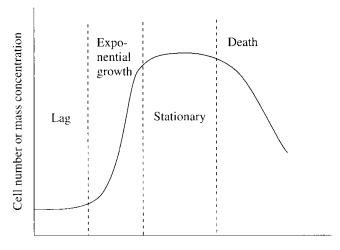
Microbial processes and monitoring

Lecture 2

Learning outcomes

- Microbial kinetics
- Metabolism
- Microbial monitoring


Microbial kinetics

Biomass production

Bacterial biomass production is often accounted for with empirical cell ratios:

$$\begin{aligned} & \text{C}_5\text{H}_7\text{O}_2\text{N} \\ & \text{or (more complex)} \\ & \text{C}_{60}\text{H}_{87}\text{O}_{23}\text{N}_{12}\text{P} \end{aligned}$$

$$N_t$$
= N_0e^{kt} (first order kinetics)
 N_t = number of microorganisms at time t
 N_0 = number of microorganisms at time 0
k=growth constant

Time, hours

for one doubling time:
$$N=2N_0 => t_d = \frac{\ln(2)}{k}$$

Maximum recorded growth rates for some bacteria, measured at or near their respective optimal temperature, in complex media

Organism	Temperature, °C	Doubling time, h	
Vibrio natriegens	37	0.16	
Bacillus stearothermophilus	60	0.14	
Escherichia coli	40	0.38	
Bacillus subtilis	40	0.43	
Pseudomonas putida	30	0.75*	
Vibrio marinus	15	1.35	
Rhodobacter sphaeroides	30	2.2	
Mycobacterium tuberculosis	37	≈ 6	
Nitrobacter agilis	27	≈ 20*	

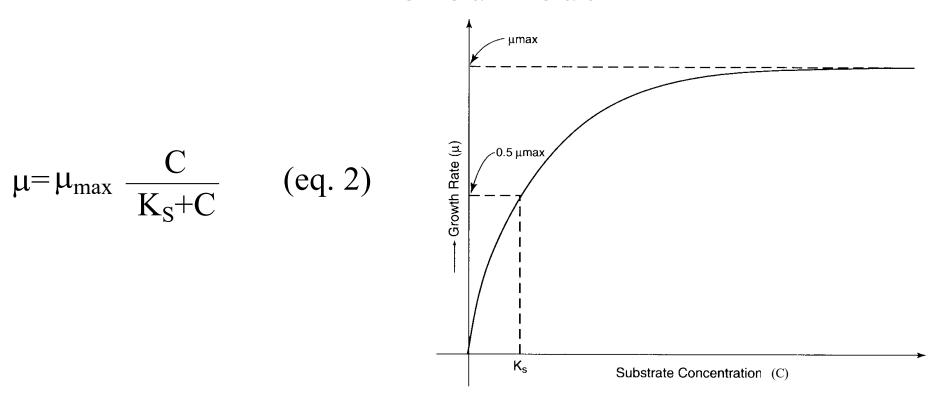
Source: Stanier et al., 1986. *Grown in synthetic media.

Specific growth rate

• More generally, the <u>specific growth rate</u> (μ) defined as rate at which cells divide (generations per unit time or inverse of doubling time)

$$\frac{\mathrm{dX}}{\mathrm{dt}} = \mu \mathrm{X} \tag{eq. 1}$$

Where:


 μ = specific growth rate (time⁻¹)

t= time

X= biomass concentration (mass/unit volume)

• A classic relationship exists between bacterial growth rate and substrate concentration (Monod model)

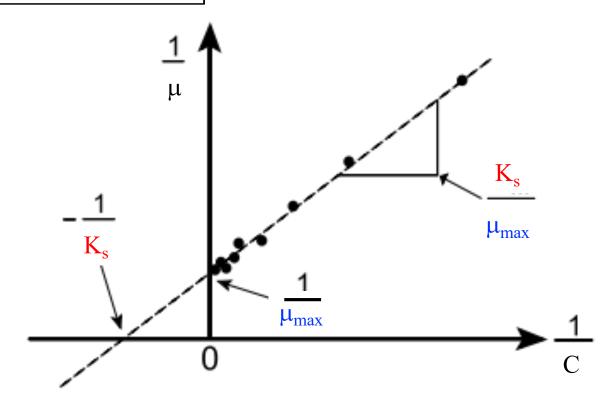
Monod model

Where:

 μ = specific growth rate (time⁻¹)

 μ_{max} = maximum specific growth rate (time⁻¹)

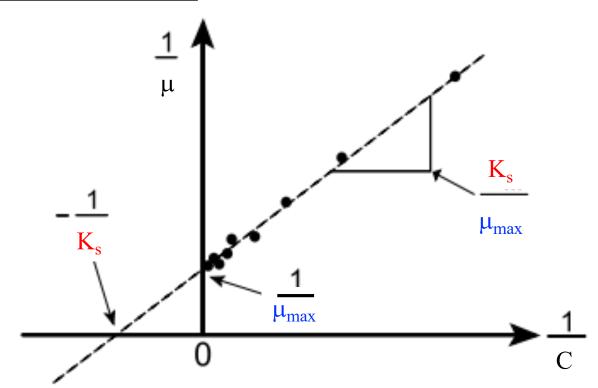
C= concentration of substrate in solution (mass/unit volume)


 K_S = half-velocity constant (substrate concentration at which μ is one half of μ_{max}) (mass/unit volume)

Lineweaver-Burk plot

$$\mu = \frac{\mu_{\text{max}} C}{K_{\text{S}} + C}$$

$$\frac{1}{\mu} = \frac{K_s}{\mu_{max}} \times \frac{1}{C} + \frac{1}{\mu_{max}}$$



Lineweaver-Burk plot

$$\mu = \frac{\mu_{\text{max}} C}{K_{\text{S}} + C} \qquad \frac{1}{\mu} = \frac{K_{\text{S}} + C}{\mu_{\text{max}} C} = \frac{K_{\text{S}}}{\mu_{\text{max}} C} + \frac{C}{\mu_{\text{max}} C}$$

$$\frac{1}{\mu} = \frac{K_{\text{S}} + C}{\mu_{\text{max}} C} + \frac{1}{\mu_{\text{max}} C}$$

$$\frac{1}{\mu} = \frac{K_s}{\mu_{max}} \times \frac{1}{C} + \frac{1}{\mu_{max}}$$

Modeling growth

• For organic contaminants that serve as the primary substrate (the sole source of carbon and energy), biomass production is linked to substrate degradation (combine eqs. 1 & 2):

$$\frac{dX}{dt} = \left(\frac{\mu_{\text{max}}C}{K_{\text{S}} + C}\right) X \qquad \text{(eq. 3)}$$

• The mass of new cells synthesized per unit mass of substrate removed is constant for a given bacterium and a given substrate. Define the growth yield coefficient (Y= mass biomass/unit mass of substrate)

$$Y = \frac{dX/dt}{dC/dt}$$
 (eq. 4)

Growth yield coefficient (Y)

