson’s. Since these only consider two variables
at a time, they are called simple coe�cients.

Task 42 : Compute the covariances and the Pearson’s correlation coe�cients for
all pairs of variables CEC, clay, and OC in the topsoil. •
We first must find the index number of the variables we want to plot, then we
present these as a list of indices to the cov method:

> names(obs)

[1] "e" "n" "elev" "zone" "wrb1" "LC" "Clay1" "Clay2"

[9] "Clay5" "CEC1" "CEC2" "CEC5" "OC1" "OC2" "OC5"

We see the target variables at positions 10, 7 and 13, so:

> cov(obs[c(10,7,13)])

CEC1 Clay1 OC1

CEC1 25.9479 39.609 5.6793

Clay1 39.6092 194.213 12.5021

OC1 5.6793 12.502 2.2520

> cor(obs[c(10,7,13)])

CEC1 Clay1 OC1

CEC1 1.00000 0.55796 0.74294

Clay1 0.55796 1.00000 0.59780

OC1 0.74294 0.59780 1.00000

Q60 : Explain these in words. Jump to A60 •

7.1.2 Pairwise partial correlations

The simple correlations show how two variables are related, but this leaves open
the question as to whether there are any underlying relations between the entire
set. For example, could an observed strong simple correlation between variables
X and Y be because both are in fact correlated to some underlying variable Z?
One way to examine this is by partial correlations, which show the correlation
between two variables after correcting for all others.

What do we mean by “correcting for the others”? This is just the correlation
between the residuals of linear regressions between the two variables to be corre-
lated and all the other variables. If the residuals left over after the regression are
correlated, this can’t be explained by the variables considered so far, so must be
a true correlation between the two variables of interest.

For example, consider the relation between Clay1 and CEC1as shown in the scat-
terplot and by the correlation coe�cient (r = 0.55). These show a moderate
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positive correlation. But, both of these are positively correlated to OC1 (r = 0.56

and 0.74, respectively). Is some of the apparent correlation between clay and
CEC actually due to the fact that soils with higher clay tend (in this sample) to
have higher OC, and that this higher OC also contributes to CEC? This is an-
swered by the partial correlation between clay and CEC, in both cases correcting
for OC.

We can compute partial correlations directly from the definition, which is easy in
this case with only three variables. We also recompute the simple correlations,
computed above but repeated here for comparison. It’s not logical (although
mathematically possible) to compute the partial correlation of Clay and OC,
since the “lurking” variable CEC is a result of these two, not a cause of either.
So, we only consider the correlation of CEC with OC and Clay separately.

> cor(residuals(lm(CEC1 ~ Clay1)), residuals(lm(OC1 ~ Clay1)))

[1] 0.61538

> cor(residuals(lm(CEC1 ~ OC1)), residuals(lm(Clay1 ~ OC1)))

[1] 0.21214

> cor(CEC1, OC1)

[1] 0.74294

> cor(CEC1, Clay1)

[1] 0.55796

This shows that CEC is only weakly positively correlated (r = 0.21) to Clay
after controlling for OC; compare this to the much higher simple correlation
(r = 0.56). In other words, much of the apparent correlation between Clay and
CEC can be explained by their mutual positive correlation with OC.

We can visualize the reduction in correlation by comparing the scatterplots be-
tween Clay and CEC with and without correction for OC:

> par(mfrow=c(1,2))

> par(adj=0.5)

> plot(CEC1 ~ Clay1, pch=20, cex=1.5, xlim=c(0,100),

+ xlab="Clay %",

+ ylab="CEC, cmol+ (kg soil)-1")

> abline(h=mean(CEC1), lty=2); abline(v=mean(Clay1), lty=2)

> title("Simple Correlation, Clay vs. CEC 0-10 cm")

> text(80, 4, cex=1.5, paste("r =",round(cor(Clay1, CEC1), 3)))

> mr.1 <- residuals(lm(CEC1 ~ OC1)); mr.2 <-residuals(lm(Clay1 ~ OC1))

> plot(mr.1 ~ mr.2, pch=20, cex=1.5, xlim=c(-50, 50),

+ xlab="Residuals, Clay vs. OC, %",

+ ylab="Residuals, CEC vs. OC, cmol+ (kg soil)-1")

> abline(h=mean(mr.1), lty=2); abline(v=mean(mr.2), lty=2)

> title("Partial Correlation, Clay vs. CEC, correcting for OC 0-10 cm")

> text(25, -6, cex=1.5, paste("r =",round(cor(mr.1, mr.2), 3)))

> par(adj=0)

> rm(mr.1, mr.2)

> par(mfrow=c(1,1))
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r = 0.212

The two scatterplots show that much of the apparent pattern in the simple cor-
relation plot (left) has been removed in the partial correlation plot (right); the
points form a more di↵use cloud around the centroid.

By contrast, CEC is highly positively correlated (r = 0.62) to OC, even after
controlling for Clay (the simple correlation was a bit higher, r = 0.74). This
suggests that OC should be the best single predictor of CEC in the topsoil; we
will verify this in the next section.

The partial correlations are all smaller than the simple ones; this is because all
three variables are inter-correlated. Note especially that the correlation between
OC and clay remains the highest while the others are considerably diminished;
this relation will be highlighted in the principal components analysis.

