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Research process

Scientific question of interest

Decide what data to collect (and how)

Collection and analysis of data

Conclusions, generalizations : inference on the population

Communication and dissemination of results
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Generic question :
Does a ‘treatment’ have an ‘effect’ ?

Examples :

Does smoking cause cancer, heart disease, etc ?

Does eating oat bran lower cholesterol ?

Does echinacea prevent illness ?

Does exercise slow the aging process ?

Approach the question :

One simple method for resolving this type of question is to
compare two groups of study subjects :

∎ Control group : gives a base level for comparison
∎ Treatment group : group receiving the ‘treatment’
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Types of studies

A basic means to address this type of question involves
comparing two groups of study subjects :

∎ Control group : provides a baseline for comparison
∎ Treatment group : group receiving the ‘treatment’

Experimental study : subjects assigned to groups by the
investigator

∎ randomization : protects against bias in assignment to
groups

∎ ‘blind’, ‘double-blind’ : protects against bias in outcome
assessment/measurement

∎ placebo : artificial/fake treatment

Observational study : subjects ‘assign’ themselves to groups

∎ confounder : associated with both group
membership/risk factor and with the outcome of
interest
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A few comments

With a well-planned and well executed controlled experiment,
it is possible to infer causality

This is not possible with observational studies due to the
presence of confounders

With confounding, it is not possible to tell whether the
observed difference between groups is due to the treatment or
to the confounding factor

Not always possible to carry out an experiment, for pratical
and ethical reasons
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Example : Hibernation

General question : How do changes in an animal’s
environment induce hibernation ?

What changes should be studied ? ?

∎ temperature
∎ photoperiod (daylight duration)

What measures to take ?

∎ nerve enzymatic activity (Na+K+ATP-ase)

What animal to study ?

∎ golden hamster, 2 organs
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Specific question

General question : How do changes in an animal’s
environment induce hibernation ?

Specific question : What is the effect of changing daylight
duration on the enzyme concentration of the sodium pump in
two golden hamster organs ?
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Sources of variability

Variability due to the conditions of interest (wanted)

∎ Duration (long or short)
∎ Organ (heart or brain)

Variability of the response (NOT wanted) : measurement error

∎ Preparation of the enzyme suspension
∎ Instrument calibration/standardization

Variability in experimental units (NOT wanted)

∎ biological differences between hamsters
∎ environmental differences
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Types of variability

Systematic, expected (wanted)

Random variation (can manage this)

Systematic, unexpected (NOT wanted)

∎ biased results
∎ e.g., what time the measurements are made
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Questions for the hibernation study

Long or short : Is there an effect of daylight duration on
enzyme concentration ?

Heart vs. Brain : Are the concentrations different in the 2
organs ?

Interaction : Is the difference in enzyme concentration
(long/short) different for heart and brain ?

Hamsters : Variability between hamsters ?

Measurement error : What is the error due to the
measurement process for enzyme concentration ?
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Experimental design – why do we care ?

Poor design costs :

∎ time, money, ethical considerations

To ensure relevant data are collected, and can be analyzed to
test the scientific hypothesis/ question of interest

∎ Decide in advance how data will be analyzed
∎ ‘Designing the experiment’ = ‘Planning the analysis’

The design is about the biology
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Common experimental designs

Completely randomized design (CRD)

∎ compares 2 (or more) levels of a single factor
∎ analysis : 1-way anova (below)

Randomized Block Design (RBD)

∎ compares 2 (or more) levels of a single factor
∎ observations in blocks
∎ analysis : similar to unreplicated 2-way anova

(Full) Factorial design

∎ levels from multiple factors varied and studied
simultaneously

∎ can detect interaction between factors
∎ analysis : 2-way (or multi-way) anova
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Completely randomized experiment

Study subjects (experimental units) homogeneous

Randomized to treatments (factor levels)
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Data example : Blood coagulation time