Roden and Jin, 2011

Y => related to the Gibbs free energy of the reaction Y => Can be estimated

Modeling growth

Combining eqs. 3 & 4

$$\frac{dC}{dt} = \left(\frac{\mu_{\text{max}}C}{Y * (K_S + C)}\right) X \qquad (eq. 5)$$

The term μ_{max}/Y can be replaced by the term k: degradation rate constant (or maximum rate of substrate removal per unit weight of biomass) (unit mass substrate/ (unit mass biomass . time))

$$\frac{\mu_{max}}{Y} = cst = k$$

[mass substrate/(mass biomass.time)]

$$\frac{dC}{dt} = \left(\frac{kC}{K_S + C}\right) X \qquad (eq. 6)$$

and

$$\frac{dX}{dt} = \left(\frac{YkC}{K_s + C}\right) X \qquad (eq. 7)$$

Modeling growth

In any biological treatment, a portion of the cells are not proliferating but rather in maintenance or dead phase. Need to take death of cells into account

$$\frac{dX}{dt} = \left(\frac{YkC}{K_s + C} - b\right) X \qquad (eq. 8)$$

Where b= endogenous decay constant (time⁻¹)

Minimum substrate concentration

In many cases, the concentration of contaminants is low and does not support viable biomass. At low concentrations, a threshold will be reached where energy needs are not met and biomass loss is observed

This minimum substrate concentration occurs when

$$bX = \left(\frac{YkC_{\min}}{K_S + C_{\min}}X\right)$$
 (eq. 9)

Where

C_{min} = minimum concentration of substrate to support growth (mass/unit volume)

$$C_{\min} = \frac{bK_S}{Yk - b}$$
 (eq. 10)

Typically, C_{min} is in the range of 0.1 to 1.0 mg/L. Some contaminants need to be removed to below 0.01 mg/L. In such cases, it may be necessary to induce₃ cometabolism by adding a primary substrate.

Modeling growth

It is difficult to measure growth in subsurface, so make approximations:

• C << K_S

$$\frac{dC}{dt} = \frac{kC}{K_S} X \qquad (eq. 11)$$

• There is little growth, so X is constant

$$\ln \frac{C}{C_0} = -\frac{k}{K_S} Xt$$
(eq. 12)

Where:

t= duration of treatment (time)

 C_0 = initial substrate concentration (mass/unit volume)

$$\mathbf{k'} = \frac{\mathbf{k}}{\mathbf{K_S}} \mathbf{X} \tag{eq. 13}$$

Where:

k' = first-order degradation rate constant (time-1)

Modeling growth

It is difficult to measure growth in subsurface, so make approximations

$$C = C_0 e^{-k't}$$
 (eq. 14)

• Typically, half-lives of contaminants is reported:

$$k' = \frac{0.693}{t_{1/2}}$$
 (eq. 15)

Where:

$$t_{1/2}$$
 = half-life (time)

In the subsurface

Use the solid phase concentration of cells (attached to soil particles) rather than solution phase cell conc.

(from eq. 3)
$$\frac{dX}{dt} = \left(\frac{\mu_{max}C}{K_S + C}\right)B \qquad (eq. 16)$$

Where B= solid phase concentration of cells mg cells/g soil and B= B_0 + Y *(C_0 -C) (eq. 17) Example: Y = 0.5 g/g for aerobic bacteria or <0.1 g/g in some soils

Full equation

Putting the three equations together: eq. 5, 21, 22:

$$\frac{dC}{dt} = \frac{\mu_{\text{max}}}{Y} \frac{C \left[B_0 + Y \left(C_0 - C\right)\right]}{K_s + C}$$
 (eq. 18)

In practice, (eq. 18) is often simplified:

Necessary conditions	Differential form	Integral form
$C_0 >> K_S$ $B_0 >> YC_0$	$\frac{dC}{dt} = \frac{\mu_{\text{max}}}{Y} B_0$	$C = C_0 + \frac{\mu_{\text{max}} B_0}{Y} t$
B= constant	$\frac{dC}{dt} = \frac{\mu_{\text{max}} B_0 C}{Y(K_S + C)}$	$K_S \ln \frac{C}{C_0} + C - C_0 = \frac{B_0}{Y} \mu_{\text{max}} t$
$C_0 << K_S$ $B_0 = constant$	$\frac{dC}{dt} = \frac{\mu_{\text{max}} B_0 C}{Y K_S}$	$C = C_0 \exp\left(\frac{\mu_{\text{max}} B_0}{Y K_S} t\right)$
	$C_0 >> K_S$ $B_0 >> YC_0$ $C_0 << K_S$	$C_0 >> K_S$ $B_0 >> YC_0$ $\frac{dC}{dt} = \frac{\mu_{\text{max}}}{Y} B_0$ $\frac{dC}{dt} = \frac{\mu_{\text{max}} B_0 C}{Y(K_S + C)}$

Important kinetic parameters

Term	Definition	Significance
k	Degradation rate constant (time-1)	Indication of degradability of an organic compound; for biological treatment to be effective high values are preferred
K_s	Half-velocity constant (mass/unit volume)	Indication of efficiency of the degradation; to degrade organics to low concentrations, low values are needed.
Y	Yield of biomass generated per unit mass of substrate removed (mass/unit mass)	Indication of utilization of substrate for the production of biomass
b	Endogenous decay constant (time ⁻¹)	Indication of the rate of loss of biomass due to natural death and decay

Microbially-catalyzed degradation

Microbial growth requirements

- Electron acceptors: O₂ (aerobic) or NO₃-, Fe(III), SO₄²-, etc..
- Moisture: absolute minimum needed for biological treatment is 40% saturation of soil /sediment
- pH: most bacteria grow best at pH 6-8. Most bacteria die off at pH<4 and pH>9.5
- Inorganic nutrients: empirical equation for cellular material is $C_{60}H_{87}O_{23}N_{12}P$ (or simply $C_5H_7O_2N$). Rule of thumb TOC:N:P mass ratio of 20:5:1.
- Micronutrients: S, K, Ca, Mg, Fe, Ni, Cu, Zn, vitamins

Energetics

- Microbial metabolism is based on thermodynamics: If there is energy available in a reaction, a microbe may catalyze that reaction
- Most biologically-mediated transformations rely on redox transformations
- The relationship between energy and redox potential is captured in the Nernst equation:

$$\Delta G^0$$
= -nF ΔE_0
where n= number of electrons transferred
F=faraday's constant 96,630 J/V
 ΔE_0 = E_0 (e- accepting couple)- E_0 (e- donating couple)

TABLE 5.3 The electron tower: standard reduction potentials at 25° C and pH 7 for selected environmentally important redox couples