Simultaneous computation of partial correlations Computing partial correla-
tions from regression residuals gets tedious for a large number of variables. For-
tunately, the partial correlation can also be obtained from either the variance–
covariance or simple correlation matrix of all the variables by inverting it and
then standardising this inverse so that the diagonals are all 1; the o↵-diagonals
are then the negative of the partial correlation coe�cients.

Here is a small R function to do this (and give the o↵-diagonals the correct sign),
applied to the three topsoil variables:

> p.cor <- function(x){

+ inv <- solve(var(x))

+ sdi <- diag(1/sqrt(diag(inv)))

+ p.cor.mat <- -(sdi %*% inv %*% sdi)

+ diag(p.cor.mat) <- 1

+ rownames(p.cor.mat) <- colnames(p.cor.mat) <- colnames(x)

+ return(p.cor.mat) }

> p.cor(obs[c(10,7,13)])

CEC1 Clay1 OC1

CEC1 1.00000 0.21214 0.61538

Clay1 0.21214 1.00000 0.32993

OC1 0.61538 0.32993 1.00000
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7.2 Multiple Regression Analysis

The aim here is to develop the best predictive equation for some predictand, given
several possible predictors.

In the present example, we know that the CEC depends on reactive sites on
clay colloids and humus. So it should be possible to establish a good predictive
relation for CEC (the predictand) from one or both of clay and organic carbon
(the predictors); we could then use this relation at sites where CEC itself has not
been measured.

Note that the type of clay mineral and, in some cases, the soil reaction
are also important in modelling soil CEC; but these are similar in the
sample set, so we will not consider them further.

First, we visualise the relation between these to see if the theory seems plausible
in this case. This was already done in the previous section, §7.1. We saw that
both predictors do indeed have some positive relation with the predictand.

To develop a predictive regression equation, we have three choices of predictors:

Clay content

Organic matter content

Both Clay content and Organic matter content

The simple regressions are computed as before; the multiple regression with more
than one predictor also uses the lm method, with both predictors named in the
formula.

Task 43 : Compute the two simple regressions and the one multiple regression
and display the summaries. Compare these with the null regression, i.e. where
every value is predicted by the mean. •

> lmcec.null<-lm(CEC1 ~ 1); summary(lmcec.null)

Call:

lm(formula = CEC1 ~ 1)

Residuals:

Min 1Q Median 3Q Max

-8.2 -3.7 -1.1 1.9 17.8

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.20 0.42 26.7 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.09 on 146 degrees of freedom

> lmcec.oc<-lm(CEC1 ~ OC1); summary(lmcec.oc)
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Call:

lm(formula = CEC1 ~ OC1)

Residuals:

Min 1Q Median 3Q Max

-7.28 -2.25 -0.21 1.58 15.19

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.671 0.630 5.82 3.6e-08 ***

OC1 2.522 0.189 13.37 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.42 on 145 degrees of freedom

Multiple R-squared: 0.552, Adjusted R-squared: 0.549

F-statistic: 179 on 1 and 145 DF, p-value: <2e-16

> lmcec.clay<-lm(CEC1 ~ Clay1); summary(lmcec.clay)

Call:

lm(formula = CEC1 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-6.706 -3.351 -0.645 2.201 14.196

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8262 0.8620 5.6 1.0e-07 ***

Clay1 0.2039 0.0252 8.1 2.1e-13 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.24 on 145 degrees of freedom

Multiple R-squared: 0.311, Adjusted R-squared: 0.307

F-statistic: 65.5 on 1 and 145 DF, p-value: 2.11e-13

> lmcec.oc.cl<-lm(CEC1 ~ OC1 + Clay1); summary(lmcec.oc.cl)

Call:

lm(formula = CEC1 ~ OC1 + Clay1)

Residuals:

Min 1Q Median 3Q Max

-7.706 -2.016 -0.377 1.289 15.115

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7196 0.7179 3.79 0.00022 ***

OC1 2.1624 0.2308 9.37 < 2e-16 ***

Clay1 0.0647 0.0249 2.60 0.01015 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.36 on 144 degrees of freedom
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Multiple R-squared: 0.572, Adjusted R-squared: 0.566

F-statistic: 96.3 on 2 and 144 DF, p-value: <2e-16

Q61 : How much of the total variability of the predictand (CEC) is explained by
each of the models? Give the three predictive equations, rounded to two decimals.

Jump to A61 •

Q62 : How much does adding clay to the predictive equation using only organic
carbon change the equation? How much more explanation is gained? Does the
model summary show this as a statistically-significant increase? Jump to A62 •

7.3 Comparing regression models

Which of these models is “best”? The aim is to explain as much of the varia-
tion in the dataset as possible with as few predictive factors as possible, i.e. a
parsimonious model.

7.3.1 Comparing regression models with the adjusted R2

One measure which applies to the standard linear model is the “adjusted” R2Compare
R2 which decreases the apparent R2, computed from the ANOVA table, to account

for the number of predictive factors:

R2

adj

⌘ 1�
"
(n� 1)
(n� p) · (1� R

2)
#

where n is the number of observation and p is the number of coe�cients.