24 animals

Randomly assigned

to 4 different diets

Measured blood coagulation times from samples taken in a
random order

As always, the first step of analysis is EXPLORATORY

14 / 71



Compare distributions with boxplots

We hope we don’t see :

∎ outliers – points outside the whiskers
∎ skewness – asymmetrical boxes
∎ unequal variance – clearly unequal box sizes

BUT : don’t over-interpret boxplots based on small n

15 / 71



Trees

A study is conducted to investigate the growth of a certain
type of tree at an elevation of 675 meters

The variable of interest is the core measurement (in cm) for a
10 year period

The theory is that the mean should be at least 1.75

In a random sample of 10 measurements, the mean was 2
with an SD of 0.5
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Hypothesis test for this setup

Identify the population parameter being tested
Here, the parameter being tested is the population mean core
measurement µ

Formulate the NULL and ALT hypotheses
H ∶ µ = 1.75 (or µ ≤ 1.75)
A ∶ µ > 1.75

Compute the Test Statistic (TS)
t = (2?1.75)/(.5/

√
10) = 1.58

Compute the p-value
Here, p = P(t9 > 1.58) = 0.07

Decision Rule : REJECT H if the p-value ≤ α
If we use α = 0.05, the decision here will be DO NOT
REJECT H (but just barely !)
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More trees

Now say we are interested in whether the mean core
measurement is the same in trees at 675 meters and trees at
825 meters

Assume that we have a random sample also of size 10 of trees
at 825 meters, with a mean core measurement of 2.65 cm and
SD 1.15 cm

How might we test the null that the means are the same,
against the alternative that they are different ?
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Test for comparing two (independent) means : equal
variances

We want to compare the means of two sets of measures :

∎ Group 1 (p. ex. ‘control’) : x1, . . . , xn
∎ Group 2 (p. ex. ‘treatment’) : y1, . . . , ym

We can model these data as :
xi = µ + εi ; i = 1, . . . ,n ;
yj = µ +∆ + τi ; j = 1, . . . ,m,

where ∆ signifies the effect of the treatment (compared to
the ‘control’ group)

H ∶ ∆ = 0 vs. A ∶ ∆ ≠ 0 or A ∶ ∆ > 0 or A ∶ ∆ < 0
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Equal variances, cont.

T = obs. diff. / ES(obs. diff.) =
∆√
V̂ar (̂ )∆

;

∆̂ = ȳ − x̄ ; Var(∆̂) = σ
2

n
+ σ

2

m
= n +m

nm
σ2

We assume that :
∎ the variances of the 2 samples are equal :

Var(ε) = Var(τ)
∎ the observations are independent
∎ the 2 samples are independent

We can estimate the variances separately :
s2x = ((x1 − x̄)2 +⋯ + (xn − x̄)2)/(n − 1)
s2y = ((y1 − ȳ)2 +⋯ + (ym − ȳ)2)/(m − 1)
When the variances are equal, we can combine the two
estimators : s2p = ((n − 1)s2x + (m − 1)s2y )/(n +m − 2)

⇒ tobs =
ȳ − x̄√

s2p(n +m)/(nm)
∼ tn+m−2 under H
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Trees one more time !

You guessed it ! Now say we are also interested in trees at 975
meters as well

Want to make a three-way comparison

Have a random sample (size 10 again) and find the mean is
2.5 and the SD is 1

How might we test the null that all three means are the same,
against the alternative that at least one is different ?
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ANOVA
Abbreviation for ANalysis Of VAriance (analyse de variance)
But it’s a test for a difference in means
The idea :
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Principle

The variation (total sum of squared deviations) consists of 2
components

∎ individual fluctuations : variability intra-group (error)
∎ between group fluctuations : variability inter-group

(treatment)

Variability inter-group > Variability intra-group
⇒ (at least) 2 means are (significantly) different

General principle :

∎ Decompose the total sum of squared deviations into its
2 (orthogonal) parts

∎ Test if the MSinter (MSB) is (significantly) bigger than
the MSintra (MSW, or MSE)
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Hypothesis tests

Notation :

∎ k groups
∎ ni individuals in group i
∎ observations xij (observation j from group i)

H ∶ µ1 = µ2 = ⋯ = µk
A ∶ ∃µi ≠ µj (at least 1 mean is different from the others)

ANOVA is a rather robust test (resultats not too influenced by
small deviations from the assumptions
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Pairs of tests : why not ?