Half reaction	$E_{ m o},{ m V}$
$6\text{CO}_2 + 24\text{H}^+ + 24\text{e}^- = \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O}$	-0.43
$2H^- + 2e^- = H_2$	-0.41
$CO_2 + 6H^- + 6e^- = CH_3OH + H_2O$	-0.38
$NAD^{+} + 2H^{+} + 2e^{-} = NADH + H^{+}$	-0.32
$CO_2 + HCO_3^- + 8H^+ + 8e^- = CH_3COO^- + 3H_2O$	-0.29
$CO_{2(g)} + 8H^+ + 8e^- = CH_{4(g)} + 2H_2O$	-0.25
$S_{(s)} + 2H^{+} + 2e^{-} = H_2S_{(g)}$	-0.24
$SO_4^{-2} + 9H^- + 8e^- = HS^- + 4H_2O$	-0.22
Pyruvate $+ 2H^+ + 2e^- = lactate$	-0.19
$FeOOH_{(s)} + HCO_3^- + 2H^+ + e^- = FeCO_{3(s)} + 2H_2O$	-0.05*
$CH_3SOCH_3 + 2H^+ + 2e^- = CH_3SCH_3 + H_2O$	0.16
$NO_3^+ + 10H^+ + 8e^- = NH_4^+ + 3H_2O$	0.36
$NO_3^- + 2H^- + 2e^- = NO_2^- + H_2O$	0.42
$MnO_{2(s)} + HCO_3^- + 3H^- + 2e^- = MnCO_{3(s)} + 2H_2O$	0.52*
$CHCl_3 + H^+ + 2e^- = CH_2Cl_2 + Cl^-$	0.56
$CCl_4 + H^+ + 2e^+ = CHCl_3 + Cl^-$	0.67
$2NO_3^- + 12H^+ + 10e^- = N_2 + 6H_2O$	0.74
$Fe^{3+} + e = Fe^{2+}$	0.76
$O_{2(g)} + 4H^+ + 4e^+ = 2H_2O$	0.82
$CCl_3CCl_3 + 2e^- = CCl_2CCl_2 + 2Cl$	1.13
$2HOCL + 2H^{-} + 2e^{-} = Cl_2 + 2H_2O$	1.18

^{*}Based on $[HCO_3^-] = 10^{-3} M$.

Problem:

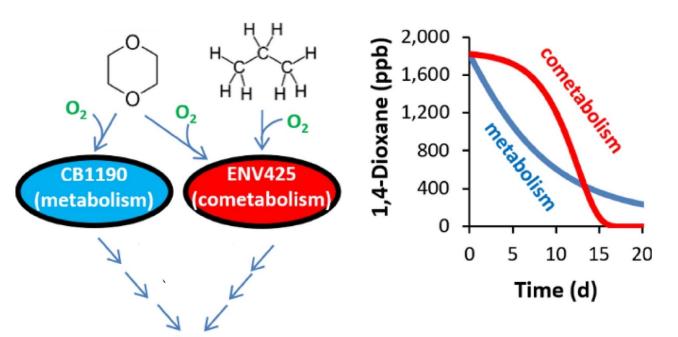
A groundwater is contaminated with hexachloroethane Cl₃CCCl₃.

An environmental engineer is concerned that this compound will be transformed to tetrachloroethylene (Cl₂CCCl₂), an even more toxic compound, by reacting with nitrite in the groundwater.

Do you think this is likely to happen? Why or why not?

Degradation strategies vary depending on the compound

• Aerobic conditions:


- Contaminant as an e⁻ donor and C source and O₂ as e⁻ acceptor- couple <u>growth</u> to the oxidation of contaminant
- Cometabolism: organism grows on another primary substrate and also oxidizes the contaminant but obtains no benefit-O₂ as e⁻ acceptor

• Anaerobic conditions:

- Contaminant as an e⁻ donor and C source and NO₃⁻, SO₄²⁻ or Fe(III) as e⁻ acceptor-couple growth to the oxidation of contaminant
- Contaminant as an e⁻ acceptor and e.g., H₂ as e⁻ donor: **Halorespiration**
- <u>Cometabolism</u>: organism grows on another primary substrate and also oxidizes or reduces the contaminant (serves as e⁻ donor or acceptor but not coupled to growth)

Metabolism vs. cometabolism

- Organic compounds used as source of energy are most likely to be degraded
- Some compounds not used as energy source can be transformed through cometabolism
- Cometabolism: fortuitous transformation of a compound by enzymes designed for other purposes

1,4-dioxane metabolism by Pseudonocardia dioxanivorans (CB1190) compared to cometabolism by the propanotroph Rhodococcus ruber (ENV425)

oxygenases CO dehdydrogenase Co-factors

Cometabolism

Transformation of a substrate by a microorganism that is unable to use the substrate as an energy source

Many enzymes can carry out cometabolism:

- Methane monooxygenase: methylotrophs can transform DCE
- Toluene dioxygenase: incorporates both atoms of molecular oxygen into toluene. Also transforms TCE
- Ammonia monoxygenase (*Nitrosomonas europaea*): chemoautotroph that cometabolizes TCE, DCE
- CO dehydrogenase of acetoclastic methanogens
- CO dehydrogenase pathway (oxidative) sulfate reducers
- CO dehydrogenase pathway (reductive) in homoacetogens
- Cometabolic reductive dehalogenation catalyzed by coenzyme B12 that is present in many anaerobic bacteria such as Clostridia, propionic acid bacteria
- Cytochrome P₄₅₀ from *Pseudomonas* spp.
- F₄₃₀ in methyl-CoM reductase in methanogens

Types of substrate

- Primary substrate: sole source of C and energy
- Secondary substrate: for cometabolism the substrate being degraded is not the same as that supporting growth
- Limiting substrate: one substrate (often O₂) can be limiting

	Cometabolic Bioremediation Conditions					
	Aerobic	Aerobic	Aerobic	Anaerobic	Anaerobic	
Contaminants	TCE DCE VC PAHs PCBs MTBE Creosote >300 other compounds	• TCE • DCE • VC • TNT	• TCE • DCE • VC • 1,1-DCE • 1,1,1-TCA • MTBE	PCE TCE DCE VC Hexachlorocyclohexane	BTEX PCE PAHs Atrazine TNT	
Substrates	Methane Methanol Propane Propylene	Ammonia Nitrate	Toluene Butane Phenol Citral Cumin Aldehyde Cumene Limonene	Methanol	Glucose Acetate Lactate Sulfate Pyruvate	
Microoganism(s)	Methylosinus	Nitrosomonas Nitrobacter	Rhodococcus Pseudomonas Arthrobacter	Pseudomonas Streptomyces Corynebacterium	Dehalococcoides Methanogens Desulfovibrio Clostridium Geobacter Clavibacter	
Enzyme(s) produced	Methane monooxygenase Methanol dehydrogenase Alkene mono- oxygenase Catechol dioxygenase	Ammonia monooxygenase	Toluene monooxygenase Toluene dioxygenase	Alcohol dehydrogenases	Dehalogenase AtzA Dichloromethane Dehalogenase	

Petroleum hydrocarbons

Benzene- Toluene- Ethylbenzene- Xylene (BTEX)

compound	aerobic			anaerob	ic
	e- donor	process	e- donor	e- acceptor	process
CH ₃			BTEX	nitrate	Anaerobic addition of O (from fumarate)
Benzene CH ₂ CH ₃ CH ₃ Toluene	Methane, toluene, NH ₄ ⁺	Cometabolism (oxygenase)			
Ethylbenzene m-Xylene	BTEX	Respiration (O ₂ e ⁻ acceptor)			