Q63 : What are the adjusted R2 in the above models? Which one is highest?
Jump to A63 •

We can see these in the model summaries (above); they can also be extracted
from the model summary:

> summary(lmcec.null)$adj.r.squared

[1] 0

> summary(lmcec.oc)$adj.r.squared

[1] 0.54887

> summary(lmcec.clay)$adj.r.squared

[1] 0.30657

> summary(lmcec.oc.cl)$adj.r.squared

[1] 0.56618
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7.3.2 Comparing regression models with the AIC

A more general measure, which can be applied to almost any model type, isCompare
AIC Akaike’s Information Criterion, abbreviated AIC. The lower value is better.

> AIC(lmcec.null); AIC(lmcec.oc); AIC(lmcec.clay); AIC(lmcec.oc.cl)

[1] 898.81

[1] 782.79

[1] 845.98

[1] 778.02

Q64 : Which model is favoured by the AIC? Jump to A64 •

7.3.3 Comparing regression models with ANOVA

A traditional way to evaluate nested models (where one is a more complex version
of the other) is to compare them in an ANOVA table, normally with the more
complex model listed first. We also compute the proportional reduction in theANOVA, F-

test Residual Sum of Squares (RSS):

> (a <- anova(lmcec.oc.cl, lmcec.clay))

Analysis of Variance Table

Model 1: CEC1 ~ OC1 + Clay1

Model 2: CEC1 ~ Clay1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 144 1621

2 145 2609 -1 -988 87.8 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> diff(a$RSS)/a$RSS[2]

[1] 0.3787

The ANOVA table shows that the second model (clay only) has one more degree
of freedom (i.e. one fewer predictor), but a much higher RSS (i.e. the variability
not explained by the model); the reduction is about 38% compared to the simpler
model. These two estimates of residual variance can be compared with an F-test.
In this case the probability that they are equal is approximately zero, so it’s clear
the more complex model is justified (adds information).

However, when we compare the combined model with the prediction from organic
matter only, we see a di↵erent result:

> (a <- anova(lmcec.oc.cl, lmcec.oc))

Analysis of Variance Table
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Model 1: CEC1 ~ OC1 + Clay1

Model 2: CEC1 ~ OC1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 144 1621

2 145 1697 -1 -76.4 6.79 0.01 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> diff(a$RSS)/a$RSS[2]

[1] 0.045004

Q65 : Which model has a lower RSS? What is the absolute and proportional
di↵erence in RSS between the combined and simple model? What is the prob-
ability that this di↵erence is due to chance, i.e. that the extra information from
the clay content does not really improve the model? Jump to A65 •

Regression diagnostics

Before accepting a model, we should review its diagnostics (§5.7). This provides
insight into how well the model fits, and where any lack of fit comes from.

Task 44 : Display two diagnostic plots for the best model: (1) a normal quantile-
quantile (“Q-Q”) plot of the residuals. Identify badly-fitted observations and
examine the relevant fields in the dataset, (1) predicted vs. actual topsoil CEC.

•

> par(mfrow=c(1,2))

> tmp <- qqnorm(residuals(lmcec.oc.cl), pch=20,

+ main="Normal Q-Q plot, residuals from lm(CEC1 ~ OC1 + Clay1)")

> qqline(residuals(lmcec.oc.cl))

> diff <- (tmp$x - tmp$y)

> ### label the residuals that deviate too far from the line

> text(tmp$x, tmp$y, ifelse((abs(diff) > 3), names(diff), ""), pos=2)

> rm(tmp,diff)

> ### observed vs. fitted

> #

> plot(CEC1 ~ fitted(lmcec.oc.cl), pch=20,

+ xlim=c(0,30), ylim=c(0,30),

+ xlab="Fitted",ylab="Observed",

+ main="Observed vs. Fitted CEC, 0-10cm")

> abline(0,1); grid(col="black")

> par(mfrow=c(1,1))
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Q66 : Are the residuals normally distributed? Is there any apparent explanation
for these poorly-modelled observations? Jump to A66 •

7.4 Stepwise multiple regression*

In the previous section, we examined several models individually, using our ex-
pert judgement to decide which predictors to use, and in which order. Another
approach is to let R try out a large number of possible equations and select the
“best” according to some criterion. One method for this is stepwise regression,
using the step method.

The basic idea of step is to specify an initial model object, as with lm, and
then a scope which specifies how variables in the full model should be added
or subtracted; in the simplest case we do not specify a scope and step tries to
eliminate all variables, one at a time, until no more can be eliminated without
increasing the AIC, explained above.

We will illustrate this with the problem of predicting subsoil clay (di�cult to
sample) from the three topsoil parameters.

Task 45 : Set up a model to predict subsoil clay from all three topsoil variables
(clay, OM, and CEC) and use step to see if all three are needed. •

> # let stepwise pick the best from a full model

> lms <- step(lm(Clay2 ~ Clay1 + CEC1 + OC1))

Start: AIC=461.91

Clay2 ~ Clay1 + CEC1 + OC1

Df Sum of Sq RSS AIC

<none> 3224 462

- OC1 1 81 3305 464

- CEC1 1 179 3403 468

- Clay1 1 21078 24301 757

In this case we see that the full model has the best AIC (461.91) and removing
any of the factors increases the AIC, i.e. the model is not as good. However,
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removing either OC1 or CEC1 doesn’t increase the AIC very much (only to 468),
so although statistically valid they are not so useful.