Why not start off by carrying out tests (z or t) for each pair of
samples ?

For m comparisons (independent), the probability of rejecting
at least one H can be expressed as αm = 1− (1−α)m ; now for
α = 0.05 :

3 tests Ô⇒ Type I error = 0.14

5 tests Ô⇒ Type I error = 0.23

10 tests Ô⇒ Type I error = 0.4

21 tests Ô⇒ Type I error = 0.66

Ô⇒ Type I error no longer controlled at level α = 0.05
(anti-conservative/liberal test)
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The models

εij ∼ iid N(0, σ2)
Under H, the model is :

xij = µ + εij
Under A, the model is :

xij = µ + αi + εij ,

where αi ia the effect of modality/level i of facteur A on the
variable X

For each model, we can derive an estimator for the residual
variance
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Sum of squares

Goal : test difference between means of two (or more) groups

∎ Between SS measures the difference

The difference must be measured relative to the variance
within the groups

∎ Within SS

F-test : considers the ratio of B/W
The larger F is, the more significant the difference
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The ANOVA procedure

Subdivide observed total sum of squares into several
components

Pic appropriate significance point for a chosen Type I error
from an F table

Compare the observed components to test the NULL
hypothesis
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Parameter estimation

Under H : xij = µ + εij :

µ̂ = x = 1

n

k

∑
i=1
,
ni

∑
j=1

xij , n =
k

∑
i=1

ni

Under A : xij = µ + αi + εij :

µ̂ + α̂i = x i =
1

ni

ni

∑
j=1

xij , n =
k

∑
i=1

ni ,

which gives us α̂i = x i − x

ε̂ij = xij − x̂ij = xij − µ̂ − α̂i = xij − x − (x i − x) = xij − x i
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Decomposition of the total variation

The model under A : xij = µ + αi + εij
with estimators : xij = x + (x i − x) + (xij − x i)
Ô⇒ (xij − x) = (x i − x) + (xij − x i)

with sum of squares :

(xij − x)2 = (x i − x)2 + (xij − x i)2 + 2 (x i − x) (xij − x i)
and sums for individuals (j) :

∑ni
j=1(xij − x)2 =

ni (x i − x)2 + +∑ni
j=1(xij − x i)2 + 2 (x i − x)∑ni

j=1(xij − x i)
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Decomposition, cont.

Thus, 2 (x ix) ∑ni
j=1(xij − x i) = 0, since ∑ni

j=1(xij − x i) = 0
(E [εij] = 0)
Therefore,

ni

∑
j=1

(xij − x)2 = ni (x i − x)2 +
ni

∑
j=1

(xij − x i)2

with the sums for the factor levels :

k

∑
i=1

ni

∑
j=1

(xij − x)2 +
k

∑
i=1

ni (x i − x)2 +
k

∑
i=1

ni

∑
j=1

(xij − x i)2

Ô⇒ SStotal = SSgroups + SSerror
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Test principle

1-factor analysis of variance tests the effect of one factor A
having k modalities on the means of a quantitative variable X

The tested hypotheses are :
H ∶ µ1 = µ2 = ⋯ = µk = µ vs. A ∶ ∃µi ≠ µj
Test if the ratio of 2 variance estimators is close to 1

The variance estimators associated are :

∎ Total variance : SStotal/(n − 1)
∎ Variance due to factor A (MStrts) : SStrts/(k − 1)
Ô⇒ estimator of σ2 if H is true

∎ Residual variance (MSerror ) : SSerror /(n − k)
Ô⇒ estimator of σ2 whichever model
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Test statistic

Under H, SStrts/(k − 1) and SSerror /(n − k)
⇒ estimators of the same parameter σ2