Polycyclic aromatic hydrocarbon (PAH)

compound	aerobic			anaerob	ic
	e- donor	process	e- donor	e- acceptor	process
Naphthalene			РАН	nitrate	Denitrification
Fluoranthene Acenaphthene	Biphenyl or m-xylene	Cometabolism (dioxygenase)			
Anthracene Pyrene Phenanthrene	Naphthalene	Respiration (O ₂ e ⁻ acceptor)			

Halogenated hydrocarbons

compound	aerobic			anaerob	ic
	e- donor	process	e- donor	e- acceptor	process
Cl			H_2	CO ₂ to CH ₄	cometabolism
			H_2	CO ₂ to acet.	cometabolism
Carbon tetrachloride			Acetate	SO ₄ ²⁻	cometabolism
CI			Lactate	NO ₃ -	PDTC secretion
H	VC or DCE	respiration			
CI C Winyl chloride	Methane, toluene, NH ₄ ⁺	cometabolism			
dichloroethylene C = C H C C			H_2	VC, DCE	halorespiration
Cl Cl			H_2	CO ₂	cometabolism
$\begin{array}{c} CI \\ CI \\ CI \\ \end{array}$			Methanol	Methanol	cometabolism
tetrachloroethene (PCE)			H_2	PCE, TCE	halorespiration
Cl Cl Cl trichloroethene (TCE)	Methane, toluene, NH ₄ ⁺	Cometabolism of TCE, PCE			

Polychlorinated biphenyls

Compound	aerobic	anaerobic
CI		Dechlorination to: 4-chlorobiphenyl CI CI CI CI CI CI CI CI CI C
2,3,4,6-tetrachlorobiphenyl		
CI	Carbon source	
2,2',4,5'-tetrachlorobiphenyl	2,3-dioxygenase attack	
CI	Pseudomonas sp. 2	
		31

Pesticides

Persistence of herbicides and insecticides in soil

Time for 75–100% disappearance
4 years
3 years
5 years
2 years
3 years
12 weeks
1 week
1 week
4 weeks
20 weeks
8 weeks
40 weeks
48 weeks
1.5 years

DDT; dichlorodiphenyltrichloroethane (an organochlorine)

Malathion; mercaptosuccinic acid diethyl ester (an organophosphate)

2,4-D; 2,4-dichlorophenoxy acetic acid (a chlorophenoxy acetic acid derivative)

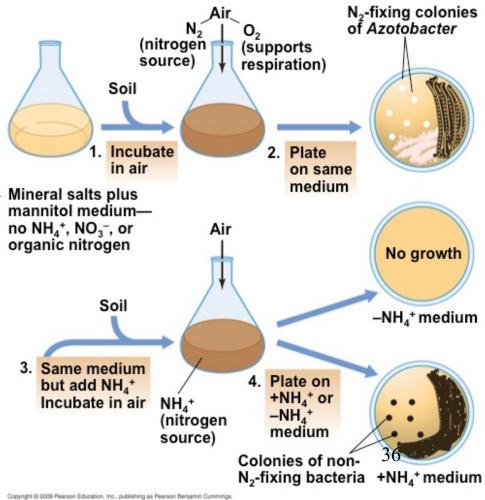
Atrazine, 2-chloro-4-ethylamino -6-isopropylaminotriazine (a triazine derivative)

Biological monitoring

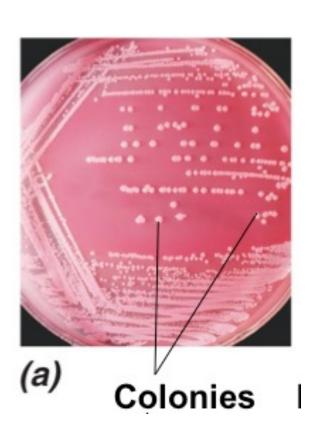
Characterization of microbial community and activity

- Culture-dependent approaches
- DNA-based approaches
- RNA-based approaches

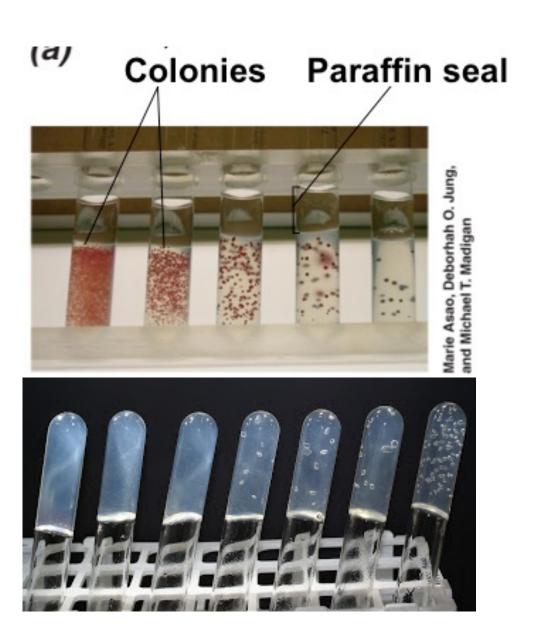
Culture-dependent characterization

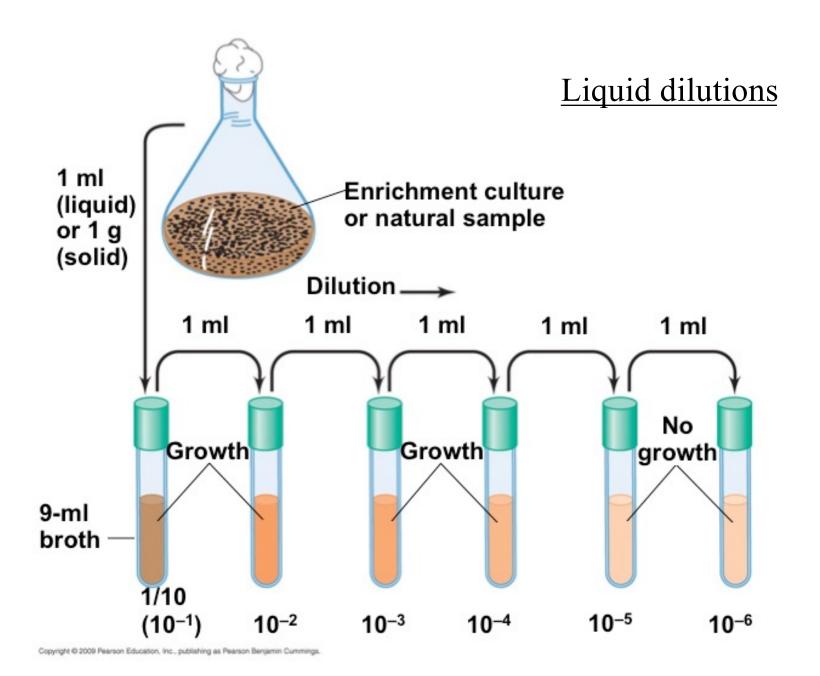

- All culture-dependent methods have a major limitation: < 0.5% of soil microorganisms are cultivable.
- Enrichment culture: a medium and set of incubation conditions are established that are selective for the desired organism
- Limitations:
 - Negative result does not guarantee absence of organism/ Can prove a positive but not a negative
 - No information on ecological importance or abundance of organism
 - Bias: liquid enrichment results different from plating results
 - Bias: rapidly growing ('weed') species appear quantitatively important (combat with dilution of inoculum)