An example with more predictors shows how variables are eliminated.

Task 46 : Set up a model to predict CEC in the 30-50 cm layer from all three
variables (clay, OM, and CEC) for the two shallower layers, and use step to see
if all six are needed. Note: this model could be applied if only the first two soil
layers were sampled, and we wanted to predict the CEC value of the third layer.

•

> lms <- step(lm(Clay5 ~ Clay1 + CEC1 + OC1 + Clay2 + CEC2 + OC2, data=obs))

Start: AIC=420.7

Clay5 ~ Clay1 + CEC1 + OC1 + Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- CEC1 1 1 2339 419

- OC1 1 9 2347 419

- OC2 1 12 2350 419

- Clay1 1 27 2365 420

<none> 2338 421

- CEC2 1 48 2387 422

- Clay2 1 1764 4102 501

Step: AIC=418.75

Clay5 ~ Clay1 + OC1 + Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC1 1 11 2350 417

- OC2 1 12 2350 417

- Clay1 1 31 2370 419

<none> 2339 419

- CEC2 1 76 2415 421

- Clay2 1 1966 4305 506

Step: AIC=417.43

Clay5 ~ Clay1 + Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC2 1 5 2355 416

- Clay1 1 21 2371 417

<none> 2350 417

- CEC2 1 67 2417 420

- Clay2 1 2294 4644 516

Step: AIC=415.77

Clay5 ~ Clay1 + Clay2 + CEC2

Df Sum of Sq RSS AIC

<none> 2355 416

- Clay1 1 36 2392 416

- CEC2 1 62 2417 418

- Clay2 1 2311 4666 514
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The original AIC (with all six predictors) is 420.7; step examines all the vari-
ables and decides that by eliminating CEC1 (a topsoil property) the AIC is most
improved.

The AIC is now 418.75; step examines all the remaining variables and decides
that by eliminating OC1 the AIC is most improved; again a topsoil property is
considered unimportant.

The AIC is now 417.43; step examines all the remaining variables and decides
that by eliminating OC2 the AIC is most improved.

The AIC is now 415.77 and all three remaining variables must be retained, oth-
erwise the AIC increases. The final selection includes both clay measurements
(0-10 and 10-20 cm) and the CEC of the second layer.

Notice from the final output that Clay1 could still be eliminated with very little
loss of information, which would leave a model with two properties from the
second layer to predict the clay in the subsoil; or CEC2 could be eliminated with
a little more loss of information; this would leave the two overlying clay contents
to predict subsoil clay. Either of these alternatives would be more parsimonious
in terms of interpretation, although statistically just a bit weaker than the final
model discovered by step.

7.5 Combining discrete and continuous predictors

In many datasets, including this one, we have both discrete factors (e.g. soil
type, agro-ecological zone) and continuous variables (e.g. topsoil clay) which we
show in one-way ANOVA and univariate regression, respectively, to be useful
predictors of some continuous variable (e.g. subsoil clay). The discussion of the
design matrix and linear models (§6.3) showed that both one-way ANOVA on
a factor and univariate regression on a continuous predictor are just a cases of
linear modelling. Thus, they can be combined in a multiple regression.

Task 47 : Model the clay content of the 20-50 cm layer from the agro-ecological
zone and measured clay in the topsoil (0-10 cm layer), first separately and then
as an additive model. •

> lm5z <- lm(Clay5 ~ zone); summary(lm5z)

Call:

lm(formula = Clay5 ~ zone)

Residuals:

Min 1Q Median 3Q Max

-32.95 -5.40 0.16 3.16 24.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.00 3.21 17.14 < 2e-16 ***

zone2 0.95 3.52 0.27 0.7874

zone3 -11.16 3.41 -3.28 0.0013 **

zone4 -23.67 3.55 -6.67 5.2e-10 ***
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.08 on 143 degrees of freedom

Multiple R-squared: 0.513, Adjusted R-squared: 0.502

F-statistic: 50.1 on 3 and 143 DF, p-value: <2e-16

> lm51 <- lm(Clay5 ~ Clay1); summary(lm51)

Call:

lm(formula = Clay5 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-20.626 -3.191 0.005 3.387 14.150

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.7586 1.1556 16.2 <2e-16 ***

Clay1 0.8289 0.0338 24.5 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.69 on 145 degrees of freedom

Multiple R-squared: 0.806, Adjusted R-squared: 0.805

F-statistic: 602 on 1 and 145 DF, p-value: <2e-16

> lm5z1 <- lm(Clay5 ~ zone + Clay1); summary(lm5z1)

Call:

lm(formula = Clay5 ~ zone + Clay1)

Residuals:

Min 1Q Median 3Q Max

-24.09 -2.99 0.15 3.14 13.89

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.3244 2.9054 6.65 5.8e-10 ***

zone2 5.6945 2.1060 2.70 0.0077 **

zone3 2.2510 2.1831 1.03 0.3043

zone4 -0.6594 2.5365 -0.26 0.7953

Clay1 0.7356 0.0452 16.26 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.39 on 142 degrees of freedom

Multiple R-squared: 0.83, Adjusted R-squared: 0.825

F-statistic: 173 on 4 and 142 DF, p-value: <2e-16

Note the use of the + in the model specification. This specifies an additive model,
where there is one regression line (for the continuous predictor) which is dis-
placed vertically according to the mean value of the discrete predictor. This is
sometimes called parallel regression. It hypothesizes that the only e↵ect of the
discrete predictor is to adjust the mean, but that the relation between the contin-
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uous predictor and the predictand is then the same for all classes of the discrete
predictor. Below (§7.8) we will investigate the case where we can not assume
parallel slopes.