Thus (under H), the ratio SStrts/(k−1)
SSerror /(n−k) ≈ 1

Under A, at least 1 αi ≠ 0 and SSerror /(n − k) is a unique
estimator of σ2 ; SStrts/(k − 1) >> SCerror /(n − k)

Thus (under A), the ratio SStrts/(k−1)
SSerror /(n−k) much larger than 1

⇒ F -Test unilateral in every case

Fobs = SStrts/(k−1)
SSerror /(n−k) =MStrts/MSerreur

Test statistic is distributed according to a Fisher F
distribution, with k − 1 (num) and n − k (denom) degrees of
liberty (df)
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ANOVA table

ANOVA table
source df SS MS (=SS/df) F p-value

treatments k − 1 SStrts SStrts/(k − 1) MStrts/MSerror P(Fobs >
error n − k SSerror SSerror /(n − k)(= σ̂2) Fk−1,n−k)

total (corr.) n − 1 SStotal
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What does it mean when we reject H ?

The null hypothesis H is a joint (global) one : that all the
population means are equal

When we reject the null hypothesis, that does not mean that
all the means are different ! !

It means that at least one is different

To know which is different, we can carry out ‘post hoc’/a
posteriori tests (pairs of tests, for example – below)
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Model formulas in R

A simple model formula in R looks something like :
yvar ∼ xvar1 + xvar2 + xvar3

We could write this model (algebraically) as

y = β0 + β1 x1 + β2 x2 + β3 x3 + ε

By default, an intercept is included in the model – you don ?t
have to include a term in the model formula

If you want to leave the intercept out :
yvar ∼ -1 + xvar1 + xvar2 + xvar3
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More on model formulas

We can also include interaction terms in a model formula :
yvar ∼ xvar1 + xvar2 + xvar3

Examples :

∎ yvar ∼ xvar1 + xvar2 + xvar3 + xvar1 :xvar2
∎ yvar ∼ (xvar1 + xvar2 + xvar3)2

∎ yvar ∼ (xvar1 * xvar2 * xvar3)
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More on model formulas

The generic form is response ∼ predictors

The predictors can be numeric or factor

Other symbols to create formulas with combinations of
variables (e.g. interactions)

∎ + to add more variables
∎ - to leave out variables
∎ : to introduce interactions between two (or more)

terms
∎ * to include both the interactions and all lower order

terms (a*b is the same as a+b+a:b)
∎ ∧n adds all terms including interactions up to order n
∎ I ( ) treats what’s inside ( ) as a mathematical

expression
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Tables of group means for chicks data

39 / 71



Interpreting R output
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R output for the coagulation example
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ASSUMPTIONS

Independence : The k groups (samples) are independent, as
well as the individuals within groups ; the ensemble of the n
individuals are placed at random (randomization) between the
k modalities for the controled factor A, with ni individuals
receiving treatment i .

Homoscedasticity : The k populations have the same
variance ; the factor A acts only on the mean of the variable X
and does not change its variance

Normality : The variable studied follows a Normal distribution
in the k populations compared (or the CLT applied to the
means if the ni are ‘sufficiently large’)
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Model assessment : Normality

Boxplots of observations (or residuals) should be rather
symmetric

A graph of the sample mean vs. variaces should not display
any pattern

QQ-plot (normal) plot of the observations (or residuals)
should form a straight line

Check whether there are any unusual or influential values
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Model evaluation : Homogeneity of variance

Boxplots of the observations should show similar variability

Variability of the residuals should be similar in teh graph of
residuals versus fitted values

It is also possible to carry out formal hypothesis tests (e.g.
Bartlett, Levene), but these are not useful for diagnosing
problems
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Some diagnostic plots
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Evaluation of the model : Independence

Graphics : residuals vs. group mean, might indicated
autocorrelation for example

Normally, treat the question of independence during the
conception of the expermient, for example using
randomization or perhaps other methods
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ANOVA : after the test