Incubation in air: aerobic	respiration			
Electron donor	Electron acceptor	Organisms enriched	Inoculum	
NH ₄ ⁺	O_2	Ammonia-oxidizing bacteria (Nitrosomonas)	Soil, mud; sewage effluent	
NO ₂ ⁻	O_2	Nitrite-oxidizing bacteria (Nitrobacter, Nitrospira)		
H ₂	O ₂	Hydrogen bacteria (various genera)		
H ₂ S, S ⁰ , S ₂ O ₃ ²⁻	O_2	Thiobacillus spp.		
Fe ²⁺ , low pH	O_2	Acidithiobacillus ferrooxidans		
Anoxic incubation			Inoculum	
S ⁰ , S ₂ O ₃ ²⁻	NO ₃ ⁻	Thiobacillus denitrificans	Mud, lake sediments, soil	25
H ₂	NO ₃ ⁻ + yeast extract	Paracoccus denitrificans		35


Culture-dependent characterization

- **Isolation**: obtaining a pure culture (a single kind of microorganism)
 - Streak plate: for organisms that form colonies on agar
 - Agar shake: mixed culture diluted in tubes of molten agar (colonies embedded in agar). Useful to isolate anaerobic microbes. Successive dilutions into molten agar medium.
 - <u>Liquid dilution</u>: serially dilute an inoculum into a liquid medium. Most probable number (MPN) method.

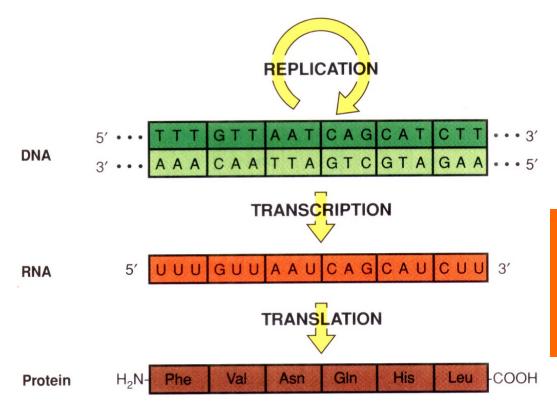

 Mineral salts plus mannitol mediumno NH₄+, NO₃-, or organic nitrogen


Culture-dependent characterization

Streak plate

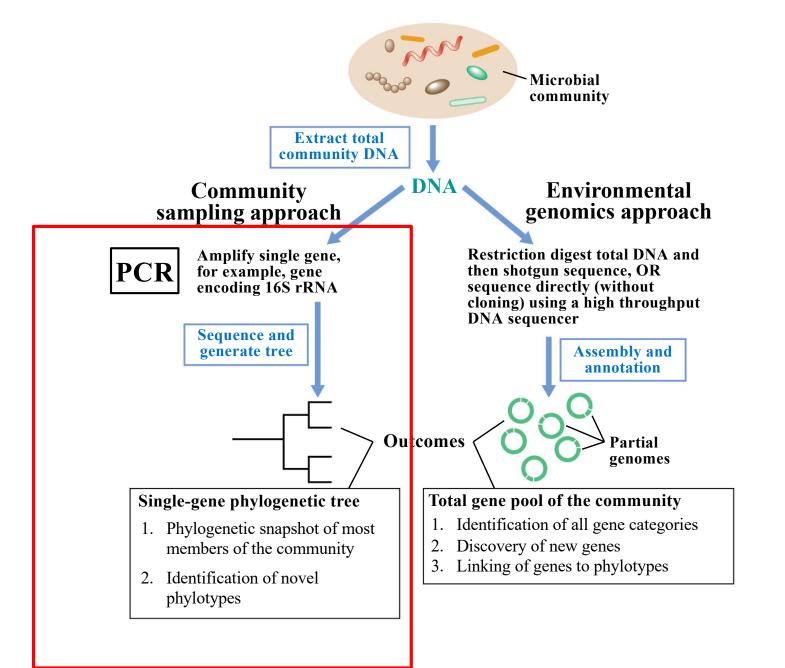
Culture-dependent characterization

Culture-independent approaches



Culture-independent genetic analysis of microbiomes

- 16S rRNA amplicon sequencing
- Metagenomics



Molecular biology primer

- DNA is somewhat stable even if microbe is dead
- DNA-based methods identify the presence of a microorganism but not necessarily activity
- RNA only transcribed when protein is needed
- messenger RNA (mRNA) is degraded quickly
- mRNA-based methods probe active population
- proteins only present when need for specific activity
- proteins fairly stable
- few protein-based techniques because difficult to obtain protein from soil /sediment

Single-gene vs. genomic approaches

Ribosomes and ribosomal RNA

- Ribosomes are responsible for the translation of mRNA to protein
- They themselves consist of ribosomal RNA and protein
- Bacteria/Archaea