Q67 : How much of the variation in subsoil clay is explained by the zone? by the
topsoil clay? by both together? Is the combined model better than individual
models? How much so? Jump to A67 •

Q68 : In the parallel regression model (topsoil clay and zone as predictors), what
are the di↵erences in the means between zones? What is the slope of the linear
regression, after accounting for the zones? How does this compare with the slope
of the linear regression not considering zones? Jump to A68 •

Q69 : Are all predictors in the combined model (topsoil clay and zone as pre-
dictors) asignificant? (Hint: look at the probability of the t-tests.) Jump to
A69 •

Diagnostics We examine the residuals to see if any points were especially badly-
predicted and if the residuals fit the hypothesis of normality.

Task 48 : Make a stem plot of the residuals. •

> stem(residuals(lm5z1))

The decimal point is at the |

-24 | 1

-22 |

-20 |

-18 |

-16 |

-14 |

-12 |

-10 | 540

-8 | 77104

-6 | 10099662

-4 | 888539854322

-2 | 8655321009876110

-0 | 9866654322110987666555321

0 | 00122334445679023444466688889

2 | 0334488900122333345568

4 | 0336800058

6 | 35792244

8 | 5

10 | 11188

12 | 49
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Q70 : Are the residuals normally-distributed? Are there any particularly bad
values? Jump to A70 •

Clearly there are some points that are less well-modelled.

Task 49 : Display the records for these poorly-modelled points and compare
their subsoil clay to the prediction. •

> res.lo <- which(residuals(lm5z1) < -12)

> res.hi <- which(residuals(lm5z1) > 9)

> obs[res.lo, ]

e n elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5

145 695098 328237 547 2 f OCA 30 18 23 7 6 7

OC1 OC2 OC5

145 1.5 0.8 0.8

> predict(lm5z1)[res.lo]

145

47.086

> obs[res.hi, ]

e n elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5

9 681230 311053 600 2 f FV 46 56 70 7.9 5.7 4.5

27 679242 338073 360 3 a FV 24 35 51 5.0 5.4 13.1

38 671039 336819 130 4 a OCA 13 23 40 4.8 3.4 3.2

42 667325 334883 243 4 a FV 23 38 48 3.9 4.2 4.9

119 666452 337405 134 4 a BF 21 40 48 5.4 2.6 7.5

128 699567 328185 630 2 f MCA 17 40 47 8.0 8.0 8.0

137 698928 328368 640 2 f FV 42 61 66 9.0 9.0 8.0

139 695014 328757 560 2 f FV 42 60 66 9.0 8.0 8.0

OC1 OC2 OC5

9 2.30 1.36 0.9

27 1.04 0.52 0.5

38 1.30 0.34 0.2

42 1.27 0.58 0.5

119 2.00 0.60 0.4

128 1.80 0.90 0.8

137 2.30 1.30 1.0

139 2.30 1.20 1.0

> predict(lm5z1)[res.hi]

9 27 38 42 119 128 137 139

58.856 39.229 28.228 35.583 34.112 37.524 55.913 55.913

Q71 : What are the predicted and actual subsoil clay contents for the highest
and lowest residuals? What is unusual about these observations? Jump to A71
•
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7.6 Diagnosing multi-colinearity

Another approach to reducing a regression equation to its most parsiminious form
is to examine the relation between the predictor variables and the predictand for
multi-collinearity, that is, the degree to which they are themselves linearly related
in the multiple regression. In the extreme, clearly if two variables are perfectly
related, one can be eliminated, as it can not add information as a predictor.

This was discussed to some extent in §7.1 “Multiple correlation”, but it was not
clear which of the correlated variables to discard, because the predictand was not
included in the analysis. For this we use the Variance Inflation Factor (VIF),
which measures the e↵ect of a set of explanatory variables (predictors) on the
variance of the coe�cient of another predictor, in the multiple regression equation
including all predictors, i.e. how much the variance of an estimated regression
coe�cient is increased because of collinearity. The square root of the VIF gives
the increase in the standard error of the coe�cient in the full model, compared
with what it would be if the target predictor were uncorrelated with the other
predictors. Fox [12] has a good discussion, including a visualization.

In the standard multivariate regression:

Y =
kX

0

�kXk + ", X0

= 1 (5)

solved by ordinary least-squares, the sampling variance of an estimated regression
coe�cient ˆ�j can be expressed as:

var(ˆ�j) =
s2

(n� 1)s2

j
· 1

1� R2

j
(6)

where:

s2 : is the estimated error variance of the residuals of the multiple regression;

s2

j : is the sample variance of the target variable;

R2

j : is the multiple coe�cient of determination for the regression of the target
variable Xj on the other predictors.