Once all the conditions for an ANOVA have been verified and
the analysis carried out, two conclusions are possible :

∎ we reject H
∎ we do not have enough evidence to reject H

If H is not rejected, we conclude that there are not significant
differences between group means

If we DO reject H, typically we are interested in identifying
the modalities/factor levels that are responsible for the
significant result
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Multiple comparisons

Comparing means of pairs of treatments

Carried out after a significant ANOVA

Types of comparisons

∎ planned (a priori) : indpendent of the ANOVA results ;
the theory predicts which treatments should be different

∎ unplanned (a posteriori) : the comparisons are decided
based on the ANOVA results

H ∶ µi = µj vs. A ∶ µi ≠ µj
Test statistic

t =
y i − y j√

σ̂2 (1/ni + 1/nj)

(σ̂2 =MSerror ) ; df = dferror
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Bonferroni method – global control

To maintain the global level αe at level α, we must adjust α
for each comparison by the total number of comparisons

In this way, αe is independent of the number of comparisons

Simplest method : method of Bonferroni

α′ = α/k ,

where k = number of comparisons (tests)

padj = min(kp,1)
Bonferroni’s method assures that the global level is no larger
than the desired level

(That property makes this method conservative, and thus less
powerful than other methods, but it is applicable for any
situation)
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Multiple comparisons : Tukey Honest Significant
Differences

Interested in simultaneous confidence intervals or tests for
differences in the mean outcome X for pairs of levels of a
factor
To test all pairwise comparisons among means using the
Tukey HSD, calculate HSD for each pair of means :

qs =
Mi −Mj√

MSW /ngroup
,

where Mk is the mean of group k , Mi >Mj

For hypothesis testing, compare qs to a q value from the
studentized range distribution (difference between largest and
smallest sample means divided by pooled sample SD sqrt2/n)
Reject the null at level α if qs > qα
CI : (y i − y j) ±

qα;k;N−k√
2

σ̂e
√

2/n; i , j = 1, . . . , k , i ≠ j

k = number of populations ; N = total sample size
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(Complete) Randomized block design

Assume that the hamsters have come from 4 different litters,
2 hamsters per litter

We expect that hamsters born in the same litter are more
similar to each other than hamsters from a different litter

For each pair of hamsters randomly assign short or long to
one member of each pair

Example (toss a fair coin, for example) :
S, L // L, S // S, L // S, L

Analysis : 2-way analysis of variance
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Replication, Randomization, Blocking

These are the ‘big three’ of experimental design

Replication – to reduce random variation of the test
statistic ; increases generalizability

Randomisation – to reduce/remove bias

Blocking – to reduce unwanted variation

Idea here is that units within a block are similar to each other,
but different between blocks

‘Block what you can, randomize what you cannot’
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Factorial crossing

Compare 2 (or more) sets of conditions in the same
experiment

Designs with factorial treatment structure allow you to
measure interaction between two (or more) sets of conditions
that influence the response

Factorial designs may be either observational or experimental
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Interaction

Interaction is very common (and very important) in science

Interaction is a difference of differences

Interaction is present if the effect of one factor is different for
different levels of the other factor

Main effects can be difficult to interpret in the presence of
interaction, because the effect of one factor depends on the
level of the other factor
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Factorial experimental design and interaction
Example : hibernation study

∎ General question : How do changes in an animal’s
environment induce hibernation ?

∎ Specific question : What is the effect of changing
daylight duration on the enzyme concentration of the
sodium pump in two golden hamster organs ?