5S rRNA: 120 bp

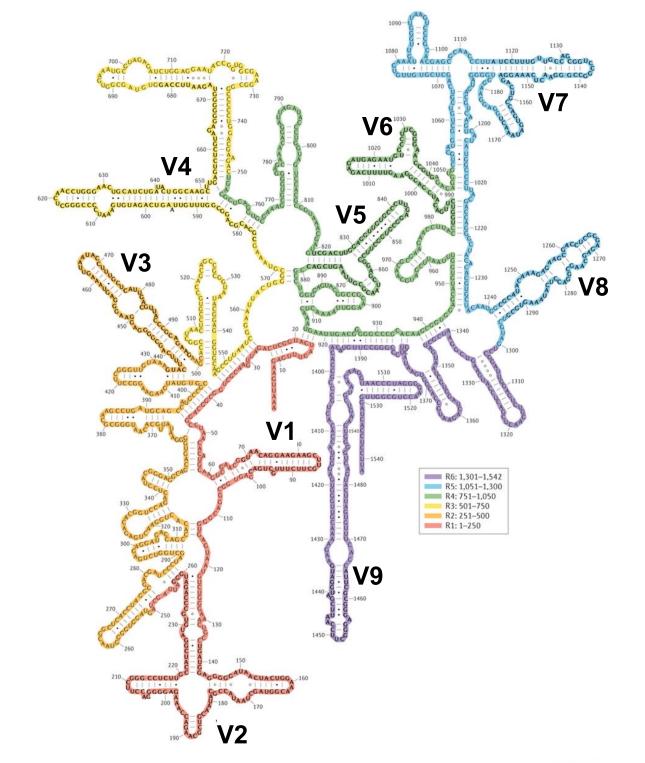
16S rRNA: 1500 bp

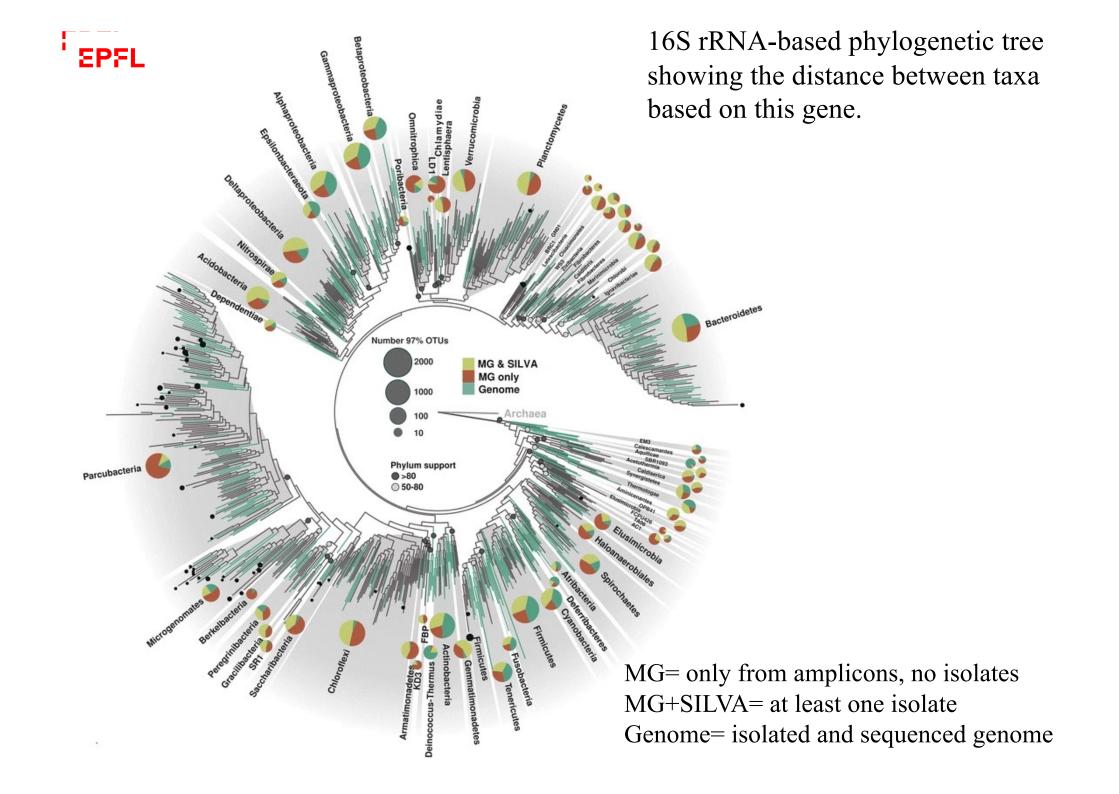
23S rRNA: 3000 bp

+ 55 Proteins

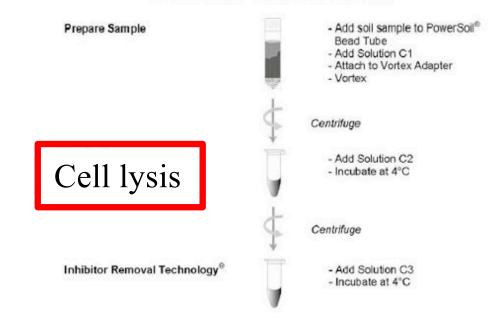
30S subunit

Head
Protein in orange and green

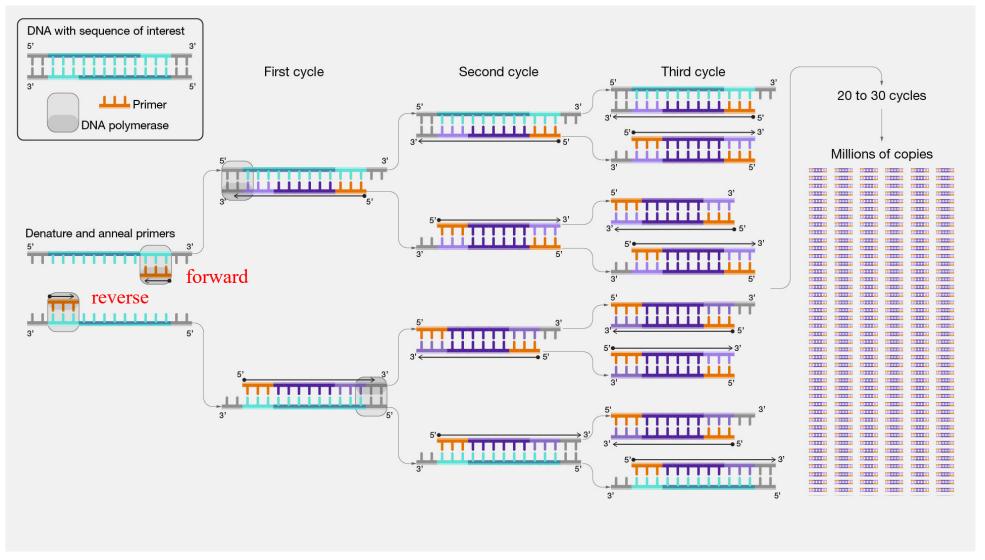

Platform
S6


MRNA

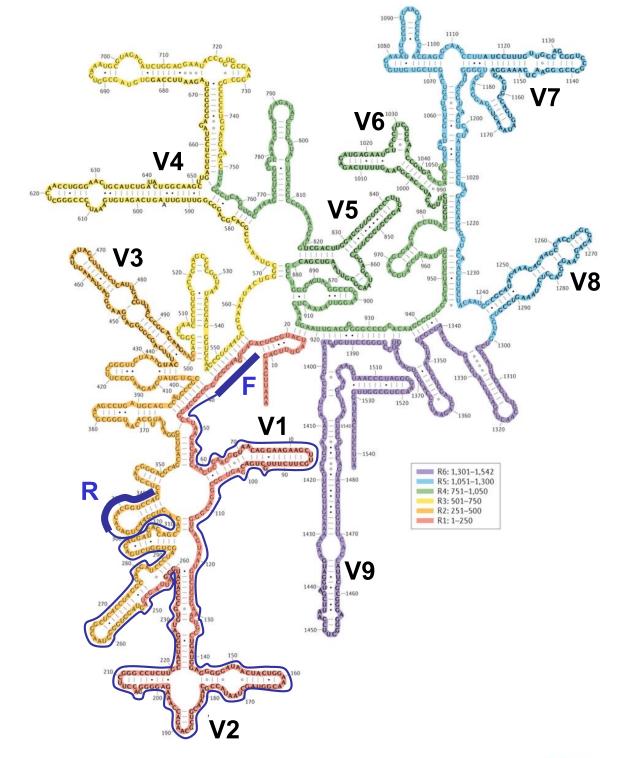
Decoding
site


variable regions 16S rRNA