The left-hand multiplicand applies also in a single-predictor regression: it mea-
sures the imprecision of the fit compared to that of the predictor. A larger overall
error variance of the regression, s2, will, of course, always lead to a higher vari-
ance in the regression coe�cient, while a larger number of observations n and
a larger variance s2

j of the target variable will both lower the variance in the
regression coe�cient.

The right-hand multiplicand, 1/(1�R2

j ) applies only in multiple regression. This
is the VIF: it multiplies the variance of the regression coe�cient by a factor that
will be larger as the multiple correlation of a target predictor with the other
predictors increases. Thus the VIF increases as the target predictor does not add
much information to the regression.

The VIF is computed with the vif function of John Fox’s car package [13].
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Task 50 : Load the car package and compute the VIF of the six predictors. •

> require(car)

> vif(lm(Clay5 ~ Clay1 + CEC1 + OC1 + Clay2 + CEC2 + OC2, data=obs))

Clay1 CEC1 OC1 Clay2 CEC2 OC2

12.8391 4.7712 4.0944 10.3882 3.5531 3.0349

There is no test of significance or hard-and-fast rule for the VIF: however many
authors consider VIF � 5 as a caution and VIF � 10 as a definite indication of
multicolinearity. Note that this test does not tell which variables, of the set, each
variable with a high VIF is correlated with. It could be with just one or with
several taken together.

Q72 : According to the VIF � 10 criterion, which variables are highly correlated
with the others? Jump to A72 •

Task 51 : Re-compute the VIF for the multiple regression without these variables,
each taken out separately. •

> vif(lm(Clay5 ~ Clay1 + CEC1 + OC1 + CEC2 + OC2, data=obs))

Clay1 CEC1 OC1 CEC2 OC2

2.5927 4.2208 4.0916 3.3218 3.0214

> vif(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs))

Clay2 CEC1 OC1 CEC2 OC2

2.0978 4.5034 4.0277 3.5256 2.9037

Q73 : According to the VIF >= 10 criterion, which variables in these reduced
equations are highly correlated with the others? What do you conclude about
the set of variables? Jump to A73 •

Since either Clay1 or Clay2 can be taken out of the equation, we compare the
models, starting from a reduced model with each one taken out, both as full
models and models reduced by backwards stepwise elimination:

First, eliminating Clay2:

> AIC(lm(Clay5 ~ Clay1 + CEC1 + OC1 + CEC2 + OC2, data=obs))

[1] 920.5

> AIC(step(lm(Clay5 ~ Clay1 + CEC1 + OC1 + CEC2 + OC2, data=obs), trace=0))

[1] 916.16

Second, eliminating Clay1:

> AIC(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs))
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[1] 839.57

> AIC(step(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs) , trace=0))

[1] 835.2

Q74 : Which of the two variables with high VIF in the full model should be
eliminated? Jump to A74 •

Task 52 : Compute a reduced model by backwards stepwise elimination, starting
from the full model with this variable eliminated. •

> (lms.2 <- step(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs)))

Start: AIC=420.4

Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2

Df Sum of Sq RSS AIC

- CEC1 1 5 2370 419

- OC1 1 5 2371 419

- OC2 1 22 2387 420

<none> 2365 420

- CEC2 1 56 2421 422

- Clay2 1 10782 13148 671

Step: AIC=418.69

Clay5 ~ Clay2 + OC1 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC1 1 1 2371 417

- OC2 1 20 2390 418

<none> 2370 419

- CEC2 1 67 2437 421

- Clay2 1 11653 14023 678

Step: AIC=416.75

Clay5 ~ Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC2 1 21 2392 416

<none> 2371 417

- CEC2 1 66 2437 419

- Clay2 1 11876 14247 678

Step: AIC=416.03

Clay5 ~ Clay2 + CEC2

Df Sum of Sq RSS AIC

<none> 2392 416

- CEC2 1 47 2439 417

- Clay2 1 15687 18078 711

Call:
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lm(formula = Clay5 ~ Clay2 + CEC2, data = obs)

Coefficients:

(Intercept) Clay2 CEC2

14.519 0.861 -0.199

Q75 : What is the final model? What is its AIC? How do these compare with
the model found by stepwise regression, not considering the VIF criterion? Jump
to A75 •

Another approach is to compute the stepwise model starting from a full model,
and then see the VIF of the variables retained in that model.

Task 53 : Compute the VIF for the full stepwise model. •
The vif function can be applied to a model object; in this case lms, computed
above:

> vif(lms)

Clay1 Clay2 CEC2

8.3567 8.0790 1.5327

Q76 : What is the multi-colinearity in this model? Jump to A76 •

This again indicates that the two “clay” variables are highly redundant, and that
eliminating one of them results in a more parsimonious model. Which to eliminate
is evaluated by computing both reduced models and comparing their AIC.

Task 54 : Compute the AIC of this model, with each of the highly-correlated
variables removed. •
We specify the new model with the very useful update function. This takes a
model object and adjusts it according to a new formula, where existing terms are
indicated by a period (‘.’).