Compare two (or more) sets of conditions in the same
experiment : long/ short AND heart/brain
In this example, there are 4 combinations of conditions :
– Long/Heart, Long/Brain, Short/Heart, Short/Brain
Interaction = ‘difference of differences’
There is an interaction when the effect of the association of
combined treatments is not the sum of treatment effects
In the case of interaction, the effect of a treatment varies
according to whether it is associated with the other treatment
The interpretation of individual effects is more difficult when
interation is present 55 / 71



Interaction plot

pas d’interaction interaction
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Advantages of factorial experiments

More efficient (powerful) than a series of experiments
studying one factor at a time

Permits estimation of interaction between sets of conditions
that may affect the response

All data are used for effect estimation
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2-way ANOVA

Simulataneous study of a factor A with I levels and a factor B
with J levels

For each pair of levels (A,B) :

∎ we have a sample
∎ all samples are of the same size n (balanced design)

Suppositions :

∎ the populations studies are Normally distributed
∎ the population variances are all equal

(homoscedasticity)
∎ the samples are taken randomly and independently in

the populations
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Complete model

The complete model : with interaction

yijk = µ + αi + βj + γij + εijk
E [εijk] = 0, Var(εijk) = σ2, Cov(εijk , εi ′j ′k ′) = 0 si
(ijk) ≠ (i ′j ′k ′)

ANOVA table
source df SS MS F

A I − 1 nJ∑I
i=1(y i ⋅⋅ − y ⋅⋅⋅)2 SSA/dfA MSA/MSerr

B J − 1 nI ∑J
j=1(y ⋅j ⋅ − y ⋅⋅⋅)2 SSB /dfB MSB /MSerr

AB (I − 1)(J − 1) n∑J
j=1∑I

i=1(yij ⋅ − y i ⋅⋅ − y ⋅j ⋅ + y ⋅⋅⋅)2 SSAB /dfAB MSAB /MSerr

error IJ(n − 1) ∑n
k=1∑J

j=1∑I
i=1(yijk − y ij ⋅)2 SSerr /dferr

total (corr.) nIJ − 1 ∑n
k=1∑J

j=1∑I
i=1(yijk − y ⋅⋅⋅)2
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Hypothesis tests

Test for interaction
H ∶ γij = 0, i = 1, . . . , I , j = 1, . . . , J

Test statistic :
FAB =MSAB/MSerror ∼ F(I−1)(J−1),IJ(n−1) under H

Test for effect of factor A
H ∶ αi = 0, i = 1, . . . , I

Test statistic :
FA =MSA/MSerror ∼ FI−1,IJ(n−1) sous H

Test for effect of factor B
H ∶ βj = 0, j = 1, . . . , J

Test statistic :
FB =MSB/MSerror ∼ FJ−1,IJ(n−1) sous H
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Additive model

The additive model : without interactions

yijk = µ + αi + βj + εijk
E [εijk] = 0, Var(εijk) = σ2, Cov(εijk , εi ′j ′k ′) = 0 id
(ijk) ≠ (i ′j ′k ′)

ANOVA Table
source df SS MS F

A I − 1 nJ∑I
i=1(y i ⋅⋅ − y ⋅⋅⋅)2 SSA/dfA MSA/MSerr

B J − 1 nI ∑J
j=1(y ⋅j ⋅ − y ⋅⋅⋅)2 SSB /dfB MSB /MSerr

error nIJ − I − J + 1 ∑n
k=1∑J

j=1∑I
i=1(yijk − y i ⋅⋅ − y ⋅j ⋅ + y ⋅⋅⋅)2 SSerr /dferr

total (corr.) nIJ − 1 ∑n
k=1∑J

j=1∑I
i=1(yijk − y ⋅⋅⋅)2
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Indicator variables for the model

The matrix form for the linear model :

Y = Xβ + ε

According to the form of the matrix X, we are in the case of :

∎ linear regression (X is then comprised of the constant 1
and p explanatory variables), or

∎ factorial model (X is comprised of indicator variables
associated with the levels of the factor(s))

∎ ancova (X is comprised of both qualitative and
quantitative variables)
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Example : ToothGrowth

“The response is the length of odontoblasts (teeth) in each of
10 guinea pigs at each of three dose levels of Vitamin C (0.5,
1, and 2 mg) with each of two delivery methods (orange juice
or ascorbic acid).”
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Example, cont : Graphics
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Example, cont. : Interaction plot
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Example, cont : ANOVA table output