PowerSoil® DNA Isolation Kit

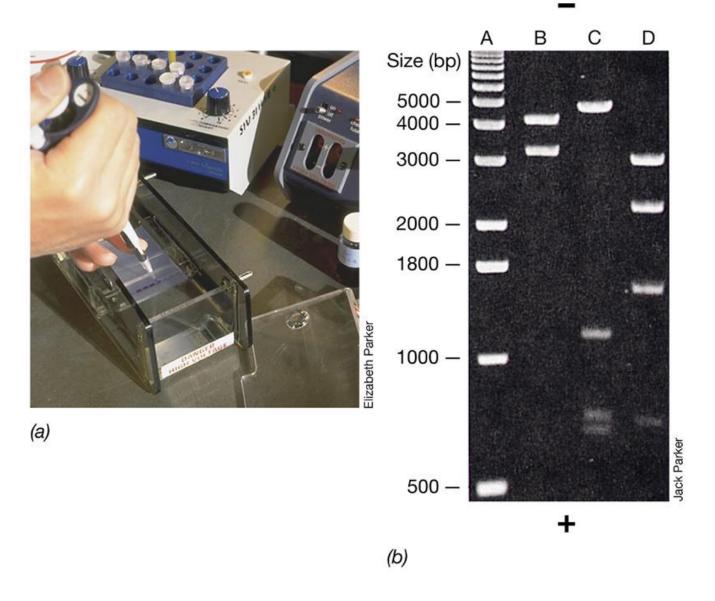

DNA isolation from environmental sample

Polymerase-chain reaction (PCR)

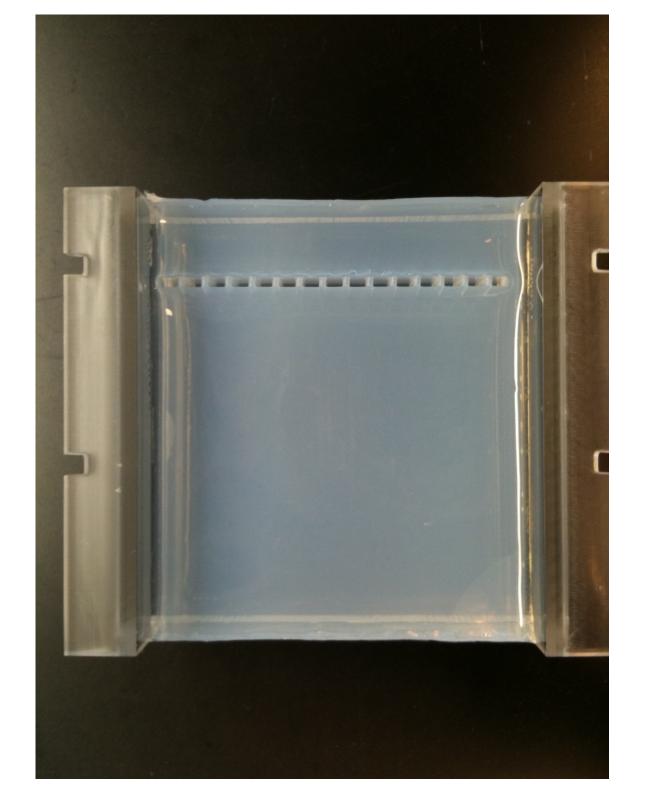


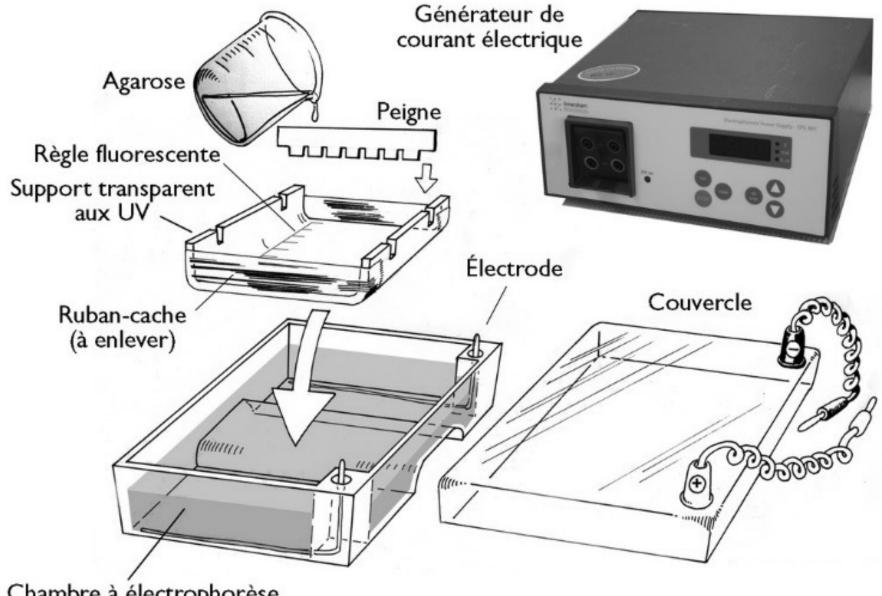
Repetitive amplification of target genes from DNA using specific primers

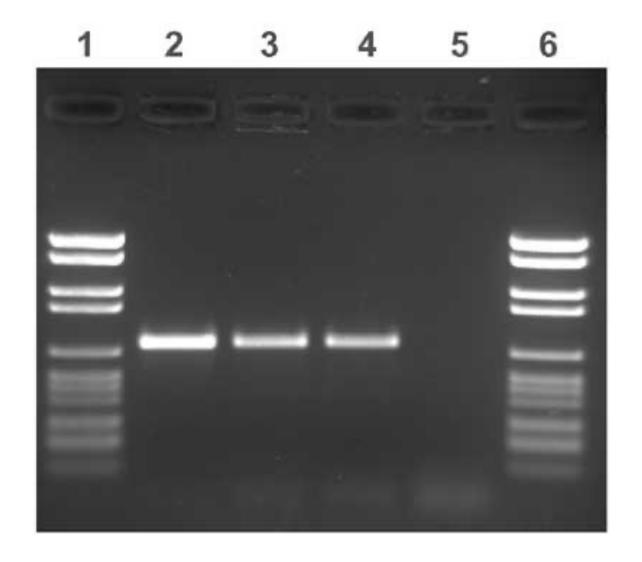
 $\rightarrow 2^n$ copies after *n* cycles