> AIC(lms)

[1] 834.94

> AIC(update(lms, . ~ . - Clay1))

[1] 835.2

> AIC(update(lms, . ~ . - Clay2))

[1] 933.44

Q77 : Which of the two “clay” variables should be eliminated? How much does
this change the AIC? Jump to A77 •

86



7.11 Answers

A59 : CEC is positively correlated with both clay and organic matter; however there
more spread in the CEC-vs-clay relation. The two possible predictors (clay and organic
matter) are also positively correlated. Return to Q59 •

A60 : The covariances depend on the measurement scales, whereas the correlations
are standardised to the range [�1,1]. CEC is highly correlated (r = 0.74) with organic
carbon and somewhat less so (r = 0. 56) with clay content. The two predictors are also
moderately correlated (r = 0.60). Return to Q60 •

A61 : These are given by the adjusted R2: 0.3066 using only clay as a predictor
(CEC = 4.83 + 0.20 · Clay), 0.5489 using only organic carbon as a predictor (CEC =
3.67+2.52·OC), and 0.5662 using both together (CEC = 2.72+2.16·OC+0.64·Clay).

Return to Q61 •

A62 : The predictive equation is only a little a↵ected: the slope associated with OC
decreases from 2.52 to 2.16, while the intercept (associated with no clay or organic carbon)
decreases by 0.95. Adding Clay increases R2 by only 0.5662 � 0.5489 = 0.0173, i.e.
1.7%. This is significant (p = 0.010152) at the ↵ = 0.05 but not the ↵ = 0.01 level.

Return to Q62 •

A63 : OC only: 0.549; Clay only: 0.307; Both: 0.566. The model with both is slightly
better than the single-predictor model from OC. Return to Q63 •

A64 : The AIC favours the model with both OC and clay, but this is only slightly
better than the single-predictor model from OC. Return to Q64 •

A65 : The combined model has the lowest RSS (necessarily); the di↵erence is only
76.4, i.e. about 12% lower. There is a 1% probability that this reduction is due to
chance. Return to Q65 •

A66 : The residuals are not normally-distributed; both tails are too long, and there are
about six serious under-predictions (observations 73, 60, 63, 140, 77, 124).

The two observations with the most negative residuals (over-predictions), i.e. 1 and 10,
are the only two with very high clay and OC5. This suggests an interaction at high levels;
“the whole is more than the sum of the parts”.

There seems to be no comparable explanations for the four observations with the most
positive residuals (under-predictions). Return to Q66 •

A67 : The model explains 50% (zone); 80% (topsoil clay); 82.5% (both) of the variation

5 obs[(Clay1 > 60) & (OC1 > 5.5),]

96



in subsoil clay; the combined model is only a bit better than the model using only
measured topsoil clay. Return to Q67 •

A68 : The regression lines for zones 2, 3, and 4 are adjusted by 5.69, 2.25, and �0.66,
respectively, compared to zone 1. These are the mean di↵erences. The slope is 0.736,
which is somewhat flatter than the slope estimated without considering zones, 0.829.
That is, some of the apparently steep slope in the univariate model is accounted for by
the di↵erences between zones. In particular zone 2, which has the higher clay values in
both layers, has a higher mean, so that once this is accounted for the regression line is
not “pulled” to the higher values. Return to Q68 •

A69 : Topsoil clay is very highly significant (p ⇡ 0 that it isn’t) and so is the intercept (0
clay and zone 1). Zone 2 is significantly di↵erent (p < 0.008 that it isn’t) but the others
are not. Note that in the one-way ANOVA by zone, zones 3 and 4 are both significantly
di↵erent from zone 1 and 2, which form a group. Here we see that the inclusion of topsoil
clay in the model has completely changed the relation to zone, since much of the zone
e↵ect was in fact a clay e↵ect, i.e. zones had di↵erent average topsoil clay contents. The
two predictors were confounded. Return to Q69 •

A70 : The residuals are more or less normally distributed around 0, except for one very
large negative residual (under-prediction) and seven large positive residuals (heavy tail)

Return to Q70 •

A71 : At point 145, the prediction is 23% while the actual is 47%; this is a severe
under-prediction. This is an unusual observation: topsoil clay is 7% higher than both
underlying layers. There are only two observations where topsoil clay exceeds subsoil
clay (> which(Clay1 > Clay5)), 145 and 81, and for observation 81 the di↵erence is
only 2%.