> aov.out = aov(len ~ supp * dose, data=ToothGrowth)

> summary(aov.out)

Df Sum Sq Mean Sq F value   Pr(>F)    

supp         1  205.3   205.3 15.572 0.000231 ***

dose         2 2426.4  1213.2  92.000  < 2e-16 ***

supp:dose 2  108.3    54.2   4.107 0.021860 *  

Residuals   54  712.1    13.2                     

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘

’ 1 
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Unbalanced designs

When all sample sizes are equal, the main effects and
interactions can be estimated independently independently

That ;s because of the orthogonality of the sub-spaces that
correspond to the different model effects

This is no longer the case when the sample sizes are different
(unbalanced case) :
SSModel ≠ SSA + SSB + SSAB

For an unbalanced design, effect estimation must be adjusted
(for the other effects in the model) : the estimated values
depend on the other terms in the model and their order of
entry

We can no longer carry out tests F = MSx
MSerror

We must carry out sub-model tests
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Example, cont : Unbalanced subset

5.4  Unbalanced designs 
 
 
We have seen that the balanced two-way anova 
design allows the main effects and interactions to be 
estimated independently of each other. This is due to 
the orthogonality of the subspaces corresponding to 
the different effects in the model. 
 
When the design is unbalanced this property no 
longer holds, and a more general regression-based 
analysis is necessary. In particular, if the design is 
unbalanced, effects must be adjusted for other effects 
in the model. 
 
 
Example: Consider the following unbalanced subset 
of the Tooth Growth data.  
 

 L M H 

VC
4.2 
11.5 
7.3 

16.5 
16.5 
15.2 
17.3

23.6 
18.5

OJ

15.2 
21.5 
17.6 
9.7 

19.7 
23.3

25.5 
26.4 
22.4 
24.5
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Example, cont. : supp 1st
First we fit the saturated model, with “supp” as the 
first main effect: 
 
> # full interaction model with  
> # supp entering first 
>  
> fit1 <-  
   lm(len ~ supp + doselev + supp:doselev,  
     data=toothun) 
> anova(fit1) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
supp          1 174.46  174.46 17.3664 0.0011049  
doselev       2 375.75  187.87 18.7012 0.0001495 
supp:doselev  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05       
 
Refit the same model with “doselev” as the first main 
effect: 
 
> # full interaction model with doselev  
> # entering first 
>  
> fit2 <-  
   lm(len ~ doselev + supp + supp:doselev,  
     data=toothun) 
> anova(fit2) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
doselev       2 396.08  198.04 19.7131 0.0001158 
supp          1 154.13  154.13 15.3428 0.0017685  
doselev:supp  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05           
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Example, cont : doselev 1st

First we fit the saturated model, with “supp” as the 
first main effect: 
 
> # full interaction model with  
> # supp entering first 
>  
> fit1 <-  
   lm(len ~ supp + doselev + supp:doselev,  
     data=toothun) 
> anova(fit1) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
supp          1 174.46  174.46 17.3664 0.0011049  
doselev       2 375.75  187.87 18.7012 0.0001495 
supp:doselev  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05       
 
Refit the same model with “doselev” as the first main 
effect: 
 
> # full interaction model with doselev  
> # entering first 
>  
> fit2 <-  
   lm(len ~ doselev + supp + supp:doselev,  
     data=toothun) 
> anova(fit2) 
Analysis of Variance Table 
 
Response: len 
             Df Sum Sq Mean Sq F value    Pr(>F)     
doselev       2 396.08  198.04 19.7131 0.0001158 
supp          1 154.13  154.13 15.3428 0.0017685  
doselev:supp  2  17.70    8.85  0.8808 0.4377931     
Residuals    13 130.60   10.05           
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Summary : numerical and graphical analysis

Design plot

Boxplots of outcome for each factor level

Interaction plots

Write out model, assumptions, de
ne all parameters

ANOVA table

Plots for assumption checking/model assessment

Example of full analysis at :
https://www.guru99.com/r-anova-tutorial.html
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