variable regions 16S rRNA

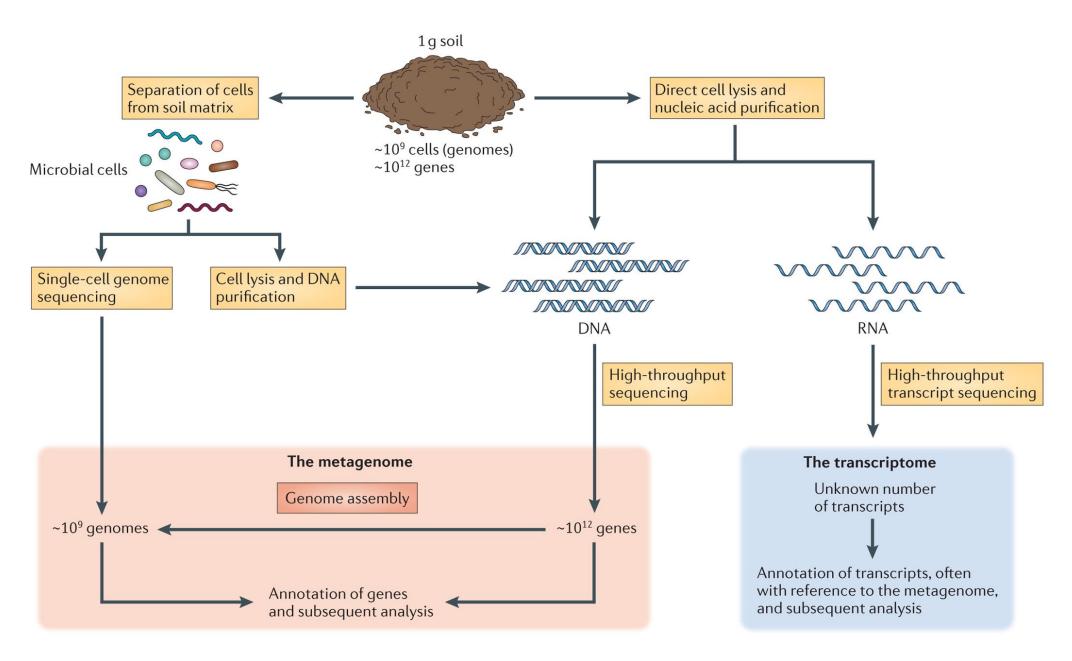


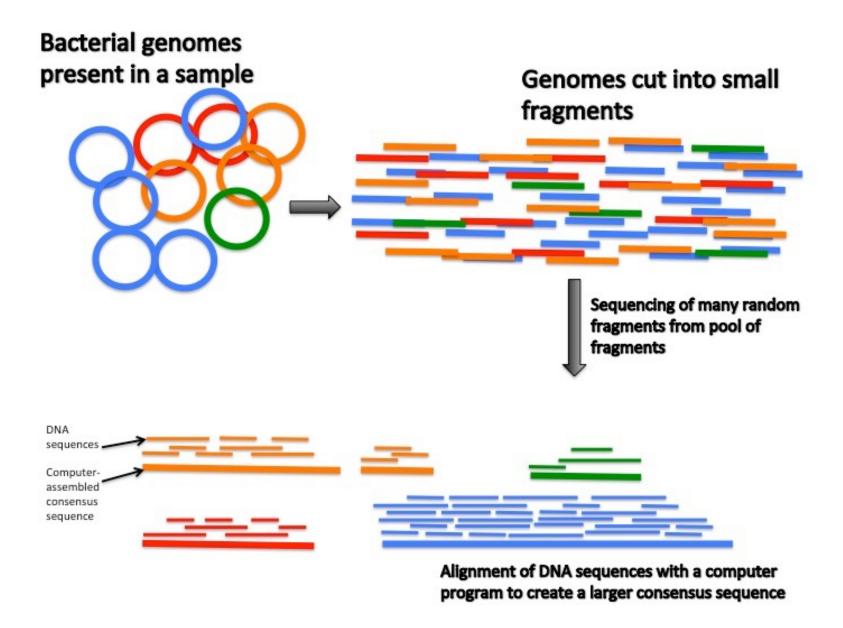

Agarose gel electrophoresis


49

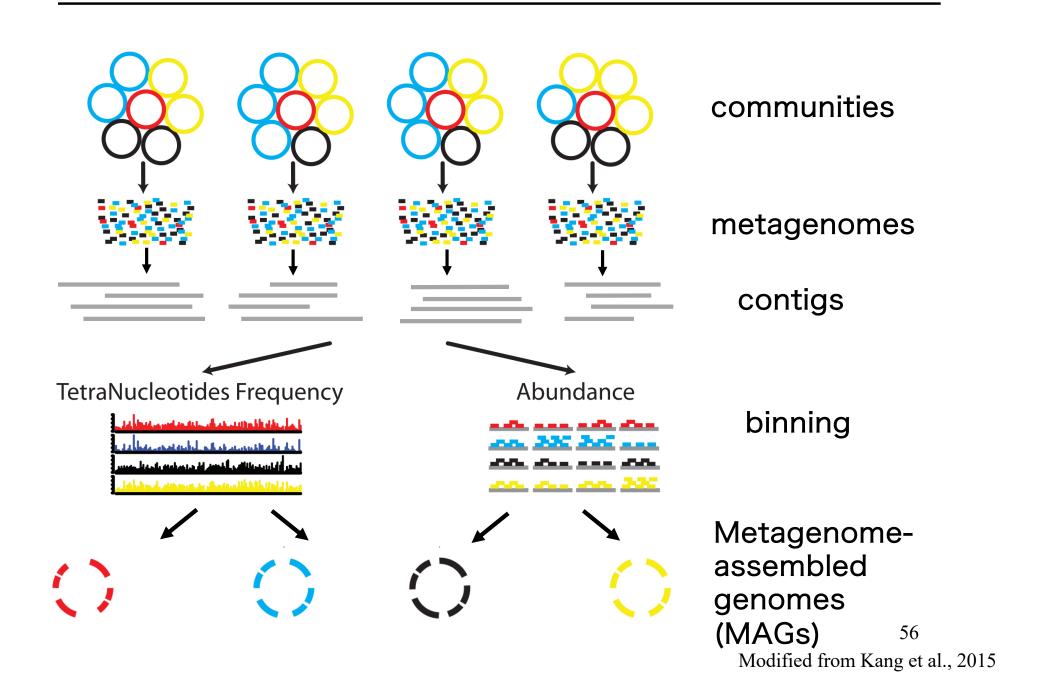
EPFL

Chambre à électrophorèse contenant du tampon de migration




Ribosomal RNA as Evolutionary marker

E. coli	GCGGTAAT ACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG TAAAGCG
A. nidulans	GCGGTAAT ACGGGAGAGGCAAGCGTTATCCGGAATTATTGGGCG TAAAGCG
T. maratima	GCGGTAAT ACGTAGGGGGCAAGCGTTACCCGGATTTACTGGGCG TAAAGGG
M. vannielii	GCGGTAAT ACCGACGCCCGAGTGGTAGCCACTCTTATTGGGCC TAAAGCG
T. celer	GCGGTAAT ACCGGCGGCCCGAGTGGTGGCCGCTATTATTGGGCC TAAAGCG
S. sulfotaricus	GCGGTAAT ACCAGCTCCGCGAGTGGTCGGGGTGATTACTGGGCC TAAGCGG


Microbial characterization

Illumina sequencing

Metagenome-assembled genomes