At point 119, the prediction is 34% while the actual is 48%; this is the largest under-
prediction. Here topsoil clay is fairly low (21%) compared to the much higher subsoil
values. Return to Q71 •

A72 : Variables Clay1 and Clay2 have VIF � 10 and are thus highly co-linear with
other variables. As a set, the others are fairly independent. Return to Q72 •

A73 : If either Clay1 or Clay2 are removed, the remaining set of five variables are
fairly independent (all VIF < 5). This shows that the high VIF for Clay1 and Clay2 in
the full model was due to the presence of the other “clay” variable. So either topsoil or
subsoil clay should be included in a parsimonious model, but not both. Return to Q73
•

A74 : Eliminating Clay1 results in a much lower AIC. This seems logical, as subsoil clay
(Clay2) is closer physically to the deep subsoil (target variable Clay5), so the processes
that lead to a certain clay content would seem to be more similar. Return to Q74 •

A75 : The final stepwise regression model, starting from the full set less Clay1, is
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Clay5 ~ Clay2 + CEC2, with an AIC of 835.2. The model starting from the full set is
Clay5 ~ Clay1 + Clay2 + CEC2, i.e. it has both clays as well as the subsoil CEC. Its
AIC is 834.94. The two final models are almost the same except for the inclusion of the
highly-colinear variable; their AIC is almost identical. So, the reduced model (without
Clay1 is preferred. Return to Q75 •

A76 : Both Clay1 and Clay2 have VIF > 8, not above the threshold VIF >= 10 but
not much below. Clearly, Clay1 and Clay2 are still highly-correlated. Return to Q76 •

A77 : As in the previous tasks of this section, we see that Clay1 can be eliminated with
almost no increase in model information content as shown by the AIC.

Return to Q77 •

A78 : Zone 4 (blue points and line, low clay values) seems poorly-fit. A line with a lower
intercept and a steeper slope would appear to fit better. So a model with interaction
between classified and continuous predictor, allowing separate slopes for each class, might
be better. For the other three the parallel lines seem OK. Return to Q78 •

A79 : The model explains 83.4% of the variation in subsoil clay; this is slightly better
than the additive model (82.5%). Return to Q79 •

A80 : Additive terms for topsoil clay, the intercept (zone 1 at zero clay) and zone 3
are significant. This di↵ers from the additive model, where zone 2 was the only zone
significantly di↵erent from the intercept. Return to Q80 •

A81 : The most significant interaction is Clay1:zone3 but the probability that rejecting
the null hypothesis of no di↵erence in slopes is fairly high, 0.076, so we can’t reject the
null hypothesis at the conventional 95% confidence level. Return to Q81 •

A82 : They certainly appear di↵erent, ranging from 0.564 in zone 3 (green points and
line) to 1.081 (blue points and line), almost double. Yet the t-tests for the interaction
terms are not significant at the 95% confidence level, so these four slopes could all be
di↵erent just because of sampling error. Return to Q82 •

A83 : The fundamental problems are: (1) small sample size in each zone; (2) a spread
of points (“cloud” or “noise”) within each zone. These two factors make it di�cult to
establish statistical significance. Return to Q83 •

A84 : The nested model explains 83.4% of the variation in subsoil clay; this is slightly
better than the additive model (82.5%) and the same as the interactions model. It is
quite unlikely that the mean for zone 4 is di↵erent from zone 1. Return to Q84 •

A85 : Yes, they are the same. For zone 1, the interaction model has the default
slope (coe�cient for Clay1) which is the same as the nested model slope for zone 1
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(coe�cient for zone1:Clay1). For zone 4, adding the slope di↵erence in the interaction
model (coe�cient for Clay1:zone4) to the default slope (coe�cient for Clay1) gives the
same value as the nested model slope for zone 4 (coe�cient for zone4:Clay1). Return
to Q85 •

A86 : There is a big di↵erence between the model coe�cients and their significance.
Without considering the covariate at all, the di↵erence from zone 1 is (zone 4 � zone 3
� zone 2), the latter is not significantly di↵erent. In the nested model the di↵erences
are (zone 3 > zone 2 � zone 4), the latter coe�cient not significant; this is because
the di↵erence between zone 1 and 4 subsoil clay can be almost entirely explained if one
knows the topsoil clay and allows separate regression lines for each zone. In the additive
(parallel) model the di↵erences are (zone 2 > zone 3 � zone 4). The parallel regression
line for zone 2 is significantly above that for zone 1, the others not significantly di↵erent.

Return to Q86 •

8 Factor analysis

Sometimes we are interested in the inter-relations between a set of variables, not
just their individual (partial) correlations (§7.1). That is, we want to investigate
the structure of the multivariate feature space covered by a set of variables.; this
is factor analysis. This can also be used to diagnose multi-collinearity and select
representative variables (see also §7.6).

The basic idea is that the vector space made up of the original variables may be
projected onto another space, where the new synthetic variables are orthogonal
to each other, i.e. completely uncorrelated. These synthetic variables can often
be interpreted by the analyst, that is, they represent some composite attribute
of the objects of study.

8.1 Principal components analysis

The first such technique is Principal components analysis. This is a multivariate
data reduction technique. It finds a new set of variables, equal in number to the
original set, where these synthetic variables are uncorrelated (i.e. orthogonal to
each other in the space formed by the principal components). In addition, the
first synthetic variable represents as much of the common variation of the origi-
nal variables as possible, the second variable represents as much of the residual
variation as possible, and so forth.

Note: This is a common image-processing technique and is explained and illus-
trated in many textbooks on remote sensing [e.g. 1, 20].

In the present example, we investigate the structure of the feature space defined
by the three variables (CEC, Clay, and OC) in a single horizon. A summary of
the components reveals how much redundancy there is in this space.

Task 58 : Compute the unstandardized principal components of three variables:
topsoil clay, CEC, and organic carbon. •
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